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Ex vivo stem cell self-renewal and maintenance is supported by absence of serum-derived mitogens. In the present study, we
sought to elucidate the proteomes of stem-like cells grown in serum-free media across a panel of high-grade serous ovarian cancer
cell lines, which encompass a gradient from epithelial, intermediate and mesenchymal cell phenotypes to recapitulate the
heterogeneity of the disease. MaxQuant-based label-free quantification of proteins identified that despite their different cellular
and molecular architectures, all phenotypes exhibited mitochondria- and stemness-related pathways under conditions of serum
starvation, although the specific proteins involved were discrete to each phenotype. This suggests that common cellular programs
in a disease can be mediated through variable biological networks that generates molecular heterogeneity. We further explored if
these pathways are inter-related, co-regulated or just incidentally associated in response to an environment depleted of growth
factors and mitogens. Irrespective of their phenotype, cell lines on serum-starvation displayed an increased amount of
mitochondrial DNA, mitochondrial biogenesis and mitochondrial activity with a switch from glycolysis to oxidative phosphorylation
fuelled by the fatty acid oxidation. Ultra-structural studies implicated this metabolic fluctuation was regulated by dynamic
mitochondrial remodelling. This also led us to explore a possible therapeutic strategy of targeting mitochondrial function to restrict
tumor regenerative potential and disease recurrence. Conclusively, these new avenues contribute to a more comprehensive
understanding of ovarian cancer.

Cell Death and Disease          (2025) 16:676 ; https://doi.org/10.1038/s41419-025-07987-1

INTRODUCTION
Amongst gynecological malignancies, high-grade serous ovarian
carcinoma (HGSC) is regarded as most aggressive and presents
challenges of early detection and treatment emerging from the
complex biologies of inter- and intra-tumor heterogeneity [1–4].
Amongst the several attempts towards addressing these issues,
we had earlier resolved inter-tumor molecular heterogeneity into
three discrete molecular subtypes [5–7]. While these clinically
validated out in patient tumors, we also studied their correlation
with distinct cellular phenotypes in vitro that facilitated deeper
molecular investigations [8, 9]. Briefly, the three tumor subtypes
encompass five cell phenotypes, each of which was exemplified
by at least one cell line. Each of these epithelial (E-OVCAR3),
intermediate epithelial (iE-CAOV3), epithelial-mesenchymal hybrid
(E/M-OVCA420), intermediate mesenchymal (iM-A4), and
mesenchymal (M-OVMZ6) states displays a distinct molecular
and phenotypical architecture as well as biological functions.
Resolution of intra-tumor heterogeneity reveals yet another

pivotal aspect of tumor biology encompassing genomic changes
(mutations, aneuploidy) and cellular dynamics involving intrinsic
dormancy (quiescence) and regeneration by cancer stem cells
(CSCs) within tumors that generate hierarchies of multiple clones
[10]. CSCs are implicated in processes such as metastasis, drug
resistance and recurrent disease by leveraging their state of

quiescence, presence of drug efflux pumps, signaling pathways
that aid self-renewal, such as Hedgehog signaling pathway, Notch
signaling pathway and Wnt signaling [11, 12]. Studying CSCs
in vitro in the presence of serum that contributes several essential
growth factors and mitogens perturbs their quiescence, creates a
state of rapid proliferation rather than that of a tightly self-renewal
program. Such system artifacts make it irrelevant to applying
outcomes to the in situ state where cells do not divide
continuously. Serum depletion has hence, earlier been indicated
to provide for more relevant systems of CSC maintenance by
permitting entry into a state of quiescence or that of slow cycling
that also influences cellular plasticity, migration and invasiveness
of tumor cells [13–17]. While serum depletion eliminates cellular
replicative stress, it may impose nutritive stress and altered cellular
energetics that remains to be elucidated.
In the present study, we initially affirmed our working hypothesis

that serum starvation (SS) would provide an in-situ relevance for
studying the molecular networks contributing to CSC maintenance
and/or self-renewal. Following this, differential proteomics across
the spectrum of clinical heterogeneity of HGSC cell subtypes
identified several enriched proteins under SS conditions, none of
which were common across all the phenotypes yet, mitochondrial
translation and activation were indicated to be a common
function. More specifically, mitochondrial metabolic pathways viz.
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TCA and OXPHOS involving mitochondrial matrix and Electron
transport chain (ETC) proteins were prominently enhanced in all
phenotypes under SS, along with acquisition of a stem-like state in
association with upregulation of mitochondrial proteins. Our
exploration of the same suggests a coregulation and cross-talk
between the two pathways. This vulnerability may present a
potential opportunity to target residual regenerative potential
despite the inherent heterogeneity of HGSC.

RESULTS
Serum starvation modulates enrichment of ‘stemness’
features and a phenotype-specific proteomic profile in HGSC
cell lines
Comparing cycling profiles of HGSC cell lines under conditions of
serum starvation (SS) in comparison with their growth in the
presence of serum (+S; controls) indicated significant enrichment
of a G0/G1 fraction and reduced S phase across the entire gradient
of phenotypes in HGSC cell lines (Fig. 1a, Supplementary Fig. 1a).
We assessed the slow-cycling and quiescent nature of this fraction
using a vital fluorophore PKH26, that binds to the plasma
membrane and is progressively quenched with each cell division
[18]. This allowed us to distinguish HGSC cell populations in vitro
into distinct PKH fractions based on label retention, viz. PKHhi,
PKHlo, and PKHneg [18]. The PKHhi fraction represents quiescent/
slow-cycling cells, PKHlo includes cells that have undergone limited
divisions, and PKHneg reflects rapidly dividing cells that undergo
complete label quenching. All phenotypes retained a substantial
proportion of cells in the PKHhi and PKHlo fractions at all time
points examined post serum starvation. In contrast, in presence of
serum these fractions are rapidly depleted (Fig. 1b; Supplementary
Fig. 1b). Notably, an increased number of quiescent/slow-cycling
cells under serum-depletion was also associated with significantly
enhanced expression of the self-renewal marker Nanog across all
phenotypes examined (E/M state being an outlier), while Oct4
appeared to be enriched in the epithelial phenotypes (Fig. 1c;
Supplementary Fig. 1d). These findings suggest that serum
starvation may serve as an effective surrogate model for studying
the stem-like state in HGSC across its molecular phenotypes.
We further developed a pipeline for mass spectrometry-based

protein profiling following 48 h of SS using MaxQuantTM-based
label-free quantification (LFQ) and data analysis (Fig. 1d). This
identified differentially enriched, significantly upregulated pro-
teins exclusive to each of the two groups within each HGSC
phenotype (SS and +S), as well as across the entire gradient of
phenotypes (Supplementary Fig. 1e, f; Supplementary Table 1).
Proteins that were either exclusive to or significantly upregulated
(>2-fold change) in individual groups (+S or SS) were considered
as “enriched proteins” for further analysis (Supplementary Table 1).
Interestingly, no proteins were commonly enriched in all
phenotypes under SS conditions, although neighboring states in
the gradient shared a few candidates (Supplementary Fig. 1f).
Conclusively, the absence of serum-derived growth factors and
mitogens that perhaps could lead genes towards acquisition of a
‘stem-like’ state under conditions of serum depletion state in
HGSC as affirmed through lowered cell cycle kinetics and discreet
enrichment of self-renewing cells within the population associated
with a specific yet varied protein expression in each phenotype
(Fig. 1e). Such discrete proteomic profiles despite a common stem
cell state across phenotypes is well aligned with our earlier studies
correlating phenotype-specific molecular networks and responses
to microenvironmental cues [7, 9].

