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Vaccinia-related kinase 1 (VRK1) is involved in numerous cellular processes, including DNA repair, cell cycle and cell proliferation.
However, its roles and molecular mechanism underlying the progression of hepatocellular carcinoma (HCC) are yet largely
unexplored. Here, we demonstrated that VRK1 expression is elevated in HCC tumor tissues, which is associated with high tumor
stage and poor prognosis in HCC patients. In vitro and in vivo experiments manifested that VRK1 overexpression significantly
promotes cell proliferation, colony formation, migration and tumor growth of HCC by inducing epithelial-mesenchymal transition
(EMT) program. Mechanistically, immunoprecipitation combined with mass spectrometry analysis determined that VRK1 interacts
with CHD1L, which mediates the phosphorylation of CHD1L at serine 122 site. RNA-seq revealed that one of the key downstream
target genes of VRK1 is SNAI1, by which VRK1 promotes EMT process and HCC progression. Furthermore, VRK1 upregulates SNAI1
expression through phosphorylating CHD1L. In conclusion, these findings suggested that VRK1/CHD1L/SNAI1 axis acts as a cancer-
driving pathway to promote the proliferation and EMT of HCC, indicating that targeting VRK1 may be an attractive therapeutic

strategy of HCC.
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INTRODUCTION
Liver cancer ranks the sixth in malignant cancer incidence and is
the fourth in mortality rate among most commonly diagnosed
cancers worldwide in 2020 [1, 2]. Hepatocellular carcinoma (HCC)
accounts for ~90% of primary liver cancer cases, in which alcohol
and chronic infections by hepatitis B (HBV) and C virus (HCV) are
the most prominent risk factors [3]. The systemic therapies have
been approved for advanced HCC, such as tyrosine kinase
inhibitor (TKI, sorafenib and lenvatinib) and combinations of
immunotherapies with vascular endothelial growth factor (VEGF)A
monoclonal antibodies [4]. However, HCC metastasis and drug
resistance remarkably result in worse prognosis and shorter
survival. Therefore, it is urgently need to unveil the molecular
mechanisms and new therapeutic targets in HCC progression.
Vaccinia-related kinase 1 (VRK1) predominantly localizes in the
nucleus, which serves as a serine/threonine (Ser/Thr) protein kinase
[5]. The VRK1 kinase directly phosphorylates several nuclear
substrates to participate in multiple cellular functions including
cell mitosis and proliferation, migration and DNA damage
responses [6, 7]. As an oncogenic driver, VRK1 expression is highly
increased in several types of cancer, such as breast cancer, ovarian

cancer, non-small cell lung cancer, head and neck squamous cell
carcinomas, glioma and neuroblastomas [7-9]. It was reported that
enhanced VRK1 translation upregulates CCND1 expression by
phosphorylating CREB, thus promoting cell proliferation and cell
cycle progression in lung cancer cells [10]. Notably, VRK1 is
involved in the maintenance of genomic stability and prevents
cellular damages from ionizing radiation and chemotherapy agents
including olaparib, doxorubicin and cisplatin [6, 11, 12]. In HCC,
VRK1 modulates G1/S cell cycle transition, cell proliferation and is
associated with tumor immune infiltration anti-PD-L1 immunother-
apy response [13-16]. However, the role and mechanisms by which
VRK1 promotes epithelial-mesenchymal transition (EMT) and HCC
progression have not yet been elucidated.

In this study, we demonstrated that SNA/T is a downstream
target of VRK1. The transcription factor SNAI1 promotes the EMT
process, which inhibits the expression of the epithelial marker
E-cadherin and enhances cell motility and invasiveness [17, 18].
Mounting evidence showed that SNAI1 expression is modulated at
the transcriptional level, translational level and post-translational
modifications [19-21]. Nonetheless, it is unclear about the
underlying mechanism by which VRK1 regulates SNAIT expression.
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Importantly, we identified that VRK1 promotes SNAI1 expres-
sion by interacting with a novel substrate chromodomain helicase
DNA binding protein 1-like (CHD1L). VRK1 phosphorylates CHD1L
at serine 122 to induce the expression of SNAI1, thereby
promoting the proliferation, migration and tumor growth of liver
cancer cells. Thus, VRK1 may serve as a promising therapeutic
target in liver cancer.

