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Both intrinsic and microenvironmental factors contribute to the genesis and progression of leukemia. Dendritic cells (DCs) are
important members of the immunomicroenvironment. The immature DCs (imDCs) and regulatory DCs (DCregs) participate in the
formation of an immunosuppressive microenvironment that play adverse role in tumor progression. However, the characteristics of
DCs in leukemia microenvironment have not been well established. Here, we identified a novel CD11c"MHCII'® DC population
(T-DC) accumulated in the mouse splenic T-ALL microenvironment. T-DCs exhibited an immature phenotype as they were
characterized by low expression of MHCII molecules and co-stimulatory molecules such as CD86, CD83 and CD40. Database analysis
revealed that low level expression of DC maturation-associated genes correlated with poor prognosis in leukemia patients.
Furthermore, T-DCs promoted T-ALL progression contributed by their attenuated phagocytosis and CD4" T cell activation potential.
Moreover, RNA sequencing analysis demonstrated that T-DCs expressed low level of genes related to maturation and antigen
processing. T-DCs showed similar expression pattern with DCregs and expressed high levels of immunosuppressive genes. In
addition, single cell RNA sequencing demonstrated the heterogeneity of T-DCs, showing that they are mainly compose of cDCls,
c¢DC2s and macrophage-like DCs. Therefore, our findings uncover the critical role of a novel imDC subset in promoting leukemia
progression through the suppression of T-cell immunity. These results may have significant implications for the development of

immunotherapeutic strategies aiming at reversing immune evasion in leukemia and improving patient outcomes.
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INTRODUCTION

The occurrence and progression of diseases are greatly driven and
impacted by both intrinsic and microenvironment factors.
Different immune cells with heterogeneous functions orchestrate
the specific immunomicroenvironments participating physiologic
processes for the homeostatic maintenance as well as pathologic
processes in diverse diseases including malignancies [1]. Among
them, dendritic cells (DCs) are pivotal antigen-presenting cells that
serve as a bridge between innate and adaptive immunity, playing
critical roles in coordinating immune responses [2, 3]. DCs are
broadly classified into two major subsets, the conventional DCs
(cDCs) and the plasmacytoid DCs (pDCs), while the cDCs are
further classified into ¢cDC1 and cDC2 [4].

DCs take part in cancer immunoediting and play important
pathologic roles in different phases of tumors. DCs exert their
anti-tumor effects by effective antigen presentation and T cell
activation. Upon immunosurveillance by DCs and other immune
cells, tumor cells may be destroyed, which lead to the
elimination of tumors [5]. However, during tumor progression,
the tumor microenvironment (TME) is frequently reshaped to an
immunosuppressive state favorable for the growth and metas-
tasis of tumor cells [6]. Different mechanisms covering diverse

immune cell types have been proposed. Among them, the TME
impair the maturation of DCs through various mechanisms. The
maturation process of DCs is a complex and highly regulated
event that involves significant changes in morphology, pheno-
type, phagocytosis, secretory characteristics [7]. The immature
DCs (imDCs) typically express low levels of maturation markers
such as major histocompatibility complex (MHC) class II, CD80,
CD86 and CD40. They are characterized by reduced antigen-
presenting and phagocytic abilities leading to compromised
immune responses [8]. The TME factors, such as hypoxia,
nutrient deficiency, and accumulation of reactive oxygen
species, inhibit the expression of co-stimulatory molecules.
Moreover, imDCs also promote tumor progression by over-
expressing 1I-10, which suppresses T cell proliferation [9]. In
addition, regulatory dendritic cells (DCregs), which possess
immunosuppressive properties and facilitate immune evasion,
have been identified [10, 11]. In fact, DCregs encompass a range
of developmental stages, from immature, semi-mature to
mature, suggesting potential overlaps with imDCs in terms of
phenotype and function [12-15]. Therefore, restoring the anti-
tumor effects of DCs in the TME could potentially improve the
efficacy of cancer immunotherapies.
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Compared with solid tumors, leukemia has unique pathologic
microenvironment [16]. The immune cells in the leukemic
microenvironment including DCs, macrophages, natural killer
(NK) cells, and regulatory T cells (Tregs), exhibit heterogeneous
characteristics and play pathologic roles during disease progres-
sion through different mechanisms [17-22]. As an important
member of the leukemia microenvironment, bidirectional inter-
actions between DCs and the microenvironment have been
elucidated, ie. the leukemia microenvironment recruits and
educates DCs, which in turn reshape the leukemia microenviron-
ment and contribute to disease progression. AML patients with
FLT3-ITD had significantly higher frequencies of cDCs and pDCs
than those without the mutation and the elevation was associated
with a more aggressive disease phenotype and poorer prognosis
[23]. Furthermore, more imDCs were detected in patients who
experienced relapse [24, 25]. Moreover, DCs from thymic
microenvironments in multiple murine T-ALL models directly
supported the growth of T-ALL cells [26]. In addition, in vivo
depletion of myeloid cells including DCs lead to a significant
reduction in leukemia burden and prolonged survival in T-ALL
mouse models [27]. These studies highlighted the significance of
DCs in the leukemia microenvironment as well as their association
with disease progression and relapse. However, a lot of funda-
mental phenomena and mechanisms, such as the phenotypic and
functional characteristics of DCs in leukemia microenvironment,
the leukemia-specific subpopulations, the transcriptomic hetero-
geneity and the interaction between DC subpopulations and other
immune cells, have not been fully elucidated.