Mitochondrial metabolic pathways are enriched under
conditions of serum deprivation regardless of cell phenotype
Phenotype-specific functions were further delineated through
pathway analysis of enriched proteins (exclusive and significantly
upregulated_>2-fold change) in each phenotype following serum

depletion. The E, iE and E/M phenotypes were thus revealed as
being quite discrete through their association with differential
biological functions and pathways, while M and iM phenotypes
shared several common pathways (Fig. 2a, b). The most interesting
and unexpectedly common enriched pathway across all pheno-
types was of mitochondrial translation (initiation, elongation,
termination - REACTOME and DAVID analyses) associated with
enrichment of Tricarboxylic acid (TCA) cycle, ETC, oxidoreductase
complex, mitochondrial ribosomes, mitochondrial membrane,
mitochondrial gene expression, mitochondrial matrix etc. (Gene
Ontology analysis, GO; ClueGo v2.5.10; Fig. 2c; Supplementary Fig.
2). This association was unique and emerged despite a majority of
mitochondria-associated proteins being distinctly unique to each
phenotype and limited commonality of proteins between
neighboring phenotypes (Fig. 2d). This could reflect on the nature
and stability of discrete associated molecular networks governing
its phenotype and may also extend to a distinct cellular
architecture in each tumor class [8]. Concurrent enrichment of
CSC-related molecular pathways was also evident across the
phenotypes affirming recapitulation of stemness features in
response to SS through similar responses between neighboring
phenotypes (MAPK signaling and RAS mutants enriched in E, iE
and E/M phenotype whereas Hedgehog signaling, ABC-family
proteins mediated transport etc. were enriched in iM and M;
Fig. 2e). Conclusively, these data suggesting activation of
mitochondrial metabolic pathways following serum deprivation
regardless of the unique protein profiles across phenotypes may
be pivotal as a stress response, which is associated with
acquisition of a stem-like state, and are consistent with previous
reports associating stemness with cellular stress [19–23].

Serum starvation triggers a metabolic switch from glycolysis
to OXPHOS, with increased mitochondrial biogenesis, DNA
copy number, membrane potential and ROS
The most widely studied effects of mitochondria in cancer relate
to tumor cell metabolism, with glycolysis being a preferred
pathway [24]. Surprisingly, we observed that SS contrarily led to
reduced glucose uptake and lactate production across all
phenotypes, suggesting a preferred switch towards oxidative
phosphorylation (OXPHOS; Fig. 3a–i, a–ii). Inhibition of glycolysis
using 2-DG and sodium dichloroacetate (DCA), or of OXPHOS
employing Rotenone, Antimycin A, and Oligomycin, revealed that
only OXPHOS inhibition significantly compromised cell viability
under serum-deprived conditions across the various phenotypic
subtypes. An exception was noted with DCA, which elicited a
marked reduction in survival compared to controls specifically in
the E (OVCAR3) and iM (A4) phenotypes. This differential response
is likely attributable to the mechanistic effect of DCA. DCA
primarily inhibits pyruvate dehydrogenase kinase (PDK), thereby
activating pyruvate dehydrogenase (PDH) and promoting mito-
chondrial respiration [25]. Consequently, we hypothesize that the
survival of a subset HGSC phenotypes was affected by DCA
through its modulation of mitochondrial metabolic flux. Addition-
ally, the unique metabolomic architectures intrinsic to each
phenotypic subtype contributed to the heterogeneity in response,
rendering the effects of DCA non-universal across all phenotypes
(Fig. 3b; Supplementary Fig. 3a-i, b). We further explored and
affirmed through flow cytometry that such enrichment of
mitochondrial molecular signatures on serum withdrawal is
associated with increased mitochondrial biomass across all
phenotypes and at all the timepoints examined (Fig. 3c,
Supplementary Fig. 3c; upper panel). Along with this, increased
mtDNA copy number (as compared to nuclear DNA) and
mitochondrial membrane potential (TMRM assay) indicating
activation of mitochondria on SS were noted (Fig. 3d, e,
Supplementary Fig. 3c-lower panel), concurrently with increased
levels of reactive oxygen species (ROS), which may not be
cytotoxic as the HGSC cells have entered a quiescent state (Fig. 3f,
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Supplementary Fig. 3-middle panel). These data indicate that,
unlike rapidly dividing cancer cells that rely on glycolysis,
quiescent CSCs have more active mitochondria and rely on
OXPHOS as their primary source of energy, which enables them to
survive under conditions of nutritional stress.

HGSC cells subjected to serum starvation rely on stored fatty
acids for their energy requirements
To explore the possibility that cells under serum starvation may
rely on stored fatty acids (FAs), through fatty acid oxidation
(FAO), as a source of energy, we profiled the frequency of lipid
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droplets (LDs) in cells under SS for 48 h as compared with
controls (+S). A substantial decrease in LDs following starvation
was a common feature across all phenotypes (Fig. 4a, b),
indicating stored FAs mobilization for energy generation under
nutrient deprivation. However, the precise mechanisms under-
lying this mobilization, whether it is predominantly mediated
by lipophagy or conventional lipolysis, is remain to be

elucidated. The dependence on FAO and use of LD-derived
FAs as a source of energy was further affirmed by profiling cell
survival on exposure to Etomoxir (an inhibitor of carnitine
palmitoyltransferase 1, CPT1). This clearly displayed all cell lines
except OVCA420 (E/M phenotype) under SS conditions to be
more sensitive to the inhibitor over controls (Fig. 4c). The
comparable sensitivity of OVCA420 to Etomoxir under both