MATERIALS AND METHODS

Cell culture and transfection

Huh7, HepG2, Hep3B, SK-HEP-1, PLC/PRF/5 and HEK 293T cell lines were
acquired from the Cell Bank of the Chinese Academy of Sciences
(Shanghai, China). THLE-2 cell line was obtained from the American Type
Culture Collection (ATCC, USA). Huh7, HepG2 and HEK 293T cells were
maintained in Dulbecco’s modified eagle medium (DMEM, Gibco)
supplemented with 10% fetal bovine serum (FBS, ExCell Bio, China) and
1% Penicillin/Streptomycin solution (Beyotime, China). Hep3B, SK-HEP-1,
PLC/PRF/5 cells were cultured in Minimum Essential Media (MEM, Gibco)
supplemented with 10% FBS (ExCell Bio) and 1% Penicillin/Streptomycin
solution (Beyotime). THLE-2 cell was maintained in Bronchial Epithelial Cell
Growth Medium (CC3170, BEGM, Lonza Bioscience, USA) supplemented
with extra 5 ng/mL EGF (PeproTech, USA), 70 ng/mL Phosphoethanolamine
(Sigma-Aldrich, USA) and 10% FBS (ExCell Bio). All cells were authenticated
by short tandem repeat (STR) profiling and incubated at 37°C in an
atmosphere of 5% CO,. The transient overexpression plasmids were
transfected into cells using Polyethylenimine (PEI) (24765, Polysciences,
USA) at 60%-70% confluence in accordance with the manufacturer’s
instructions.

Plasmid construction

The shRNA plasmids (shVRK7 sequences: 5'-CCTGGTGTTGAAGATACGGAA-
3'; 5-GTAGATTATGGCCTTGCTTAT-3’; and 5'-AGATAATAACTGACATGGCAA-
3’) were used to knockdown VRK1 expression from Genechem (Shanghai,
China). The SNAIT sgRNA (5-CACCGGTCGCCTGCATATGTTACAC-3') was
introduced into Lenti-CRISPRV2-GFP vector. To generate the CHDIL
overexpression plasmid, the human full-length coding sequence (CDS) of
CHD1L was amplified by PCR using a template generously provided by Dr.
Ningfang Ma (Guangzhou Medical University, China) and subcloned into
pcDNA3.1-3xHA-N (Miaoling Biology, China) at the Kpn | and BamH | sites.
CHDIL S122 site plasmid mutation was generated using the fast
mutagenesis system kit (FM111-01, TransGen Biotech, China) according
to the manufacturer’s instructions.

Lentiviral transduction and stable cell line development

To generate Huh7 and HepG2 cell lines with stable knockdown of VRKT,
VRK1 shRNA plasmids were co-transfected with psPAX2 and pMD2.G into
HEK 293T using PEI reagent. To maximize knockdown efficiency, we used a
pool of three shRNAs targeting different regions of VRK1 for simultaneous
infection. Lentiviruses were collected at 48 h after the medium change and
then infected Huh7 or HepG2 cells for 48 h in the presence of 8 ug/mL
polybrene (Millipore, USA). The infected cells were selected with 2 pg/mL
puromycin (ST551, Beyotime) for 1 week and then evaluated the
knockdown efficacy. For generation of SNAI1 knockout cell line,
SNAI1 sgRNA plasmid was co-transfected with psPAX2 and pMD2.G into
HEK 293T using PEIl reagent. Lentiviruses were collected and then infected
VRK1 knockdown Huh7 cells for 48 h with 8 pg/mL polybrene (Millipore).
The GFP-positive cells were selected by flow cytometry and then evaluated
the knockdown efficacy.

Cell counting kit-8 (CCK8) assay

For cell viability assay, Huh7 cells were seeded in 96-well plates at 4000
cells per well (HepG2 cells at 5000 cells per well) with three replicates. The
cells were cultured at 24 h, 48 h, 72 h, and 96 h after seeding and incubated
with 10 uL CCK8 (A311, Vazyme, China) for 3 h. The absorbance was
measured using a microplate reader (Bio-Tek, USA) at 450 nm.

EdU assay

Cells were seeded into 96-well plates at a density of 8000 cells each well
with three replicates. After culturing for 24 h, the cell proliferation ability
was detected by the EdU assay kit (C0075S, Beyotime) according to the
manufacturer’s instructions. In brief, cells were incubated with 100 pL
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50 uM EdU buffer at 37 °C, 5% CO2 for 2 h, fixed with 4% polyformaldehyde
for 15 min and permeabilized with 0.3% Triton X-100 for 15min. EdU
staining was performed with the reaction buffer for 30 min followed by
staining of nuclei with Hoechst 33342 for 15 min and then the images were
captured by a fluorescence microscope.