Here, we identified a novel CD11c*MHCII'™ DC population (T-
DC), which exhibited an immature phenotype, in the mouse
splenic T-ALL microenvironment. Database analysis revealed that
low level expressions of DC maturation-associated genes corre-
lated with poor prognosis in leukemia. Furthermore, T-DCs
promoted T-ALL progression contributed by their attenuated
phagocytosis and CD4* T cell activation potential. Moreover,
single cell RNA sequencing (scRNA-seq) demonstrated the
heterogeneity of T-DC. Therefore, our study identifies a novel
immature DC subset in the leukemia microenvironment, which
provides important insights for the mechanisms of leukemia
progression as well as immune-based approaches for leukemia
therapy.

METHODS AND MATERIALS

Mice

C57BL/6J (CD45.2) and C57B6.SJL (CD45.1) mice were provided by the
Animal Center of the Institute of Hematology and Blood Disease Hospital,
CAMS & PUMC. OT-Il mice were purchased from Cyagen Biosciences. 6-8
weeks old female mice were used and maintained in the specific
pathogen-free animal facility. All procedures for the animal experiments
involved in this study were approved by the Animal Care and Use
Committee at the institute of Hematology & Blood Diseases Hospital.

Cell culture

All cells were cultured in RPMI-1640 supplemented with 10% fetal bovine
serum (FBS) and antibiotics in a humidified atmosphere of 5% CO, at 37 °C.
All culture supplies were endotoxin free.

Mouse model

The Notch 1-induced T-ALL model was described previously [28]. Briefly,
c-kit™ cells enriched from the Bone marrow (BM) of C57BL/6J mice were
infected with retrovirus carrying intracellular domain of Notch1 (ICN1),
MSCV-ICN1-IRES-GFP, and transplanted into lethally irradiated C57BL/6J
recipients, all of which would develop T-ALL. Then, GFP* leukemia cells
were sorted and transplanted into C57BL/6J or C57B6.SJL mice (1 x 10°
cells/mouse) without irradiation. The mice were sacrificed by carbon
dioxide asphyxiation at the indicated time points. All procedures for animal
experiments were approved by the Animal Care and Use Committees at
the Institution.
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Isolation of CD11c MHCII" cells

Mice were sacrificed and the spleen cells were harvested as single-cell
suspensions in PBS with EDTA and filtered through graded nylon filters.
After removal of red blood cells by ammonium chloride lysing buffer, cell
suspension was subjected to FACS for analysis. For isolation of
CD11ctMHCI® cells, CD11c¢t cells were first enriched with microbeads
(Miltenyi Biotec, Bergisch Gladbach, Germany) and CD11c*MHCII® cells
were finally sorted by FACS. We abbreviated CD11c*MHCII® cells, mature
cDCs sorted from healthy and leukemia mice as T-DCs, N-mDCs and T-
mDCs, respectively (day 15).

Flow cytometric analysis, cell sorting

The BD FACS Canto I, LSR Il and Fortessa flow cytometers (BD Biosciences,
San Jose, CA) were used for FACS analysis. The FACS Aria Il (BD
Biosciences, San Jose, CA) was used for cell sorting. Standard protocols
were followed for both FACS analysis and sorting. Flowjo software (version
10.8.1) was used for data analysis. The antibody information is provided in
the Supplementary Table S1.

Phagocytosis assay

Latex bead uptake experiments were used to measure the phagocytosis of
DCs. DCs sorted from the spleens of normal and leukemic mice on day 15
were incubated with FITC-labeled 2-um latex beads (Sigma-Aldrich) for
20 min at 37 °C before FACS analysis.