Fig. 1 Serum starvation enriches slow cycling stem-like cells across a phenotype gradient ranging from epithelial (E-OVCAR3),
intermediate epithelial (iE-CaOV3), epithelial-mesenchymal hybrid (E/M-OVCA420), intermediate mesenchymal (iM- A4) and
mesenchymal (M-OVMZ6) in HGSC cells with discrete enriched (exclusive and upregulated) proteomic profiles associated with each
phenotypic state. a Altered propidium iodide (PI)-based cell cycle kinetics following SS of HGSC cell lines across the phenotypic gradient
across three time points (48 h, 72 h and 96 h). Within each cluster of stacked-bar graphs, the first one represents data from serum-
supplemented (+S) conditions, while the subsequent bar depicts corresponding values under serum-free (SS) conditions. Colored asterisks on
the second bar of each pair (SS condition) indicate statistically significant differences (p-values) in each cell cycle phase relative to their
respective +S controls; b Representative flow cytometry-based dot-plot of PKHhi, PKHlo and PKHneg fractions in OVCA420 (E/M)+ S vs SS
sample, left and right panel respectively, at different time points (0 h, 24 h, 48 h, 72 h and 96 h) under SS and +S conditions across the
phenotype gradient revealed through PKH label-chase (green-PKHhi, red-PKHlo, blue-PKHneg); c Relative RNA expression of self-renewal
genes (Nanog,Oct3/4), in SS and +S states across different phenotypes; d Analytical pipeline for label-free quantification and identification of
differentially expressed proteins; e Differentially expressed protein candidates across the phenotypic gradient under SS & +S conditions, Top
panel – Volcano plots (red–exclusive to +S, black–upregulated in +S, green-exclusive to SS, blue– upregulated in SS), Lower panel -
LFQ_intensity plot (gray–E, yellow–iE, green–E/M, brown-iM, light green–M) *p < 0.05, **p < 0.01, and ***p < 0.001.
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conditions is likely to be due to some undetermined
phenotype-specific metabolic feature that leads to elevated
basal level FAs transport to mitochondria and fatty acid
β-oxidation activity. Since pathway analysis had earlier also
indicated significant enrichment of “TCA cycle and respiratory
electron transport” across all phenotypes (Fig. 4d), we profiled
and identified enhanced production of TCA metabolites (Cis-
Aconitate, Iso-citric acid, Succinate, Fumarate and Oxaloacetate)
after 48 h of SS as compared with their respective +S controls
(Fig. 4e, Supplementary Fig. 4). Conclusively, HGSC cells on
serum depletion to rely on FAO and stored FAs to fuel TCA cycle
and ETC and subsequently OXPHOS for their energy
requirements.

Mitochondria in HGSC cells under conditions of serum
starvation undergo fusion and display thinner cristae and
tight crista junctions
In alignment with the principle that “form follows function,” we
hypothesized that altered metabolism of HGSC cells in response
to serum deprivation may also be associated with changes in
mitochondrial morphology. Indeed, a shift from a globular to

more elongated presentation of mitochondria across all the
HGSC phenotypes was identified, quantitation of which
affirmed the same [higher Aspect Ratio (AR) and Form Factor
with lowered Roundness and Solidity features in 48-h SS cells
compared +S controls; Supplementary Fig. 5a-i, a-ii]. Validation
through two-dimensional Transmission Electron Microscopy
(2D-TEM) imaging and analysis further suggested potential
mitochondrial fusion events in HGSC SS cells as (marked
increase in Feret’s diameter, AR, perimeter and length; Fig. 5a,
b). This was further supported by the protein level expression of
the mitochondrial dynamics regulators. An overall trend of
increased OPA1 expression and decreased DRP1 levels was
observed in HGSC phenotypes under serum-deprived condi-
tions; with CaOV3 (iE) and A4 (iM) cells being outliers for DRP1
expression, while OVCA420 (E/M) and OVMZ6 (M) were outliers
for OPA1 expression (Fig. 5c–i, c–ii). This differential response
may reflect heterogeneity in mitochondrial dynamics across
different HGSC phenotypes, potentially mediated by interac-
tions with other regulatory proteins.
Given that cristae play a crucial role in OXPHOS by housing ETC

complexes and facilitating ATP synthesis through H+ gradient

Fig. 3 HGSC cells tide over SS by virtue of enhanced mitochondrial activity and preferential switch towards OXPHOS as a source of
energy. a-i, a-ii. Glucose consumption and lactate assay respectively across all phenotypes under SS & +S conditions (rosy beige-48h +S,
golden olive-48h SS, teal blue-72h +S, coral orange-72h SS, pear green-96h +S, purple-96h SS); b Representative cell viability across all
phenotypes following treatment with IC50 concentrations of OXPHOS (pale goldenrod-Oligomycin,13-22 uM; teal green-Rotenone,11-22 uM;
pear green-AntimycinA,11-40 uM) and glycolysis inhibitors (teal blue-2-DG,150-340 uM; rosy beige-DCA,19–32 uM; black-untreated controls)
for each cell line following serum-deprivation for 48h (cell-line specific IC50 values are given in Supplementary Fig. 3b); c Representative
mitochondrial mass analysis (MitoTracker green_FM assay) under SS & +S conditions; d Relative mtDNA content under 48h SS & +S
conditions across cell phenotypes; e Representative mitochondrial membrane potential (TMRM assay) under SS & +S conditions across
phenotypes and at different time points; f Truncated violin plot indicating mitochondria-associated ROS levels in under SS & +S conditions
across phenotypes *p < 0.05, **p < 0.01, and ***p < 0.001.
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Fig. 4 HGSC cells rely on fatty acid oxidation and fatty acids to fuel the TCA cycle and respiratory ETC for their energy needs under SS
conditions. a Representative confocal images identifying BODIPY lipid droplets (green) in cells under SS and +S conditions (lower and upper
panel respectively), nuclei stained with Hoechst; b Quantification of lipid droplets (Confocal imaging- 50 cells from each sample) across HGSC
phenotypes under SS and +S conditions; c Void bar-graph indicating cell viability under SS and +S conditions following exposure to
Etomoxir; d Table indicating significant enrichment of the TCA cycle and electron transport chain across HGSC phenotypes; e Abundance of
TCA metabolites under SS and +S conditions across the gradient from E to M phenotypes (top to bottom) *p < 0.05, **p < 0.01, and
***p < 0.001.
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optimization, we examined their structural dynamics under
conditions of serum deprivation. 2D-TEM images of cells revealed
an inverse correlation between cristae width and number of
cristae per unit mitochondrial length (Fig. 5d, e). Interestingly, the
(E) state was associated with fewer and broader cristae that
increased progressively towards the (M) state under +S conditions.

A reversal of this trend was observed on SS, along with significant
reduction in width of crista junctions (CJs) and increased number
of cristae per unit length of mitochondria as compared with
controls across all phenotypes (Fig. 5d–f; Supplementary Fig. 5b-i,
b-ii). Collectively, these observations strongly demonstrate that
HGSC cells adapt to serum deprivation through a metabolic switch
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to OXPHOS and remodeling of their mitochondrial ultrastructural
features to optimize energy demands.