Colony formation assay

Huh7 cells were seeded in 12-well plates at 2000 cells per well (HepG2 cells
at 1000 cells per well) with three replicates and were cultured for about
14 days. Then the cells were washed twice with PBS, fixed with methanol
for 30 min, and stained with 0.1% crystal violet solution for 30 min.

Cell migration assay

The 24-well Plate with 8 um transparent PET membrane (353097, Corning,
USA) was used to determine cell migration capability. Huh7 cells were
seeded in the upper chamber at 40,000 cells per well (HepG2 cells at
50,000 cells per well) with serum-free medium. A total of 500 L medium
with 10% FBS was added to the lower chamber. After 24 h incubation, the
cells were washed with PBS, fixed with methanol for 30 min, and stained
with 0.1% crystal violet solution for 30 min. The residual crystal violet
solution was removed and then the images were obtained using a
microscope.

Western blotting and immunohistochemistry (IHC)

Protein was extracted using RIPA lysis solution (P0013K, Beyotime) with
protease inhibitors (B14002, Bimake, China) and phosphatase inhibitors
(B15001, Bimake), separated by 10% SDS-PAGE and then transferred to
0.45 um PVDF membranes (10600023, Cytiva, USA). The PVDF membranes
were blocked using 5% skimmed milk for 2 h and incubated using primary
antibodies at 4°C overnight. Anti-VRK1 antibody (A7745), anti-CHD1L
antibody (A17558), anti-pan-Phospho-Ser/Thr antibody (AP1067) and anti-
B-actin antibody (AC026) were purchased from ABclonal (Wuhan, China).
CHDI1L rabbit monoclonal antibody (R383038) was obtained from Zenbio
(Chengdu, China). Anti- SNAI1 antibody (3879), anti-HA-Tag antibody
(3724S) and anti-Flag-Tag antibody (14793S) were purchased from Cell
Signaling Technology (CST, MA, USA). Anti-E-cadherin antibody (20874-1-
AP), anti-N-cadherin antibody (22018-1-AP), anti-Vimentin antibody
(10366-1-AP), anti-GAPDH antibody (60004-1-lg) were purchased from
Proteintech (Wuhan, China). On the following day, the PVDF membranes
were washed by TBST 5 times and then incubated by the secondary
antibodies for 2 h at room temperature. Anti-Rabbit IgG antibody (7074)
and Anti-Mouse IgG antibody (AS003) were purchased from CST and
ABclonal, respectively. The protein bands were visualized using an
ultrasensitive ECL chemiluminescent detection kit (PK10003, Proteintech)
and an imaging analysis system (Tanon, China).

The tissue microarray was obtained from Outdo Biotech Company
(Shanghai, China) and IHC was carried out according to the standard
protocol. Briefly, the slide was deparaffinized, rehydrated and performed
antigen retrieval. Then, the tissue was incubated with anti-VRK1 antibody
at 4 °C overnight and secondary antibody for 45 min, and developed with
DAB staining. QuPath, an open-source image analysis software available at
https://qupath.github.io was used for tissue microarrays analysis. The
detached tissues were excluded for analysis.

Co-immunoprecipitation (Co-IP) and mass spectrometry

The appropriate amount of anti-Flag magnetic beads (B26102, Bimake)
or anti-HA magnetic beads (B26202, Bimake) were pretreated using TBS
according to the manufacturer’s instructions. Protein A/G magnetic
beads were obtained and used for immunoprecipitation of endogenous
CHDI1L protein (88802, Thermo Scientific, USA). The protein was
extracted using IP lysis solution (P0013J, Beyotime) with protease and
phosphatase inhibitors and then incubated with the pretreated
magnetic beads overnight at 4 °C. Protein-bound magnetic beads were
washed with PBST 5 times at 2 min per time and then the protein was
eluted using protein sample loading buffer (P1016, Solarbio, China) and
boiled at 98 °C for 10 min.

The proteins were immunoprecipitated using magnetic beads and then
separated using SDS-PAGE. The gel was stained using coomassie blue
superfast staining solution (PO017F, Beyotime). The excised gels were
digested and liquid chromatography tandem mass spectrometry analysis
was performed using a Q-Exactive mass spectrometer coupled with an
Easy nLC (Thermo Scientific) from Applied Protein Technology (APTBIO,
Shanghai, China).
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RNA sequencing

Total RNA from control cells and VRK1 knockdown cells was extracted with
RNAprep pure cell kit (DP430, TIANGEN, China). The RNA quality was
confirmed using Fragment Analyzer (Agilent, USA) and then RNA
sequencing was performed using the DNBSEQ platform from BGI
Genomics (Wuhan, China). The differentially expressed genes were
identified by DESeq2 analysis. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) were
performed using Dr. Tom online system.