T-cell proliferation assay

The experiments were performed as previously described [29]. The naive
T cells were obtained from C57BL/6J mice in DC and autologous T cell
co-culture assays or from BALB/C mice in allogeneic mixed lymphocyte
reaction (MLR) assays. Then, 1Xx 10° CFSE (2.5 UM; Thermo Fisher
Scientific)-labeled CD4"CD44 CD62L" naive T cells were co-cultured with
5x 10* N-mDCs, T-DCs and T-mDCs in a 96-well plate in the presence of
(4 % 10° Beads/mL, 4.5um Dynabeads Mouse T-Activator CD3/28, GIBCO)
and T-cell survival factors IL-2 and IL-7 (100 ng/ml, Pepro Tech, Rocky
Hill, NJ, USA) for 5 days, respectively. T cell proliferation and activation
were measured by FACS as the CFSE fluorescence intensity attenuation.
In in vitro DC-mediated antigen-specific T-cell proliferation assays,
5% 10* N-mDCs, T-DCs and T-mDCs were loaded with OVAsys.330
(100 ug/ml, Sigma-Aldrich) overnight before coculture. Then 1x 10° Far
Red (1 uM, Thermo Fisher Scientific)-labeled CD4*CD44 CD62L* naive
T cells from OT-Il mice were co-cultured with N-mDCs, T-DCs and T-
mDCs, respectively in a 96-well plate for 5 days. DC-mediated antigen-
specific naive T-cell proliferation was measured by FACS as the Far Red
fluorescence intensity attenuation.

Identification of the precursors of T-DCs

For in vivo differentiation analysis, 1 x 10* monocyte and DC progenitor
cells (MDPs), common dendritic cell progenitors (CDPs), dendritic cell
precursors (Pre-DCs), monocytes, ¢DCs and pDCs were sorted from
CD45.2* mice and intravenously injected into CD45.1% recipients suffering
T-ALL (day 11). Spleen cells of the recipients were collected on day 15 and
the existence of CD45.2* cells in the T-DCs population were analyzed
by FACS.

In vivo functional analysis of T-DCs

1% 10* T-ALL cells were intravenously injected alone or with 1x 10* T-DCs
into recipient mice. PB GFP* cell levels were monitored on days 14, 18 and
22. Mice were sacrificed and GFP* cell levels in BM and spleen were
analyzed on day 20. Tissues were collected and standard pathologic
analysis was performed.

<DNA synthesis and quantitative reverse-transcription PCR
Total RNA was isolated using RNeasy Mini Kit (Qiagen). cDNA was
synthesized using Transcript All-in-one First-Strand cDNA Synthesis
SuperMix (TransGen Biotech, China) following the manufacturer's proto-
cols. SYBR Green Kit (TaKaRa, China) was used for qRT-PCR experiments,
which were performed on QuantStudio 5 (Thermo Fisher Scientific, USA).
The expression levels of target genes were analyzed by the relative
quantity (RQ) value calculated using the ,aCt method [aaCt= (Ctrarcer
Cteapor) sample” (CtrarceTCleappH) calibratorl- The sequences for all primers
are shown in Supplementary Table S2.
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RNA sequencing (RNA-seq) and data analysis

RNA-seq was carried out by the Novogene CO., Ltd. (Beijing, China)
following standard protocols. The RNA-seq data are available in the
National Center for Biotechnology Information Gene Expression Omnibus
database under accession number GSE285239.

Single cell RNA sequencing

T-DCs were sorted from leukemia mice. Cell viability was examined by an
TC10 automated cell counter (Bio-Rad). The cell suspension was loaded
into Chromium microfluidic chips with v3 chemistry and barcoded with a
10x Chromium Controller (10x Genomics). RNA from the barcoded cells
was subsequently reverse-transcribed and sequencing libraries were
constructed with reagents from a Chromium Single Cell 3’ v3 reagent kit
(10x Genomics) according to the manufacturer’s instructions. Sequencing
was performed using lllumina HiSeq 2000 according to the manufacturer’s
instructions. The scRNA-seq data reported in this paper have been
deposited in the OMIX, China National Center for Bioinformation/Beijing
Institute of Genomics, Chinese Academy of Sciences (https:/
ngdc.cncb.ac.cn/omix: accession no. OMIX008392).