Mathematical modeling supports mitochondrial dynamics
readouts and predicts higher ATP turn over in fused
mitochondria as a response to serum starvation
Towards a deeper understanding and prediction of phenotype-
dependent mitochondrial dynamics and energy outcomes in
response to SS (considered as nutritional stress in the system), we
modeled some of the ultrastructural features based on the
following assumptions (Fig. 6a; Table 1)—

● Mitochondrial number is a function of mitochondrial biogen-
esis and mitophagy;

● A system possesses healthy mitochondria (those less likely to
undergo mtDNA mutations) as well as deviant derivatives
(prone to mtDNA mutations).

● Healthy and deviant mitochondria have identical rates of
fusion and fission that are reflected in the expression levels of
OPA1 and DRP1 (key mitochondrial fusion and fission proteins
respectively);

● Four classes of mitochondria viz. healthy units (HU), healthy
fused (HF), deviant units (DU) and deviant fused (DF) were
considered; since both deviant and healthy mitochondria have
the same rate of biogenesis, hence formation rate (B) of all
four classes is uniform;

● Healthy and deviant mitochondria contribute to ATP produc-
tion; however, the former are more efficient, producing ATP at
a factor (α) greater than the latter;

● Fused mitochondria exhibit significantly enhanced ATP
production efficiency, modeled as a fused efficiency factor
(ϵ). This indicates that fused mitochondria (both healthy and
deviant) are more productive than their unfused counterparts;

● The rate of mitochondrial ATP production (θ) is based on
mitochondrial structural parameters including, number of
cristae per unit length (c_n), membrane potential [e^(m_p)],
average cristae width (c_w), and cristae junction width (c_jw);

● As ATP machinery resides within cristae, greater number of
cristae correlates with increased ATP production;

● ATP production is directly proportional to membrane poten-
tial; higher membrane potential hence indicates increased
ATP synthesis;

● Cristae junctions are crucial for minimizing proton leakage
from the inner cristae space, and hence increased numbers
enhance proton density and ATP production;

● Thinner cristae also contribute to increased proton density
and improved OXPHOS efficiency;

● Healthy as well as deviant mitochondria initially display
increased rate of fusion in response to serum starvation stress
to mitigate mitophagy; concurrently, the rate of fission is
expected to decrease under stress. Hence, our model
incorporates an exponential increase in initial fusion (F_0)
and decrease in fission (K_0) rates;

● The processes of mitochondrial fusion and fission are factored
into the model as being influenced by the availability and
concentration of ATP.

The above assumptions were applied to the derivation of
coupled ordinary differential equations as follows:

dNHU

dt
¼ B�MH � F ATP½ �estressð ÞNHU þ K ATP½ �e�stressNHF

dNDU

dt
¼ B�MD � F ATP½ �estressð ÞNDU þ K ATP½ �e�stressNDF

dNHF

dt
¼ B� K ATP½ �e�stressð ÞNHF þ F ATP½ �estressNHU

dNDF

dt
¼ B� K ATP½ �e�stressð ÞNDF þ F ATP½ �estressNDU

d ATP½ �
dt

¼ θ ϵ αNHF þ NDFð Þ þ αNHU þ NDUð Þ½ �
� μ� K ATP½ � NHF þ NDFð Þe�stress

� F ATP½ � NDUð Þestress � F ATP½ � NHUð Þestress

wherein,

(i) ATP production (θ) is assumed to be a function of all the
above-mentioned parameters,

θ ¼ cn þ emp

cw þ cjw

(ii) Mitochondrial fusion (F) and fission (K) rates are assumed to
be a function of OPA1 and DRP1,

F ¼ F0 � OPA1½ �

K ¼ K0 � DRP1½ �

(iii) The rate of mitochondria created by biogenesis is equal to
the total number of mitochondria that eliminated through
mitophagy,

B NHU þ NHF þ NDU þ NDFð Þ ¼ MHNHU þMDNDU

(iv) The initial conditions were set at,

NHU ¼ 1;NHF ¼ 1;NDU ¼ 1;NDF ¼ 1; ATP½ � ¼ 0; μ ¼ 3

Our model thus predicted an increase in the number of HF
mitochondria under serum stress, with HU and DU being almost
completely depleted from the system over the course of time
(Fig. 6b). This was substantiated experimentally through TEM
analysis wherein regardless of the phenotype, the frequency of
elongated HF mitochondria under SS was higher over that in a
stress-free +S environment that displays higher frequency of HU
mitochondria (Fig. 6b). In addressing the time-dependent

Fig. 5 SS-driven mitochondrial fusion is associated with thinner cristae, tight CJs and an increased number of cristae per unit
mitochondrial length. a Representative 2D-TEM images highlighting mitochondria (red asterisk) in HGSC cells under 48 h of SS in comparison
with controls; b Bar-graph representation indicating quantitative mitochondrial structural parameters from 2D-TEM images (a minimum of 30
mitochondria from 12 cells were analyzed each in +S and SS condition across the different phenotypes); c-i Representative Western blots
indicating expression of mitochondrial fusion and fission proteins (OPA1 and DRP1 respectively) 48 h SS vs+ S samples, actin used as loading
controls; c-ii Quantification of OPA1 and DRP1 protein expression in Western blots; d Truncated violin plot representing cristae width
computed from 2D-TEM images (a minimum of 50 mitochondria from 12 cells were analyzed each in +S and SS condition across the differenst
phenotypes); e Representative bar-graph wherein individual data points indicate number of cristae per unit mitochondrial length across
phenotype gradient under SS and +S conditions; f Representative TEM images indicating the mitochondria and cristae (highlighted by red
squares) under SS and +S conditions, lower and upper panels respectively across the phenotypic gradient *p < 0.05, **p < 0.01, and
***p < 0.001.
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mitochondrial dynamics of individual HGSC phenotypes, a spec-
trum of HF distribution was revealed ranging from being highest in
“M” phenotype (OVMZ6) and lowest in the “E” phenotype (OVCAR3)
under +S conditions; this was completely reversed on SS (Fig. 6c, d).
Further prediction of cellular energetics revealed a remarkable
increase in ATP production across all HGSC phenotypes following
SS as compared with +S conditions (Fig. 6e, f). Within this, our

model predicts E and E/M phenotypes (OVCAR3 and OVCA420
respectively) to be associated with maximal ATP production, while
iE (A4) is likely to be the least energetic (Fig. 6f). Importantly, these
predictions regarding cellular energetics were experimentally
substantiated by assaying ATP, which corroborated the E, E/M
and iE phenotypes to exhibit elevated levels of ATP production
following SS (Fig. 6g).

Table 1. Table indicating the mitochondrial parameters considered for mathematical modeling.