Real-time PCR (qRT-PCR)

Total RNA was extracted with an RNAfast200 kit (Fastagen, China). cDNA
was synthesized using ReverTra Ace qPCR RT Master Mix with gDNA
Remover (FSQ-301, TOYOBO, Japan). qRT-PCR was conducted using SYBR
Green (Q311Vazyme) operated in the LightCycler 480l Real-time PCR
system (Roche, Switzerland). The relative RNA level was calculated by the
comparative Ct method with the normalization to GAPDH. The PCR primers
were listed in Supplementary Table 1.

Tumor xenograft in nude mice

A total of 4x 10° Huh7 cells from control or VRK1 knockdown groups were
suspended in 140 pL PBS and injected subcutaneously into 5-week-old male
BALB/c nude mice obtained from Beijing Vitalstar Biotechnology. During the
process of tumor formation, the weight of the nude mice and the tumor
length (L) and width (W) were measured daily. Tumor volumes (mm?) were
calculated using the formula: L x (W)%/2. When the tumor volume reached
1500 mm?>, the nude mice were sacrificed. The tumor tissues were separated
for subsequent experiments. All mice were fed under specific pathogen-free
conditions at the model animal research center of Shandong University (Jinan,
Shandong, China) under a regular 12-h light/dark schedule at a constant room
temperature (20°C to 24 °C). All animal experiments were approved by the
Animal Care and Use Committee of Shandong University.

Statistical analysis

The experimental data were statistically analyzed using GraphPad Prism
8.0.1 software. The results are shown as mean+standard deviation
(mean £ SD). Student’s t test was used to compare two groups. One-way
ANOVA followed by Tukey test was used to compare multiple groups.
Statistical significance was represented as *p < 0.05, **p < 0.01, ***p < 0.001
and ****p < 0.0001.

RESULTS

VRK1 is highly expressed and associated with poor
prognosis in HCC

VRK1 mRNA levels were examined in HCC tissues by analyses of
the Cancer Genome Atlas (TCGA) data. The results showed that
VRK1 was significantly overexpressed in HCC tissues compared
with the non-tumor liver tissues (Fig. 1A). Moreover, we found that
VRK1 expression was upregulated in the tumor grade 3 and cancer
stage T3 (Fig. 1B, Q). In addition, the immunohistochemistry (IHC)
staining on HCC tissue microarray was performed. The data
revealed that VRK1 showed a strong nuclear staining and
demonstrated a significant increase in HCC tumor tissues
compared with the adjacent non-tumor tissues (Fig. 1D, E). More
importantly, further Kaplan-Meier survival analyses indicated that
the HCC patients with high VRK1 expression exhibited much
shorter overall survival, progression free survival and disease-free
survival (Fig. 1F-H), suggesting that VRK1 is highly expressed and
correlated with much worse prognosis in HCC.

Depletion of VRK1 inhibits cell proliferation and migration in
HCC

We next detected VRK1 protein expression levels in normal
hepatocytes and several liver cancer cell lines. Intriguingly, VRK1
protein levels were sharply upregulated in liver cancer cell lines
Huh?7 and HepG2 cells compared with normal hepatocytes THLE-2
(Fig. 2A). To further investigate the effect of VRK1 on the function of
HCC cells, we selected Huh7 and HepG2 cells to generate stable
knockdown of VRK1 cell lines using three different shRNA targeting
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coding sequence of VRKT gene (Fig. 2B). We observed that the VRK1
mRNA and protein expression levels were significantly reduced in
Huh7 (Fig. 2C, D) and HepG2 cells upon ablation of VRK1
(Supplementary Fig. 1A, B). Interestingly, knockdown of VRK1
decreased the cell viability in Huh7 (Fig. 2E) and HepG2 cells
(Supplementary Fig. 1C). Similarly, depletion of VRK1 also reduced
cell colonies number and size in Huh7 cells (Fig. 2F, G) but not in
HepG2 cells (Supplementary Fig. 1D, E), suggesting that VRK1
promotes colony formation in HCC cells in a context-dependent
manner. Then, we performed Transwell assay to evaluate the effect
of VRK1 on cell migration capacity. The results showed that ablation
of VRK1 decreased cell migration number in Huh?7 (Fig. 2H, 1) and
HepG2 cells (Supplementary Fig. 1F, G). Moreover, we demonstrated
that transient VRK1 expression increased colony formation and the
number of migrated cells (Supplementary Fig. TH, ). Taken together,
VRK1 enhances the proliferation and migration of hepatocellular
carcinoma cells.