scRNA-seq-based data analysis

The scRNA-seq data was analyzed as previously described [30]. The
quality of raw reads was detected with FastQC, and low-quality reads,
adapter sequences, reads that below the 26 bases long and could not
form pairs were removed through Trimmomatic software. Cell Ranger
software (version 3.1.0, 10x Genomics) was used to perform alignment,
filtering, barcode counting and UMI counting. Chromium cellular
barcodes were used to generate feature barcode matrices, determine
clusters, and perform gene expression analysis. Secondary analysis of
gene expression was performed with the filtered gene-barcode matrix
using the Seurat [31]. Genes with expression in fewer than 3 cells and
cells that had less than 200 expressed genes were excluded. For
clustering, highly variable genes were selected and the principal
components based on those genes used to build a graph, which was
segmented with a resolution of 0.6. Gene Ontology (GO) enrichment
analysis of marker genes was implemented by the R package. GO terms
with corrected P value less than 0.05 and the log fold change more than
0.25 were considered significantly enriched by marker gene. The t-
distributed stochastic neighbor embedding (t-SNE) was used to visualize
the clusters. The scaled expression levels of markers across different
clusters were displayed in a heatmap. The connectivity map (CMap)
analysis was conducted to explore the subgroup of T-DCs using R
programming. The differentially expressed genes (DEGs) among T-DC
Cluster 1-6 subpopulations were identified using the following selection
criteria: P-value less than 0.05 for statistical significance and log fold
change more than 0.25 to ensure biologically relevant expression
differences. Connectivity score was performed as described by Schlitzer
et al. [32], demonstrating the association between 6 subpopulations and
the corresponding gene set, which included cDC1, cDC2, macrophages,
and other related immune cell types [33-38] (Supplementary Table S4).
Connectivity scores were plotted to compare lineage-specific enrich-
ment across different subsets using ggplot2 (version 3.5.1).

Statistical analysis

Results are shown as means+ SEM. GraphPad Prism 9.4.1 (GraphPad
Software, CA) was used for data analysis. An unpaired Student's t test (for
two-group comparisons) or a one-way ANOVA (for more than two-group
comparisons) was performed by GraphPad Prism to calculate the statistical
significance. Survival time was compared by Kaplan-Meier analysis.
p <0.05 were considered significant. All experiments were repeated two
to three times. All analyses were performed in R (version 4.4.2) with
reproducible workflows.

RESULTS

Identification of a new ¢DC population in T-ALL
microenvironment

To study the role of DCs during the progression of T-ALL, the non-
irradiated mouse T-ALL model was established as previously
described (Supplementary Fig. STA) [28]. The percentage of GFP*
leukemia cells in peripheral blood (PB) and spleen was detected to
monitor leukemia progression (Supplementary Fig. S1B, C). Based
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on the level of leukemia cells in spleen, days 7, 11 and 15 were
suggested as typical time points for early, middle and late stages
of leukemia, respectively. Splenomegaly was observed, especially
at late stage (Supplementary Fig. S1D). ¢DCs in the leukemia
microenvironment were studied by using typical markers, MHCII
and CD11c. Interestingly, besides the existence of CD11c"MHCII™
cDCs, accumulation of CD11¢"MHCII™ population was detected
during leukemia progression (Fig. 1A, B, Supplementary Fig. STE).
Furthermore, this population were also detected when T, B and NK
cells were excluded by using markers of CD3, CD19 and NK1.1
(Fig. 1C, D). Due to their expression of CD11c, these cells should be
myeloid cells, and might be a ¢DC subpopulation. Therefore,
different precursors sorted from CD45.2 mice, including MDPs,
CDPs, Pre-DCs, monocytes, cDCs and pDCs, were intravenously
transplanted into CD45.1 mice at the middle stage of leukemia
(Fig. 1E, Supplementary Fig. S1F, G). Four days later, CD45.2 cells
were analyzed in the CD11c*MHCI'™ population. The results
showed that CD45.2 cells were detected in the MDP, CDP and Pre-
DC groups but not in the monocyte, cDC or pDC group (Fig. 1F).
These results indicate that this population can differentiate from
DC precursors, suggesting that they should be a ¢cDC subpopula-
tion. We abbreviated this population, mature cDCs from healthy
and leukemia mice as T-DCs, N-mDCs and T-mDCs, respectively. To
further classify this population, cDC1 and ¢cDC2 were analyzed in
the above three populations. T-DCs consisted of both ¢cDC1 and
cDC2, but the majority was cDC1, which was significantly different
from N-mDCs or T-mDCs (Fig. 1G, H). Furthermore, T-DCs did not
express Siglec H, a marker of pDC (Supplementary Fig. S1H).
Collectively, these results demonstrate that the specific population
from T-ALL microenvironment is consistent with the character-
istics of cDCs in terms of origin, markers and subpopulation
distribution.

T-DCs exhibit an immature phenotype

To further investigate the phenotype of T-DCs, the expressions of
CD115, CD11b and F4/80, which were expressed on the surface of
myeloid cells, were examined. T-DCs expressed lower levels of
CD115, CD11b and F4/80 than N-mDCs or T-mDCs (Fig. 2A).
Furthermore, the expressions of CD80, CD86, CD83 and CD40,
which were the antigen presenting cell (APC) specific co-
stimulatory molecules relevant to the activation and maturation
of DCs, were also detected. T-DCs expressed lower levels of CD86,
CD83 and CD40 than T-mDCs (Fig. 2B). Moreover, T-DCs expressed
higher level of PD-1, an immunosuppressive marker, than N-mDCs
or T-mDCs (Fig. 2B). In addition, T-DCs expressed lower level of
MHCII, an important marker of mature DCs, than N-mDCs or
T-mDCs (Fig. 1A-D). Finally, sorted T-DCs were cultured with either
GM-CSF alone or GM-CSF plus TNF-a and IL-1B, the typical DC
maturation inducers, in the in vitro induction experiments. The
increased proportion of MHC II* cells as well as the up-regulated
expressions of CD80, CD86, CD83 and CD40 were detected (Fig.
2C-E). These results suggest that T-DCs exert an immature
phenotype.