Cristae Width
(c_w)

Cristae count per
unit length (c_n)

Cristae
Junction Width

Membrane
Potential (m_p)

Fusion Promoter
(OPA1)

Fission Promoter
(DRP1)

OVCAR3+ S 1 0.28 0.62 0.99 0.02 0.31

OVCAR3SS 0.05 0.6 0.3 1 0.06 0.2

CAOV3+ S 0.55 0.32 1 0.63 0.03 0.1

CAOV3SS 0.47 0.59 0.73 0.76 0.07 0.09

OVCA420+ S 0.42 0.31 0.89 0.29 0.03 0.23

OVCA420SS 0.23 1 0.47 0.32 0.04 0.13

A4+ S 0.44 0.54 0.63 0.54 0.44 1

A4SS 0.18 0.97 0.34 0.65 0.65 0.98

OVMZ6+ S 0.29 0.62 0.41 0.54 0.93 0.23

OVMZ6SS 0.34 0.78 0.23 0.51 1 0.16

Fig. 6 Mathematical modeling of mitochondrial dynamics and energetics of HGSC phenotypes under SS and normal conditions.
a Graphical representation of mitochondrial dynamics based on parameters described in the text; b Line plot indicating the number of HF
mitochondria over time in stress free (+S) and SS conditions; Line plot indicating the number of mitochondria over time in different HGSC
phenotypes under +S (c) and SS (d); e, f Line plot indicating the ATP energetics across the phenotypes under +S and SS conditions,
respectively; g Bar-graph indicating levels of ATP production in SS and +S conditions *p < 0.05, **p < 0.01, and ***p < 0.001.
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Inhibition of OXPHOS and mitochondrial translation impairs
self-renewal in vitro and tumor progression in vivo
We further evaluated in vitro suspended spheroid-formation
capability of A4 cells to validate the purported enhanced
generation of stem-like cells following SS and their dependency
on OXPHOS and mitochondrial functions for self-renewal and/or
maintenance. Notably, a significant reduction in spheroid-
forming capabilities was observed following individual and
combined drug treatments, including OXPHOS (ETC) inhibitors
and antibiotics (leveraging the similarity between bacterial and
mitochondrial ribosomes that can inhibit mitochondrial transla-
tion; Supplementary Fig. 3a-i, b-i, b-ii; Supplementary Fig. 6a, b).
While Doxycycline and Erythromycin exhibited the most
pronounced inhibitory effects, Antimycin A, Oligomycin and
Chloramphenicol also were inhibitory (Fig. 7a–i, a–ii). In contrast,
Tetracycline induced spheroid formation, albeit the extent of
formation was significantly reduced compared to the controls
(Fig. 7a–i, a–ii). To assess whether enhanced OXPHOS could
restore the spheroid-forming capacity of A4 cells compared to its
inhibition, we treated the cells with DCA (augment OXPHOS by
inhibiting PDK and subsequent activation of PDH). Notably, DCA
treatment resulted in partial restoration of spheroid formation
ability (Fig. 7a–i, a–ii). However, this restored capacity remained
significantly below that observed in vehicle-treated control
ability (Fig. 7a–i, a–ii). These findings suggest that the intrinsic
balance between glycolysis and OXPHOS in untreated cells likely
represents an optimal metabolic state for spheroid formation
[26]. The modest increase in mitochondrial activity induced by
DCA appears insufficient to surpass this physiological equilibrium
(Fig. 7a–i, a–ii). Collectively, the data support a critical role for
mitochondrial function in maintaining the self-renewal and stem-
like properties of cancer cells.
We further explored if the association between mitochondrial

activity and CSC self-renewal could be harnessed in situ using
Doxycycline and Erythromycin (that exhibited the most pro-
nounced inhibitory effects on spheroid formation). Indeed, the
growth and progression of A4 xenografts in mice subjected to
the antibiotic regimen, either alone or in conjunction with
Paclitaxel were significantly reduced following treatment; despite
the finding that some extent of drug resistance/evasion may
emerge with Doxycycline treatments after Day 14 (Fig. 7b, c-i, c-ii,
c-iii). A consequent label-chase in xenografts using the vital dye
(PKH26) revealed an increase in the frequency of label retaining
cells, however with significantly reduced tumor volumes follow-
ing drug treatment as compared with vehicle controls. To
quantify the efficacy of each treatment regimen, we calculated
a “tumor inhibitory score” wherein label-retaining PKHhi fractions
representing CSCs were normalized to tumor volumes under
different drug regimens and compared with that of vehicle
control (Methods). An enhanced tumor inhibitory score reflects
on effective reduction in the number of slow-cycling/quiescent
tumor cells following treatments (Fig. 1ci, cii, ciii; Supplementary
Fig. 7a). Since CSCs may rely on OXPHOS, we also incorporated
the ETC complex I inhibitor Metformin into our drug regimen to
study the effects of co-targeting of OXPHOS and mitochondrial
translation on tumor progression; additional inclusion of
Paclitaxel in this scheme would permit targeting of non-CSC
dividing cells within the tumor (Fig. 7b). Different drug regimens
exhibited distinct tumor suppression kinetics over the treatment
window (Fig. 7d–i). Among the various pharmacological inter-
ventions assessed, Metformin administered as a monotherapy or
in combination with Doxycycline, Paclitaxel, or Erythromycin
produced a significant inhibitory effect on tumor growth at Day 7
(Fig. 7d–i). Notably, the combination of Metformin with
Erythromycin and Paclitaxel (Metformin + ery + Pax) exhibited
a comparatively reduced, yet still significant, tumor-suppressive
effect relative to the vehicle control (Fig. 7d–i). In contrast, the
regimen comprising Metformin, Doxycycline and Paclitaxel

(Metformin + Doxy + pax) did not result in any noticeable tumor
reduction at Day 7 (Fig. 7d–i). However, extended administration
of either Metformin + Ery + Pax or Metformin + Doxy + Pax led to
tumor inhibition at Day 14, comparable to other drug regimens.
Upon cession of the treatment at Day21, Metformin + Ery + Pax
demonstrated the most pronounced tumor inhibitory effect
among all groups evaluated (Fig. 7d–i, ii, Supplementary Fig. 7b).
This differential tumor inhibitory effect shown by Metformin +
Ery + Pax on Days 7 to Day 21, may suggest an initial delayed
synergetic interaction, potentially due to undetermined- phar-
macodynamic factors.
Altogether, our findings strongly indicate that targeting

mitochondrial metabolism and translation, which are crucial for
CSC self-renewal and maintenance, in conjunction with conven-
tional chemotherapeutic agents that target the non-CSC tumor
population, can enhance treatment efficacy.