VRK1 interacts with and phosphorylates CHD1L on serine 122
To decipher the regulatory mechanism by which VRK1 promotes
proliferation and migration in hepatocellular carcinoma, we
performed immunoprecipitation followed by mass spectrometry
(IP-MS) to distinguish the potential interacting proteins of VRK1 (Fig.
3A). Barrier-to-autointegration factor (BAF) and p53, two well-known
substrates of VRK1, were identified in the MS protein list, indicating
that the MS results have high reliability (Fig. 3B). Moreover, co-
immunoprecipitation assay was conducted to confirm whether these
novel substrates CHD1L, DDB1, FOXC1 and USP7 may interact with
VRK1. The results demonstrated that endogenous CHD1L could bind
with VRK1 (Fig. 3B, C). CHD1L is a multifunctional protein that
participates in diverse cellular processes, including chromosome
remodeling, cell differentiation and DNA repair [22, 23]. CHDIL has
recently been characterized as a driver gene, and hence plays vital
roles in tumor progression and sorafenib resistance of HCC [24, 25].
To further determine the physical interaction between VRK1 and
CHDI1L, co-immunoprecipitation assay was performed in Huh7 cells
and 293T cells with ectopic expression of Flag-VRK1 and HA-CHD1L.
The results determined reciprocal interaction between VRK1 and
CHDI1L protein (Fig. 3D, E and Supplementary Fig. 2A, B).

VRK1 is a nuclear Ser/Thr chromatin kinase and usually
promotes carcinogenesis by phosphorylating its substrates. Thus,
we supposed that VRK1 may modulate CHD1L phosphorylation.
To support this hypothesis, we first investigated whether VRK1
influenced global phosphorylation levels of exogenous CHDIL.
Intriguingly, the results indicated that knockdown of VRK1 largely
abrogated overall phosphorylation modification levels of exogen-
ous CHDI1L (Fig. 3F). Subsequently, we detected the effect of VRK1
on endogenous CHDI1L levels. VRK1 depletion reduced endogen-
ous p-CHD1L (Fig. 3G), but didn't affect CHD1L mRNA and protein
expression (Supplementary Fig. 2C). To explore phosphorylated
amino acid residues of CHD1L by VRK1 kinase, we predicted
potential phosphorylation sites using an online phosphositeplus
website (https://www.phosphosite.org). The results showed that
CHD1L was possibly phosphorylated on the serine 122 by VRK1
(Fig. 3H). In addition, we analyzed sequence conservation of
CHDI1L protein from different organisms. Interestingly, the serine
122 was a conserved amino acid of CHD1L protein across many
species (Fig. 31). Therefore, we introduced a phospho-dead mutant
of CHD1L by substituting serine with alanine (5122A) and detected
the effect of VRK1 on its phosphorylation. We found that
knockdown of VRK1 didn't reduce the phosphorylation level of
CHD1L S122A (Fig. 3J), suggesting that VRK1 phosphorylates
CHDI1L at the evolutionally conserved Ser122 residue.

SNAI1 is a key downstream target gene of VRK1

To dissect the downstream target genes regulated by VRK1, we
performed RNA sequencing analyses in Huh7 cells with stable VRK1
knockdown and the corresponding control cells. We found that a
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Fig. 1 High VRK1 expression is associated with poor prognosis in liver cancer. A VRK1 expression in normal tissues and liver tumor tissues
(compared with normal tissue, ***p < 0.001). B Relationship between VRK1 expression and tumor grade of liver cancer patients (data analysis
website: https://ualcan.path.uab.edu/; Grade 1: well-differentiated; Grade 2: moderately differentiated; Grade 3: poorly differentiated; Grade 4:
undifferentiated; Normal vs. Grade 1, ***p < 0.001; Grade 1 vs. Grade 3, ***p < 0.001). C Relationship between VRK1 expression and tumor stage
in liver cancer patients (compared with T1 stage, *p < 0.05). Representative images (D) and IHC score (E) of VRK1 staining in adjacent and HCC
tumor tissues (compared with adjacent tissue, ***p < 0.001). Correlation between VRK1 expression and overall survival (F), progression free

survival (G), disease free survival (H).