ALL patients with lower level of DC maturation-associated
genes have worse prognosis

To explore the clinical significance of immature DC in human ALL,
a DC maturation-associated gene set, including CCL19, CCL21,
CCR7, CD209, CD40, CD80, CD83, CD86, HLA-DMB, HLA-DRA1,
HLA-DRB1, HLA-DQB1 and RELB, was defined based on the reports
[39-43] (Supplementary Table S3). The expression levels of these
genes and survival data were extracted from the open clinical
database TARGET. Survival analysis revealed that ALL patients in
the low score group had a worse prognosis than the high score
group (p < 0.05) (Fig. 3A). To further delineate the contribution of
individual gene within the maturation gene set, separate analyses
were performed. ALL patients in the low score group of CD83,
HLA-DMB, HLA-DQB1, HLA-DRA1 or HLA-DRB1 had a worse

SPRINGER NATURE


https://ngdc.cncb.ac.cn/omix
https://ngdc.cncb.ac.cn/omix

X. Cui et al.

A
Healthy Early Middle -
| T I I
O 'y 10
=
[=]
(S @
T & W fwncy "o o
C
Gated on CD3'CD19'NK1.1
Healthy Early Middle Late 15
- |
& el
g 10
L} s
= 5
[=] S5
Q ]
o
) 0 7 T T T
& ¥ e
Q@& 2 é\b J
E

@9” MDPs/CDPs/Pre-DCs/Monocytes/cDCs/pDCs

Day11 &5 Day15
T:L"\@ e (Q —y) Analysis by flow cytometry
E C57B6.SJL C57B6.SJL
< =
%) 2
@D =
2 .- 8
o
= e s
o
= Q
o 3
(8]
Q
o 8
o o
G H
Gated on CD3'CD19'NK1.1
N-mDC T-DC T-mDC
S S e = cDC1
DC2 DC2 = cDC2
c’g o £ c it < cDC1 P * ok |#
8 |

g ’ ; s 0 20 40 60 80 100
.m’ 1] Vll: 'Iﬂ‘ 1I05 -Vu: L] 10° 'ID 'In -|Il: 0 Vllz ' * J Percentage
¢D24

Fig. 1 Identification of a new cDC population in T-ALL microenvironment. T-ALL mice were sacrificed at indicated stages of leukemia and
mouse spleen samples were analyzed by flow cytometry analysis in the absence (A, B) or in the presence (C, D) of CD3, CD19 and NK1.1
antibodies. The representative flow cytometry results (A, €) show the CD11c"MHCII® (1) and CD11c MHCI (Il) populations and the
percentages of them (B, D) are plotted. (n = 3) E, F 1 x 10" MDPs, CDPs, Pre-DCs, monocytes, cDCs or pDCs from C57BL/6 mice (CD45.2) were
transplanted into C57B6.SJL mice (CD45.1) on day 11 after transplantation of T-ALL cells. The spleen samples were analyzed by flow cytometry
on day 15 (n = 3). The experimental design (E) is shown and the representative flow cytometry results (F) indicate the presence of CD45.2"
cells in the CD11c"MHCII*® population. The representative flow cytometry results (G) and the percentages (H) of cDC1 and cDC2 in N-mDCs,
T-DC and T-mDCs are shown. The data are representative of three independent experiments. *p < 0.05, ***p < 0.001.
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prognosis than the respective high score group (Fig. 3B-F). It's
worth noting that these genes are involved in antigen presenta-
tion and immune activation, suggesting the potential role of
immature DC on the progression of ALL.

T-DCs have pro-leukemic effects

To study their role on the progression of leukemia and the possible
mechanisms, T-DCs were transplanted with leukemia cells (Fig. 4A).
Although there was no significant difference in survival time

Cell Death and Disease (2025)16:571

between the two groups (Supplementary Fig. S2A), the leukemia
cell levels in PB, BM and spleen of mice transplanted with T-DCs and
leukemia cells were significantly higher than the control mice since
day 14 after transplantation (Fig. 4B, C). More severe splenomegaly
was detected in the T-DCs group than the control group on day 18
(Fig. 4D, E). Pathologic analysis further demonstrated that more
infiltrating leukemia cells were detected in the spleen, liver and
kidney in the T-DCs group (Fig. 4F). These results demonstrate that
T-DCs promote the progression of leukemia.
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Fig. 3

Low expression of mature DC-related genes correlates with poor prognosis in human ALL. The data of ALL patients from TARGET

datasets (https://ocg.cancer.gov/programs/target) were analyzed (n = 145). A The survival of ALL patients is shown based on the expressions
of genes within DC maturation-associated gene set. The survival of ALL patients is shown based on their expression of CD83 (B), HLA-DMB (C),
HLA-DQB1 (D), HLA-DRA (E), and HLA-DRB1 (F) by Kaplan-Meier analysis.