DISCUSSION
Challenges in improving HGSC patient survival include intrinsic
drug resistance, tumor heterogeneity, resilient cellular ener-
getics and metabolic heterogeneity, all of which depend on the
cellular environment [3, 27]. Cellular energetics is primarily
attributed to the ability of mitochondria to respond to
microenvironmental changes and altered gene and protein
expression that also supports stem-like cell maintenance in a
tissue-specific manner [28–37]. Serum depletion recapitulates
the in-situ behavior of CSC’s and their ability to opportunistically
exploit available resources within a nutrient-poor tumor micro-
environment (TME; [38, 39]). Quiescent CSCs possess lower yet
more efficient energy generation as their metabolism is
predominantly confined to minimal maintenance levels; conse-
quently, these cells preferentially rely on slower anaerobic
respiration processes such as OXPHOS, over glycolysis [39]. As
the TME becomes hypoxic and nutrient scarce, CSCs also
metabolically adapt to utilize free fatty acids for survival [38].
Hence, our identification of altered mitochondrial pathways
including enrichment of mitochondrial translation, FAO, TCA
and OXPHOS, with metabolites like succinate, oxaloacetate,
fumarate and iso-citric acid, accompanied by acquisition of
stemness following serum deprivation irrespective of their
intrinsic cellular plasticity, is important.
At an ultrastructural level, the above changes are also

associated with orchestrating mitochondrial states between fusion
and fission, along with conserved patterns of cristae remodeling
across all cellular phenotypes. The ensuing cristae dynamics is
directly linked with cellular metabolic flux since ETC complexes are
assembled along their membranes and ATP synthase at their
edges [40–42]. We thus observed increased number of leaner
cristae, tight CJs, OPA1 levels which along with mitochondrial
contact sites and cristae organization system (MICOS) complex can
play a crucial role in efficient ATP synthesis by minimizing the
proton leakage with the tight CJ openings [43]. However, neither
fused nor fragmented mitochondrial morphology is universally
linked to cancer stemness. 2D-TEM analysis also revealed altered
inter-organelle communication between the endoplasmic reticu-
lum (ER) and mitochondria with reduced mitochondrial-ER contact
(MERC) distance and increased coverage following serum
deprivation (Supplementary Fig. 8). These findings need a
comprehensive investigation in the future, as MERC distance is
known to impact lipid metabolism, calcium-mediated OXPHOS,
and autophagy [44–47]. Various studies have used computer
simulation and mathematical models to investigate mitochondrial
fission-fusion dynamics and their response to different substrate
inputs, very few of which have integrated the mitochondrial
dynamics with cellular energetics especially, details regarding
OXPHOS [48–52]. In this context, our study is distinctive and one
of its kind, as it demonstrated the potential to predict cellular
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bioenergetics by incorporating ultrastructural details from 2D-TEM
images along with expression data of the fusion-fission associated
OPA1 and DRP1, which are central to mitochondrial dynamics. All
observations were valid across the entire gradient of phenotypes,
thereby accounting for disease heterogeneity.

The vulnerability created through increased dependency of
CSCs on mitochondrial OXPHOS has led to development of new
drugs (Mitoriboscins, Mitoketoscins, MitoTam) or repurposing of
earlier FDA-approved drugs such as antibiotics, Metformin etc.
[26, 53–56]. Ongoing clinical investigations with compounds like
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IACS-010759 have shown promise in leukemia and glioma models
[57]. However, metabolic heterogeneity within tumor populations
limits the efficacy of these treatments in several instances. Our
study too demonstrates the potential of targeting mitochondrial
translation and OXPHOS using antibiotics and Metformin respec-
tively; Etomoxir also compromise these metabolic pathways
through inhibition of the CPT1 transporter. The combination of
these agents with conventional chemotherapy that targets the
non-CSC population, significantly inhibited HGSC tumor progres-
sion in vivo.

MATERIALS AND METHODS
Cell culture
Five HGSC cell lines used in the study include, A4 (established earlier in our
lab from the ascites of a HGSC patient, [58]), OVCAR3 (sourced from BRIC-
NCCS Cell Repository, Pune, India), CaOV3 and OVCA420 (provided by Prof.
Judith Clements, Translational Research Institute, Australia) and OVMZ6
(from Prof. Viktor Magdalen (Klinische Forschergruppe der Frauenklinik der
Tu, Munchen). All cell lines were maintained at 37 °C under 5% CO2 in a
humidified incubator, cultured in appropriate media—OVCAR3, CaOV3 and
OVCA420 in RPMI 1640 (Gibco) + 10% fetal bovine serum (FBS,Gibco), A4 in
Minimal Essential Medium (MEM;Gibco) + 5% FBS + 1% non-essential
amino acid (Gibco), OVMZ6 in Dulbecco’s Modified Essential Medium
(DMEM;Gibco) + 10% FBS + 100uM asparagine and 100uM arginine (Merck-
Sigma). For serum starvation (SS) and serum-fed condition (+S), cells were
allowed to grow for 24 h following which the media was replaced with
equal volume of either serum-free or complete media respectively. All cell
lines were authenticated via short tandem repeat (STR) profiling (Project
No. STR24082023), employing GeneMapper™ ID-X Software version 1.5 for
analysis. All cell lines were also confirmed to be free of mycoplasma
contamination.

Cell cycle analysis, assays for self-renewal and cell survival,
PKH label chase
48 h SS or +S HGSC cells were used for cell cycle and self-renewal assays as
described earlier [58, 59]. Briefly, label chase was performed with the vital
lipophilic membrane dye fluorophore PKH26 (Merck, #PKH26GL), following
the manufacturer’s instructions. PKH26 fluorescence intensity was assessed
at designated time points (0, 24, 48, 72, and 96 h) using a BD FACS Canto
flow cytometer. A4 3D-spehroid formation capability was assayed in
response to IC50 concentration of different drugs as described earlier [10].
Briefly, 5000 cells were seeded in each well of a 96-well ultra-low
attachment plate and cultured in minimum essential medium containing
1% serum that was replenished every 48 h along with drug/vehicle control-
containing media as per individual groups/experiments for 14 days.
Images were captured using Olympus FV3000.
OCT4 (forward-5’GACAACAATGAAAATCTTCAGGAGA3’, reverse 5’TTCT

GGCGCCGGTTACAGAACCA3’), NANOG (forward- 5’AGTCCCAAAGGCAAA-
CAACCCACTTC3’, reverse- 5’ATCTGCTGGAGGCTGAGGTATTTCTGTCTC3’)
and SOX2 (forward- 5’TGGCGAACCATCTCTGTGGT3’, reverse- 5’CCAACGGT
GTCAACCTGCAT3’) expression were profiled for self-renewal through
q-PCR analysis as described earlier [59]. MTT [3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazo lium bromide] (Sigma-Aldrich, #M2128) assays were
used for determination of IC50 values and cell viability under glycolysis

(2-deoxy-D-glucose, Sigma-Aldrich, #D8375 and sodium dichloroacetate,
Sigma-Aldrich, #347795) or OXPHOS (Rotenone, Sigma-Aldrich, #R8875,
Antimycin A, Sigma-Aldrich, #A8674 and Oligomycin, Sigma-Aldrich,
#O4876) inhibitors, CPT1 inhibitor (Etomoxir, Sigma-Aldrich, #236020)
and antibiotic drugs (Doxycycline, Sigma-Aldrich; Erythromycin, Sigma-
Aldrich, #E5389; Chloramphenicol, Sigma-Aldrich; Tetracycline, Sigma-
Aldrich) as described earlier [60]. All experimental data presented were
obtained from triplicate experiments to ensure reproducibility.