total of 325 differentially expressed genes were identified, among
which 154 genes were downregulated and the remaining 171 genes
were upregulated upon VRK1 depletion (Fig. 4A, B). Gene Set
Enrichment  Analysis (GSEA) indicated that the epithelial-
mesenchymal transition (EMT) related gene signature was positively
enriched in VRK1 knockdown cells compared to control cells (Fig. 4C).
Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses confirmed that VRK1 was closely associated with
crucial EMT-associated processes, such as focal adhesion and tight
junction (Fig. 4D). Therefore, the mRNA expression of thirteen EMT-
related genes was further determined by gRT-PCR. We found that
depletion of VRK1 sharply inhibited the mRNA levels of BCATI,
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S100A11, CEP55 and SNAI1, and enhanced CDHT mRNA level in both
Huh7 and HepG2 cells (Fig. 4E-G and Supplementary Fig. 3A, B).
More significantly, we found that VRK1 knockdown reduced the
protein expression of mesenchymal cell marker SNAI1 and induced
the expression of epithelial cell marker E-cadherin (Fig. 4H and
Supplementary Fig. 3C). Collectively, VRK1 is engaged in the EMT
processes by modulating SNAI1 in HCC.

VRK1 promotes proliferation and migration partly through
CHD1L/SNAI1 in HCC

We next investigated whether VRK1 enhanced cell proliferation and
migration by regulating SNAI1 expression. The EdU and transwell

Cell Death and Disease (2025)16:302


https://ualcan.path.uab.edu/

A B

J. Lietal

: P orfld
e %\u‘ﬂ \,\eOG'l\,\evges\k‘\’\Ep\,G‘??\

kDa shVRK1-3 ShVRK1-2 ShVRK1-1
7 ’i” iiVRK1 — — ; . —_—

= 80-100 bp 586-606 bp 1102-1122 bp
a7 - — gy W - —|p-actin VRK1 CDS (NM_003384.3)

C D

S 15— 1.5
g -o— cirl
N () -# shVRK1
& <
N N o
- 2 14 € 14 * %
kDa =z (g
50- == [VRK1 o
Ll = \uvl
-
X . Q.
& = " |B-actin & 0.8 o %8
37- o
Huh7 =
©
g o I 0 I

150
(%}
8 |
ctl  shVRK1 2 1004
N - %%
S 50
E
=}
z
0 1 I
ctrl shVRK1

T
ctrl shVRK1

T T T
24h  48h  72h  96h

.5 250 -
gzoo- _I_
é *%*
ctrl shVRK1 150
: . Y -
: - 5
2 100
€
2 504
I
O o T T
ctrl shVRK1

Fig. 2 VRK1 promotes the proliferation and migration of liver cancer cells. A The expression of VRK1 in normal liver cells and liver cancer
cells. B Diagram of VRK1 shRNA targeting region in VRK1 coding sequence. Immunoblots analysis of VRK1 protein level (C) and qRT-PCR
analysis of VRKT mRNA level (D) in Huh7 cells infected with VRK1 shRNA. CCK8 (E), colony formation (F, G) and transwell assay (H, I) were
determined in Huh7 cells. Data are represented as means * SD relative to the control group (n = 3). *p < 0.05, **p < 0.01.

migration assay exhibited that depletion of VRK1 led to reduced cell
proliferation and migration in Huh7 cells, while overexpression of
SNAIT partially reversed the growth inhibition and the decrease of
migration induced by VRK1 knockdown in Huh7 cells (Fig. 5A-D and
Supplementary Fig. 4A). Moreover, we demonstrated that VRK1
knockdown still inhibited cell proliferation, colony formation and cell
migration under depletion of SNAI1 (Fig. 5E-G and Supplementary
Fig. 4B). We further explored whether VRK1 regulated SNAI1
expression through phosphorylation modification of CHD1L. The
results showed that knockdown of VRK1 inhibited SNAI1 expression,
while this inhibition can be rescued by overexpression of wide-type
CHDI1L, but not phospho-dead CHD1L S122A mutant (Fig. 5H, I). In
addition, CHD1Li6.11 was used to investigate the effect on cellular
function, which was a selective inhibitor of CHD1L [26]. We
determined that the IC50 value of CHD1Li6.11 (CHD1L-i) was
1.437 uM (Fig. 5J). Then, we further investigated the effect of CHD1L-
i treatment on cellular functions in control and VRK1-knockdown
Huh?7 cells. The data showed that the CHD1L inhibitor alone reduced
cell viability, colony formation and cell migration, while VRK1
knockdown remained this inhibitory effect under CHD1Li6.11
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treatment (Fig. 5K-M). Taken together, these results indicated that
VRK1 promotes cell proliferation and migration partly through
CHD1L/SNAIT.