Gene expression profile of T-DCs

To further investigate the characteristics of T-DCs and their
mechanisms in leukemia progression, RNA-seq was carried out for
gene expression analysis. Heat map exhibited significant differ-
ences among T-DCs, N-mDCs and T-mDCs (Fig. 5A). Genome-wide
GO analysis showed that DEGs in T-DCs versus N-mDCs or T-mDCs
were enriched in annotations “antigen processing and presenta-
tion”, “regulation of immune effector process”, “positive regulation
of adaptive immune response” and “antigen processing and
presentation peptide antigen” (Fig. 5B). Specifically, antigen
processing and presentation associated genes and maturation-
related genes were selected and presented in heat maps, showing
that T-DCs expressed significantly lower levels of those genes than
N-mDCs or T-mDCs (Fig. 5C, D). Regulatory DC (DCreg) has been
proposed in the literature. We analyzed the expression pattern of
a set of DCreg signature genes proposed by Robertson et al. [44]
among T-DCs, N-mDCs and T-mDCs. T-DCs show similar expres-
sion pattern with DCregs in many genes (Fig. 5E). Different
signature genes of DCregs were also suggested [45-47]. However,
the analysis showed that T-DCs exhibited opposite expression
pattern with DCregs in many genes (Supplementary Fig S3A). The
up-regulated genes in Fig. 5E were further verified by qRT-PCR
(Fig. 5F). The characteristic genes in Supplementary Fig S3A (Arg1,
Cd274, Ido1, Ido2, 1I-10, Nos2 and Pdcd1lg2) were also validated
by qRT-PCR. It's worth noting that T-DCs expressed much higher
level of 1I-10, the well-documented immunosuppressive molecule
(Fig. 5G). Taken together, these results demonstrate that T-DCs
have similar gene expression pattern with DCregs and might play
immunosuppressive roles in T-ALL.

T-DCs have attenuated phagocytotic and antigen-
presentation potential

Phagocytosis and antigen presentation are two important
functions of DCs. As T-DCs express lower levels of antigen
presentation and immunomodulation-related genes, we further
assessed whether T-DCs were functionally affected. To evaluate
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the phagocytic function, latex beads uptake experiments were
performed. T-DCs had comparable phagocytic potential as
N-mDCs. By contrast, T-DCs had lower phagocytic potential than
T-mDCs since fewer strong positive cells while more weak-positive
cells (gated by fluorescence intensity) were detected in T-DCs than
T-mDCs (Fig. 6A). The in vitro DC-naive T cell co-culture systems
were used to test the effects of T-DCs on T cell proliferation. First,
DCs were co-cultured with autologous naive CD4" T cells. T-DCs
had lower potential to activate T cells than N-mDCs or T-mDCs
(Fig. 6B). Second, allogeneic MLR assays demonstrated that T-DCs
were less potent to activate T cells than N-mDCs or T-mDCs, since
T cells co-cultured with T-DCs had larger proportion of low-
proliferating cells (1-3 generations) and smaller proportion of
high-proliferating cells (>3 generations) (Fig. 6C). Third, a DC-
mediated antigen-specific T-cell proliferation assay was conducted
to explore their potential of antigen presentation. Compared with
N-mDCs or T-mDCs, T-DCs had attenuated ability to promote
specific antigen presentation (Fig. 6D). Therefore, T-DCs are less
potent to present antigens and activate T cells than N-mDCs or T-
mDCs, which are functionally consistent with immature DCs.