In solution digestion, acquisition of spectrometry profiles,
label free quantification (LFQ)-based pathway analysis and
data representation
HGSC cells harvested 48 h post-treatment (48h_SS) or as controls (+S) in
triplicate were processed per previously established protocols [61]. Data
acquisition was performed using an Orbitrap Fusion™ mass spectrometer
(Thermo Fisher Scientific) coupled with an EASY-nLC™ 1200 nano-flow
liquid chromatography (LC) system (Thermo Fisher Scientific), and an
EASY Spray column (50 cm × 75 µm ID, PepMap C18). LFQ analysis was
performed using MaxQuant version 1.6.17.0 [62, 63], followed by
downstream data processing and statistical analysis in Perseus (version
1.6.14.0, [64]). A comprehensive pipeline was developed to identify
differentially expressed proteins between +S and SS conditions
[upregulated defined as a fold change (FC) > 2 downregulated as
FC < 0.5], or exclusively expressed proteins in either condition; and were
further visualized in volcano plots. Proteins identified with at least two
peptides and 10% sequence coverage in at least two of the three
replicates were included in the analysis. Proteins which were exclusively
expressed and significantly upregulated (>2FC) in each phenotype
following SS were collectively considered as SS-enriched proteins and
subjected to pathway enrichment analysis, which was conducted using
the REACTOME pathway database v84, Gene Set Enrichment Analysis
(GSEA), Cytoscape with the ClueGO plugin, and the DAVID knowledge-
base v2022q3 [65–68]. Mitochondrial-specific pathway analysis was
performed using the Mitocarta 3.0 database [69]. Heatmaps were
generated using MeV version 4.9.0, with Euclidean distance applied for
hierarchical clustering of samples and genes/proteins.

Metabolomics
Prechilled methanol: acetonitrile: water (1:1:0.5) solvent was added to
HGSC cell line pellets (48h_SS & 48h_+S, in triplicates) to extract
metabolites, followed by freeze-thaw cycles and sonication. Samples were
centrifuged at 16,000 G for 20 min at 4 °C, the supernatant lyophilized and
resuspended in 80% methanol. Liquid chromatography-high-resolution
mass spectrometry (LC-HRMS) was performed on Shimadzu Prominence
HPLC system (Shimadzu Corporation, Japan) connected to a SCIEX QTRAP
6500+ hybrid triple quadrupole/ion trap mass spectrometer. Samples were
loaded onto a Waters Atlantis T3 column (5 µm, 4.6 × 150mm) maintained
at 40 °C. Solvents used were 0.1% formic acid in LC/MS grade water (buffer
A) and 0.1% formic acid in acetonitrile (buffer B), with a gradient from 0 to
98% B over 38min at 0.5 mL/min, followed by 5min at 98% B and 5min of
re-equilibration and was operated in negative ion mode. Multiple reaction
monitoring (MRM) was applied for TCA cycle metabolites (Merck-Sigma,
#ML0010) and D2-L-phenylalanine was added as an internal control. Data
were analyzed using SCIEX-OS (Version 3.0.0.3339) at the BRIC-NCCS
proteomic facility.

Fig. 7 Inhibition of OXPHOS and mitochondrial translation significantly impairs spheroid formation in vitro and tumor progression
in vivo. a–i Representative images and quantification of A4 spheroids exposed to various drugs and their combinations (Panels with red star
denotes the antibiotic drugs Doxycycline and Erythromycin that most significantly inhibited spheroid formation over other the drugs, and
hence were subsequently used for in vivo evaluation); a-ii Dot plot representing the number of spheroids under different drug treatment
measured on Day14 (post cell seeding); b Schematic representation of drug regimen used in the study; c-i Representative A4 tumors
harvested on Day 21 of different drug regimens; c-ii Line graph indicating A4 tumor volumes measured on Day 0,7,14 and 21 during
treatment of various drugs (single and in combination; Day 0 corresponds to the initiation of treatment, which occurs 14 days post
subcutaneous tumor cell inoculation); c-iii. Bar-graph indicating the anti-tumor efficacy of various drug combinations, Y-axis represents the
tumor inhibitory score (where control represent a score of “1”); d-i Line graph depicting A4 tumor volumes over the course of treatment with
the ETC complex I inhibitor metformin, administered either as a monotherapy or in combination with other therapeutic agents. Day 0 marks
the initiation of treatment. Asterisks of different colors denote p-value significance (student’s t test) between each treatment group and the
vehicle control on the corresponding day. The dotted line denotes p-vlaue significance among the various drug regimens on Days 7, 14, and
21, as assessed by one-way ANOVA. The solid line indicates the statistical significance of the comparison between Metformin monotherapy
and the combination therapy comprising Metformin, Erythromycin, and Paclitaxel (Metformin + Ery + Pax); d-ii Representative A4 tumors
harvested on 21st day after different drug regimens. *p < 0.05, **p < 0.01, and ***p < 0.001.
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Glucose consumption, lactate production, ROS, mitochondrial
mass analysis, TMRM assay, ATP assay and mitochondrial DNA
copy number analysis
Glucose consumption and lactate production assays, and reactive oxygen
species (ROS) analysis were performed as described earlier [59].
MitoTracker green FM (Cell Signaling Technology, #9074) was used
(150 nM) for the mitochondrial mass (mito-mass) analysis. Mitochondrial
potential differences and activity were examined using the image-iT TMRM
reagent (ThermoFisher Scientific, #I34361). Briefly, HGSC cells exposed to
+S and SS conditions were incubated with 100 nM TMRM reagent for
30min in incubator, harvested, washed with PBS and fluorescence was
acquired. All FACS data were acquired in BD FACS Canto and analysis were
performed in FlowJo software v.6. For intracellular ATP levels, ATP assay kit
(Abcam, #ab83355) was used according to manufacturer’s instruction.
Colorimetric reading for the same was acquired at 570 nm using a
microplate reader and readings were normalized to cell numbers. For
mtDNA copy number analysis, 48 h SS vs +S HGSC cells were incubated
overnight at 55 °C with digestion buffer (10mM Tris-Cl, 100 mM NaCl, 0.5%
SDS, 25 mM EDTA, 0.1 mg/ml proteinase K). DNA was separated from RNA,
proteins, and debris using phenol:chloroform: isopropanol (25:24:1),
followed by centrifugation. The aqueous layer was treated with sodium
acetate and ethanol, centrifuged, washed with 70% ethanol, dried, and
dissolved in NFW. Quantitative real-time PCR was performed with SYBR
Green PCR master mix (TaKaRa, #RR820) on an Applied Biosystems
StepOne Plus PCR system. Human cytochrome-b (forward- 5’GCGTCCT
TGCCCTATTACTATC3’, reverse -5’CTTACTGGTTGTCCTCCGATTC3’) for mito-
chondrial DNA (mtDNA) and human RPL13A (forward- 5’CTCAAGGTCG
TGCGTCTG3’, reverse- 5’TGGCTTTCTCTTTCCTCTTCTC3’) for nuclear DNA
(nuDNA) primers were used for the analysis. Cycle threshold (Ct) values
from triplicate reactions in qPCR were computed using the following
equation to calculate the relative mtDNA content.