VRK1 promotes tumor growth in vivo

The above-mentioned results demonstrated that VRK1 significantly
enhanced cell proliferation, colony formation, and migration capacity
of hepatocellular carcinoma cells in vitro. To further investigate the
effects of VRK1 on tumor formation and growth in vivo, we
constructed a xenograft tumor model in BALB/c nude mice. An
equal number of Huh7 cells with control or VRK1 knockdown were
subcutaneously injected into nude mice. After injection, the mice
were closely monitored daily for body weight and tumor volume for
about 2 weeks (Fig. 6A). The tumor growth rate of mice in the VRK1
knockdown group was noticeably slower than that of the control
group (Fig. 6B). Consistent with this result, depletion of
VRK1 significantly blocked the xenograft tumor volumes and weight
(Fig. 6C, D). However, the body weight of the mice did not fluctuate
significantly (Fig. 6E). In addition, we detected the protein expression
levels of VRK1 and SNAI1 from mice tumor tissues. Remarkably, the
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Fig. 3 VRK1 interacts with CHD1L and phosphorylates the CHD1L S122 site. A Schematic diagram of the screening approach of VRK1
interacting protein by immunoprecipitation combined with mass spectrometry analysis. B Mass spectral peptide count and coverage (%) of
VRK1-interacting proteins. Peptide Num number of peptides used for characterization, Coverage (%) peptide coverage. C Huh7 cells were
introduced with the control plasmid and transient overexpression of Flag-VRK1, then immunoprecipitated by Flag-VRK1 protein and
confirmed its interacting proteins by Western blot. D, E Exogenous interactions between Flag-VRK1 and HA-CHD1L were detected by
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protein expression of VRK1 also exhibited a positive correlation with
SNAIT expression in mice tumor tissues (Fig. 6F). However, VRK1 didn’t
impact CHD1L protein levels in tumor tissues (Fig. 6G), which was

consistent with the result shown in Supplementary Fig. 2C.
Collectively, VRK1 regulates SNAI1 protein expression and promotes
tumor growth in vivo.
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CONCLUSION

The protein kinases play critical roles in tumorigenesis and
progression of various types of cancer [27]. Approximately 155
kinases, 30% of the human kinome, have already been recognized
as potential drug targets [28]. In the present study, we identified a
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promising therapeutical target and explored the correlation
between chromatin kinase VRK1 and clinicopathological features
in HCC. By analyzing the TCGA database, we showed that VRK1
expression was significantly higher in liver tumor tissues
compared with normal liver tissues. Consistently, IHC staining of
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Fig. 5 VRK1 promotes liver cancer progression partly through CHD1L/SNAI1. EdU (A, B) and transwell assay (C, D) were performed in Huh7
cells with VRK1 knockdown after rescue with SNAI1 plasmid. Data are represented as means+SD (n=3). shVRK1 vs. ctrl, ***p < 0.001,
*p < 0.05; shVRK1 + SNAI1 vs. shVRK1, *p < 0.05. CCK8 assay (E), colony formation (F) and transwell assay (G) were performed using either
control or VRK1 knockdown cells under depletion of SNAI1. *p < 0.05. H The protein level of SNAI1 was detected in the control group, VRK1
knockdown group, VRK1 knockdown and overexpressing HA-CHD1L group, and VRK1 knockdown and overexpressing HA-CHD1L-S122A
mutant group of Huh7 cells by Western blot, respectively. | The mRNA level of SNAIT was detected by qRT-PCR in the control group, VRK1
knockdown group, VRK1 knockdown and overexpressing HA-CHD1L group of Huh7 cells, respectively. Data are represented as means + SD
(n=3). shVRK1 vs. ctrl, **p < 0.01, *p < 0.05; shVRK1 + CHD1L vs. ctrl, *p < 0.05; shVRK1 + SNAIT vs. shVRK1, *p < 0.05. J IC50 curve of CHD1L
inhibitor CHD1Li6.11 in Huh7 Cells. The cell viability was detected using CCK8 assay after treatment with CHD1Li for 72 h. The IC50 value was
calculated using nonlinear regression. K-M Control and VRK1 knockdown cells were treated with CHD1L inhibitor CHD1Li at 1 pM (E1146,
:elleck). CCK8 assay (K), colony formation (L) and transwell assay (M) were conducted. *p < 0.05, **p < 0.01, ***p <0.001 and ****p < 0.0001.
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Fig. 6 Depletion of VRK1 inhibits tumor growth in vivo. A Diagram of subcutaneous xenograft tumor model. Growth curve (B), dissected
tumor images (C), tumor weight (D) and mice body weight (E) for the xenograft experiments with indicated cells inoculated subcutaneously
into nude mice. Visible tumors were measured every day. Data are represented as means+SD relative to the control group (n=>5).
***¥p < 0.001. The protein expression of VRK1, SNAI1 (F) and CHDIL (G) in xenograft tumor tissues.