Single-cell analysis reveals the heterogeneity of T-DCs

To further explore the cellular composition and characteristics of
T-DCs, scRNA-seq was performed using 10x Genomics technology.
A total of 7386 T-DCs passed all quality control filters and were
initially analyzed using Cell Ranger. Principal component analysis
(PCA) and t-distributed stochastic neighbor embedding (t-SNE)
revealed significant transcriptional heterogeneity within the T-DCs
population and 6 clusters were identified (Fig. 7A). The pie chart
showed that over 97% T-DCs belonged to the clusters 1, 2 and 3,
which accounted for 46.31%, 15.98% and 35.53%, respectively
(Fig. 7B). To define each cluster, the transcriptomic signature of six
cell clusters was scored by Connectivity Map (CMap) analysis using
specific signatures of ¢DC1, cDC2, macrophage, pDC, T cell, and B
cell. We compared the transcriptomic signatures of 6 subsets with
the CMap scores (scaled dimensionless values) that reflect the
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Fig. 4 T-DCs have pro-leukemic effects. T-ALL cells were transplanted to recipient mice without (CON) or with sorted T-DCs and the disease
progression was monitored. A The experimental design is shown. B The dynamic distribution of leukemia cells in peripheral blood is shown
(n =4). C-F The leukemia mice were sacrificed on day 18 and the percentage of leukemia cells in the BM and spleen is shown (C). The size (D)
and weight (E) of the spleens are shown (n = 4). The HE-stained sections of BM, spleen, kidney, lung, liver and brain were detected under a

light microscope (F). Scale bar, 100 pm. *p < 0.05, **p < 0.01.

extent of similarity between a cell subset and a defined signature
gene set. Cluster 1 with the highest score for cDC1 was defined as
¢DC1, while Cluster 3 with the highest score for cDC2 was defined
as ¢DC2. Cluster 2 had high scores for both cDC2 and macrophage
and was classified as macrophage-like DCs (M-DCs). The other
three clusters were categorized as pDC, T cell and B cell,
respectively (Fig. 7C). The heatmap shows the expression levels
of the cluster-specific genes (top 10 genes from each cluster)
among the three major cell clusters (Fig. 7D). Meanwhile, the gene
expression profiles of three major cell clusters exhibit significantly
distinct characteristics. The genes of cDC1 cluster were more
enriched in terms related to antigen processing and presentation.

Cell Death and Disease (2025)16:571

Those of cDC2 cluster were more enriched in terms related to
regulation of immune response. Those of M-DCs cluster were
mainly associated with phagocytosis. As we previously demon-
strated that T-DCs had immunosuppressive properties, we further
analyzed the expression levels of DCreg-associated immunosup-
pressive molecules among the three main clusters. The expression
levels of Brd8 and Lmo2 were higher in cDC1 or cDC2 than M-DC,
whereas the expression levels of Cebpb, Nrip1 and SmpdI3a were
higher in M-DC than c¢DC1 or ¢DC2 (Fig. 7E). Together, these
results demonstrate that T-DCs are heterogeneous population and
different cell clusters might exert diverse pathologic roles during
leukemia progression.
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DISCUSSION participate in the formation of tumor immunomicroenvironment.
DCs are involved in both innate and adaptive immunity. They The maturation of DCs is essential for delivering co-stimulatory
exert anti-tumor activity primarily by antigen presenting whereas signals to T cells and their functions are closely related to their
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state of maturation [48]. Although DCs also undergo maturation
within tumors, it is frequently inadequate for them to elicit a
robust immune response, especially under the tumor-associated
immunosuppressive conditions [49]. Spleen is an important site
residing leukemia cells and a specific leukemia microenvironment
is formed during leukemia progression. How leukemia micro-
environment imposes DCs and whether leukemia microenviron-
ment educated DCs affect leukemia progression remain
insufficiently explored. Here, we studied the characteristics of
DCs in the leukemic microenvironment and explored the
pathologic roles of those DCs and the mechanisms using a mouse
T-ALL model.