Delta Ct ΔCtð Þ ¼ nuDNA Ct �mtDNActð Þ; Relative mtDNA content ¼ 2 � ð2ΔCtÞ

All experimental data presented were obtained from at least triplicate
experiments to ensure reproducibility

Immunoblotting
Immunoblotting of 48 h SS and +S HGSC samples was performed as
described earlier [70]. OPA1 (CST, #80471, 1:1000) and DRP1 (CST, #8570, 1:
1000) primary antibodies were used. After incubation with secondary
antibody for 2 h at room temperature, membranes were developed using
SuperSignal West Pico PLUS chemiluminescent substrate (ThermoFisher
Scientific, #34579). Quantitative data presented are derived from triplicate
measurements.

Lipid droplet (LD) staining and confocal mitochondrial
network analysis
48 h +S or SS HGSC (each in triplicate) cells were fixed with 2%
paraformaldehyde for 10 min, stained with 2 µM BODIPYTM 493/503
(ThermoFisher Scientific, #D3922,) for 30 min and Hoechst for 10 min in
the dark. For mitochondrial network analysis, 72 h HGSC + S and SS cells
were fixed and stained with 100 nM MitoTracker deep red for 30 min
followed by Hoechst staining. Images were captured on an Olympus
FV3000 and analyzed with ImageJ (V1.54 f). Mitochondrial network
analysis was performed using the “MitochondrialAnalyzer” plugin
(V2.1.0, [71]).

Transmission electron microscopy (TEM)
Cells from 100 mm plates were pelleted down and washed with cold PBS
followed by fixation using 3% glutaraldehyde for 2 h at 4 °C. After
washing with 0.1 M sodium cacodylate buffer, cells were fixed using a
second fixative, 1% osmium tetroxide for 1 h at 4 °C in dark. After
dehydration and resin infiltration, cells were embedded in Araldite B
resin. Further, ultrathin sections with 70 nm thickness were cut on Leica
UC7 ultra-microtome and collected on copper 200 mesh grids. Cells were
stained with uranyl acetate and lead citrate, followed by scanning using
JEOL JEM 1400 PLUS transmission electron microscope at 120 kV. Images
were acquired using EMSIS TENGRA camera. All the TEM image
acquisition and sample processing were carried out in electron
microscope facility, ACTREC, Mumbai. Quantitative data represented
were derived from at least 15 TEM images from each +S and SS
derivatives of HGSC phenotypes

Mathematical modeling
Mathematical modeling was performed in Google Colaboratory (https://
colab.research.google.com/, [72]) with Python V3.10, the following
abbreviations were used in differential equations.

NHUisthenumberofunfusedHealthymitochondria

NDUisthenumberofunfuseddeviantmitochondria

NHF isthenumberoffusedHealthymitochondria

NDF isthenumberoffuseddefectivemitochondria

MHisthespecificmitophagyrateofhealthymitochondria

MDisthespecificmitophagyrateofdefectivemitochondria

θistheATPproductionfactor

cnisthenumberofcristaeperunitlength

Ψisthetransmembranepotential

cwisthecristaewidth

Codes used for the mathematical model studies can be provided on
request.

Xenograft generation and drug evaluation
All procedures were performed on approval from the Institutional Animal
Ethics Committee (IAEC, project no. B-388), and mice were bred and
maintained at the BRIC-NCCS Experimental Animal Facility. Subcutaneous
xenografts were established by injecting 2.5 × 106 A4 cells into 6–8-week-
old female NOD/SCID mice; wherever described some were pre-labeled
with PKH26. Mice were randomized to different groups (n= at least 4 per
group) and treatment initiated on Day 14 post-cell injection. The following
doses were administered intraperitoneally: 25 mg/kg of Paclitaxel (Sigma-
Aldrich, #T7191), 50 mg/kg of each Doxycycline and Erythromycin (Sigma-
Aldrich, #E5389), and 250mg/kg of Metformin (Sigma-Aldrich, #317240);
detailed description of drug regimens is provided in Fig. 7b (for the
metformin included mice experiments 3.5 × 106 cells were inoculated for
the subcutaneous xenograft generation). In vivo tumor progression was
monitored and measured on Days 7th, 14th, and 21st following treatment
by measuring tumor volume using the formula: 0.5 × length × (width)2. No
blinding was performed while assessing the tumor measurements. Mice
were euthanized on completion of the drug regimen (Day 21) and tumors
were harvested. A “tumor inhibitory score” of each drug regimen was
computed based on differences in % of PKHhi and PKHlow fractions (i.e CSC
and progenitor populations) normalized to tumor volumes between
treated and vehicle control tumors.

Tumorinhibitoryscore ¼ Control
%PKHhi þ%PKHlow

C:tumorvolume

� �

� Test
%PKHhi þ%PKHlow

T :tumorvolume

� �

C. tumor: Vehicle control tumor
T. tumor: Test (different drugs) tumor
PKHhi : CSC fractions
PKHlow: Progenitors

Statistics
Unless specified otherwise, all experiments were conducted with a minimum
of three independent replicates. Statistical comparisons between two
groups were performed with two-tailed Student’s t test, while comparisons
involving three or more groups were analyzed using one-way analysis of
variance (ANOVA). Data are presented as the mean ± standard error of the
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mean (SEM), unless otherwise noted. Statistical significance was determined
using p-values, with *p < 0.05, **p < 0.01, and ***p < 0.001. Graphical
representations and statistical analyses were performed using GraphPad
Prism software (version 8.4.2, [73]).

DATA AVAILABILITY
The data that support the findings of this study are available within the article and its
Supplementary files. Proteomic data generated through mass spectrometry are
submitted to the ProteomeXchange Consortium via the PRIDE repository [74], under
the dataset identifier PXD062888.
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