VRK1 exhibited an extreme increase in HCC compared with
paratumor tissues. Furthermore, VRK1 expression was upregulated
in HCC patients corresponding to high tumor grade and cancer
stage, indicating that VRK1 expression is positively correlated with
the malignancy of liver tumor. More importantly, VRK1 expression
was associated with poor prognosis in liver cancer. In vitro
functional assays demonstrated that VRK1 enhanced cell pro-
liferation, colony formation and cell migration in HCC cells.
Consistent with our results, a previous study found that VRK1
expression is increased and linked to a poor prognosis in HCC
patients [13]. However, the underlying mechanism by which VRK1
promotes HCC progression remains largely unexplored.

Cell Death and Disease (2025)16:302

During tumor metastatic process, the tumor cells induce
expression of numerous matrix metalloproteinases (MMPs) and
remodel extracellular matrix (ECM) to facilitate local invasion [29].
Thousands of tumor cells further infiltrate into nearby blood
vessels, while only a few cells metastasize to distant sites, and
subsequently colonize in distant organs to establish tumor
metastasis [29, 30]. A key event at the initiation of tumor invasion
and metastasis is the epithelial-mesenchymal transition (EMT)
process [18]. Recent studies confirmed that SNAIT has been
extensively characterized as a key driver of tumor aggressiveness
and metastasis through contributing to the EMT program [20]. In
our study, VRK1 played a vital role in modulating EMT mediated by
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Fig. 7 Working model of the proposed mechanism. VRK1 promotes the proliferation and migration of liver cancer cells by regulating SNAI1

expression through phosphorylation of the CHD1L S122 site.

elevated SNAI1 expression. In addition, further studies examined
that VRK1 promoted the proliferation and migration of liver cancer
cells by upregulating the expression of SNAI1 in vitro. Moreover,
we found that VRK1 upregulated SNAI1 expression through
interacting with CHD1L protein. CHDI1L, a key chromatin
remodeler, is involved in maintaining an open and active
chromatin state to activate gene transcription [23]. Therefore,
we supposed that CHD1L may promote SNAIT transcription by
chromatin remodeling, which merits further investigation. It was
reported that the macro domain of CHD1L is modified by poly-
ADP-ribose, which relieves the auto-inhibition status of CHD1L
and mediates chromatin remodeling and PARP1 resistance
[31, 32]. In HCC, CHD1L promotes tumor malignant progression
and Sorafenib resistance, which is combated by PARP inhibitor
olaparib [25]. Our study firstly revealed that CHDIL was
phosphorylated at S122 site by VRK1. Due to high hydrophobic
amino acid Cys123 and technical challenges, the specific antibody
for p-CHDL1 S122 is unavailable. The p-CHDL1 level on S122
couldn't be effectively determined in tissues. Nevertheless,
whether or not CHD1L S122 phosphorylation affect clinical drug
sensitivity is not well understood and worth further research.

Currently, some novel and potent VRK1 inhibitors are
designed and introduced, such as dihydropteridinone deriva-
tives, VRK-IN-1 and luteolin. Unfortunately, these dihydropter-
idinone derivatives also targeted CK16 and CKle kinase in
addition to VRK1 [33]. Interestingly, VRK-IN-1, a selective
inhibitor, reduces histone H3K9 and H4K16 acetylation levels
by targeting VRK1 [34]. We also determined the effect of VRK-
IN-1 on cell viability in HCC and found that VRK-IN-1 did not
inhibit cell proliferation at 20 uM concentration (data not
shown). It was reported that luteolin, a kind of flavonoid-like
natural product, suppresses the proliferation, migration and
promotes cell apoptosis in multiple cancer types, including lung
cancer, ovarian cancer and HCC [8, 35, 36]. However, luteolin
exhibits anti-tumor activity by modulating various targets and
signal pathways including VRK1, THOC1 and p53 [8, 35].
Therefore, highly selective VRK1 inhibitors or PROTAC degra-
ders need to be developed in future.

In summary, we found that VRK1 interacted with and
phosphorylated the CHD1L at S122 site to regulate SNAI1
expression, thus promoting the proliferation, migration and
tumor growth of liver cancer cells (Fig. 7). This study further
refines the biological functions played by VRK1 in liver cancer
progression and explores the mechanism by which the VRK1-
CHD1L-SNAI1 axis promotes liver cancer progression. The
intervention of VRK1 may provide a promising therapeutic
strategy for liver cancer.
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