Different subtypes of DCs, including imDCs and DCregs, have
been identified in the tumor microenvironment playing adverse
roles [50]. The accumulation of imDCs, defined by both
phenotypic and functional characteristics, in tumors is often
driven by factors in the microenvironment, such as hypoxia and
lactate, which skew DC maturation pathways. ImDCs express low
levels of MHCII molecules and co-stimulatory molecules such as
CD80 (B7.1), CD86 (B7.2) and CD83 (HB15) on their surface [14].
Furthermore, tumor microenvironment induces imDCs to secret
suppressive factors like 1I-10, Arg1, Ido1 and Ido2 [51]. Here, we
identified a population of CD11c*™MHCI™ cells (T-DCs) accumu-
lated in the splenic microenvironment when we analyzed the
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characteristics of DCs in a mouse T-ALL model. T-DCs exhibited an
immature phenotype as they expressed low levels of CD86, CD83,
CD40 and MHCII. These results implied that T-ALL microenviron-
ment hindered DC maturation. In addition, they also expressed
high levels of immunosuppressive molecules like 1I-10 and PD-1.
Therefore, we preliminarily classified T-DCs as imDC. Nevertheless,
DCregs with immunosuppressive characteristics have also been
identified in tumor microenvironment. DCregs are characterized
by low level expression of CD86, CD40 and CD83, existence at
various maturation stages, and exerting immune suppressive roles
through diverse mechanisms. Interestingly, T-DCs share some
similar features with DCregs, including similar expression patterns
of some DCreg signature genes and impaired antigen presenta-
tion to CD4" T cells. Importantly, T-DCs accelerated leukemia
progression in vivo. Therefore, T-DCs are imDCs sharing immuno-
suppressive characteristics with DCregs in the leukemia micro-
environment. It was reported that blocking immunosuppressive
molecules could restore the antigen-presenting function of
DCregs, and enable them to effectively activate T cells [52].
Further research is warranted to explore the mechanisms by
which leukemia microenvironment hinders DC maturation and to
develop targeted therapies that restore the maturation of DCs as
well as decrease the expression of immunosuppressive molecules
for better clinical treatment in leukemia.
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High level of imDCs correlates with hindered immune response
and adverse clinical outcome in solid tumors [7, 9]. Given the
absence of subset-specific data on DCs in human databases, a DC
maturation-associated gene set defined in the literature was used
for the survival analysis on an open clinical database [14, 53, 54].
Patients with lower score of this gene set had worse survival.
Furthermore, the analysis for single gene in the gene set revealed
that low level expression of CD83, HLA-DMB, HLA-DQB1, HLA-DRA
or HLA-DRB1, which was also detected in T-DCs (CD83 and MHCII),
was significantly correlated with poor prognosis in ALL patients.
Although neither the maturation-associated gene score nor the
level of any above-mentioned single gene definitively reflects the
level of either T-DCs or imDCs, it gives a possible clue that
high level of T-DCs and imDCs might be an adverse factor in
disease progression. Our findings are in line with recent studies
that highlight the functional interaction between AML and the
immune system, where immune evasion by leukemia cells is a
significant factor in disease progression [55]. This suggests that
the maturation status of DCs may have significant implications for
the efficacy of immune responses against leukemia. Likewise,
in vitro treatment of T-DCs with maturation inducers, GM-CSF
alone or in combination with TNF-a and IL-13, promoted their
maturation, as shown by increased MHCII* cells and upregulated
expressions of CD80, CD86, CD83, and CD40. While these inducers
may enhance DC function, whether they can effectively alter
disease progression or contribute to improved outcomes in
leukemia models has yet to be fully established. Further
investigation should cover how leukemia microenvironment
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hinders DC maturation and how to develop strategies restoring
the maturation of DCs.

DCs are composed of cDCs and pDCs [56]. Furthermore, in
tumor microenvironment, DCs exhibit great heterogeneity in
multifaceted aspects including different stages of maturation, and
functional specialization, etc. T-DCs possess the characteristics of
both imDCs and DCregs, both of which have immunosuppressive
function. However, whether T-DCs are still a heterogeneous
population has not yet been characterized. The scRNA-seq can
resolve inter-subgroup heterogeneity and provide gene expres-
sion profiles at the single-cell level. Here, we identified three main
subpopulations, i.e. cDC1, cDC2 and M-DCs as well as three tiny
subpopulations, i.e. pDCs, T cells and B cells. The M-DCs were first
described in the in vitro DC-induction experiments when myeloid
BM precursors from NOD and NOR mice were induced by GM-CSF.
A CD11c*MHCII™" imDC population was identified and suggested
as an M-DC subset [57]. In fact, cDCs and macrophages have close
relationship as they share same ontogeny and most differentiation
pathways, and have considerable functional similarities [58]. T-DCs
had antigen cross-presentation capabilities, which is the most
important characteristics of DCs. Therefore, although this sub-
population of T-DCs share transcriptional similarities with both
¢DC2 and macrophages, we prefer defining them as M-DCs.
Notably, both cDC1 and c¢DC2 subsets were found to predomi-
nantly express immune-suppressive molecules whereas the M-DC
subset had phagocytotic characteristics. M-DCs exhibit character-
istics of both macrophages and DCs, suggesting a functional
plasticity that is particularly relevant in the dynamic leukemia

Cell Death and Disease (2025)16:571



microenvironment. Further research on the specific roles of each
subset and interactions with leukemia cells and other immune
components could provide valuable insights for the exploration of
effective immunotherapeutic strategies.

Taken together, we identified a new subpopulation of DCs,
CD11c*MHCII™® DCs, accumulated in the microenvironment in a
mouse T-ALL model. T-DCs exhibit an immature phenotype as
they expressed low levels of CD83, CD86, MHCIl and CD40. More
immature DCs correlated with poor prognosis in leukemia
patients. Functional analysis revealed that T-DCs had pro-
leukemia potential. They promoted T-ALL progression by inhibit-
ing CD4* T cell activation and expressing high levels of
immunosuppressive molecules. Our findings demonstrate that
the leukemia microenvironment significantly influences DC
maturation, and in turn, these imDCs actively contribute to
leukemia progression. Our finding has significant implications for
the development of immunotherapeutic strategies targeting the
leukemic microenvironment.
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