Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Cell Death & Disease
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. cell death & disease
  3. articles
  4. article
α-ketoglutarate/succinate ratio imbalance impairs thymine DNA glycosylase function and base excision repair process increasing susceptibility to pancreatic cancer
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 February 2026

α-ketoglutarate/succinate ratio imbalance impairs thymine DNA glycosylase function and base excision repair process increasing susceptibility to pancreatic cancer

  • Silvia Malatesta1,2 na1,
  • Virginia Vigiano Benedetti3 na1,
  • Emanuela Salviati4,
  • Barbara Illi5,
  • Isabella Manni6,
  • Emanuele Middonti7,8,
  • Gian Luca Rampioni Vinciguerra  ORCID: orcid.org/0000-0003-0739-16689,
  • Valerio Licursi  ORCID: orcid.org/0000-0002-8172-14375,
  • Francesca Troilo5,
  • Gianni Colotti  ORCID: orcid.org/0000-0002-9913-06355,
  • Lina Cipolla10,
  • Simone Sabbioneda10,
  • Livia Perfetto1,
  • Giulia Piaggio  ORCID: orcid.org/0000-0003-2114-18926,
  • Federico Bussolino  ORCID: orcid.org/0000-0002-5348-13417,8,
  • Federica Di Nicolantonio  ORCID: orcid.org/0000-0001-9618-20107,8,
  • Pietro Campiglia4,
  • Eduardo Maria Sommella  ORCID: orcid.org/0000-0001-8654-64314,
  • Mattia Mori11,
  • Chiara Cencioni  ORCID: orcid.org/0000-0001-6284-539X12 na2 &
  • …
  • Francesco Spallotta  ORCID: orcid.org/0000-0002-0466-62861,2 na2 

Cell Death & Disease , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cancer metabolism
  • DNA methylation
  • Pancreatic cancer

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, with chronic metabolic disorders increasing risk and severity. Prolonged exposure to altered metabolism changes specific metabolite levels, impacting epigenetic landscape contributing neoplastic lesion acquisition. This study examines the interplay between metabolism and epigenetics in dysmetabolic-driven PDAC tumorigenesis, exploiting LSL-KrasG12D;PDX-1-Cre mice (KC mice) exposed to high-fat diet (HFD) and KRAS-mutated human pancreatic ductal epithelial (HPDE) cells. Untargeted metabolomics of HFD-fed KC pancreata reveals altered free fatty acid and elevated S-adenosyl methionine levels during tumorigenesis. Targeted metabolomics shows increased succinate alongside reduced α-ketoglutarate levels. This imbalance suggests an epigenetic derangement, targeting DNA methylation. In KRAS-mutated HPDE cells exposed to altered metabolism, the DNA demethylation complex of ten-to-eleven-translocation methylcytosine 1 and thymine DNA glycosylase (TDG) is disrupted, leading to iterative cytosine modification and apurinic/apyrimidinic (AP) site accumulation. Succinate directly binds TDG at arginine 275, hyperactivating it and increasing AP site formation. This alteration combined with the methylation-prone metabolic environment, impairs the base excision repair pathway by hypermethylating and downmodulating DNA ligases LIG1 and LIG3. This predisposes to genomic instability and pancreatic preneoplastic lesion development. These findings uncover a metabolic-epigenetic axis in dysmetabolic PDAC, highlighting how metabolite-driven epigenetic changes compromise DNA repair and drive tumorigenesis.

Data availability

The RNA sequencing datasets are publicly available at NCBI’s Gene Expression Omnibus (GEO) repository, under accession number GSE302730 located at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE302730. Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon request, Dr. Francesco Spallotta (francesco.spallotta@uniroma1.it) and Dr. Chiara Cencioni (chiara.cencioni@cnr.it). This study did not generate new unique reagents.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA: A Cancer J Clin. 2023;73(1):17–48.

    Google Scholar 

  2. Wood LD, Canto MI, Jaffee EM, Simeone DM. Pancreatic cancer: pathogenesis, screening, diagnosis, and treatment. Gastroenterology. 2022;163(2):386–402.e1.

    Google Scholar 

  3. Carreras-Torres R, Johansson M, Gaborieau V, Haycock PC, Wade KH, Relton CL, et al. The role of obesity, type 2 diabetes, and metabolic factors in pancreatic cancer: a Mendelian randomization study. J Nl Cancer Inst. 2017;109(9).

  4. Jin X, Qiu T, Li L, Yu R, Chen X, Li C, et al. Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B. 2023;13(6):2403–24.

    Google Scholar 

  5. Khandekar MJ, Cohen P, Spiegelman BM. Molecular mechanisms of cancer development in obesity. Nat Rev Cancer. 2011;11(12):886–95.

    Google Scholar 

  6. Klein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol. 2021;18(7):493–502.

    Google Scholar 

  7. Maitra A, Sharma A, Brand RE, Van Den Eeden SK, Fisher WE, Hart PA, et al. A Prospective Study to Establish a New-Onset Diabetes Cohort: From the Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer. Pancreas. 2018;47(10):1244–8.

    Google Scholar 

  8. Araki T, Nagashima M, Hirasawa H, Tamalu F, Katagiri Y, Miwa N. Epigenome-wide association analysis of pancreatic exocrine cells from high-fat- and normal diet-fed mice and its potential use for understanding the oncogenesis of human pancreatic cancer. Biochem Biophys Res Commun. 2022;637:50–7.

    Google Scholar 

  9. Cascetta P, Cavaliere A, Piro G, Torroni L, Santoro R, Tortora G, et al. Pancreatic cancer and obesity: molecular mechanisms of cell transformation and chemoresistance. Int J Mol Sci. 2018;19(11).

  10. Wlodarczyk M, Nowicka G. Obesity, DNA damage, and development of obesity-related diseases. Int J Mol Sci. 2019;20(5).

  11. Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: still emerging. Cell Metab. 2022;34(3):355–77.

    Google Scholar 

  12. Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502(7472):472–9.

    Google Scholar 

  13. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28.

    Google Scholar 

  14. Patil V, Ward RL, Hesson LB. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics. 2014;9(6):823–8.

    Google Scholar 

  15. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.

    Google Scholar 

  16. Vasovcak P, Krepelova A, Menigatti M, Puchmajerova A, Skapa P, Augustinakova A, et al. Unique mutational profile associated with a loss of TDG expression in the rectal cancer of a patient with a constitutional PMS2 deficiency. DNA Repair. 2012;11(7):616–23.

    Google Scholar 

  17. Wiebauer K, Jiricny J. Mismatch-specific thymine DNA glycosylase and DNA polymerase beta mediate the correction of G.T mispairs in nuclear extracts from human cells. Proc Natl Acad Sci USA. 1990;87(15):5842–5.

    Google Scholar 

  18. Gohil D, Sarker AH, Roy R. Base excision repair: mechanisms and impact in biology, disease, and medicine. Int J Mol Sci. 2023;24(18).

  19. Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein cell. 2022;13(12):877–919.

    Google Scholar 

  20. Wang P, Chen LL, Xiong Y, Ye D. Metabolite regulation of epigenetics in cancer. Cell Rep. 2024;43(10):114815.

    Google Scholar 

  21. Spallotta F, Cencioni C, Atlante S, Garella D, Cocco M, Mori M, et al. Stable oxidative cytosine modifications accumulate in cardiac mesenchymal cells from type2 diabetes patients: rescue by alpha-ketoglutarate and TET-TDG functional reactivation. Circ Res. 2018;122(1):31–46.

    Google Scholar 

  22. Mancuso P, Tricarico R, Bhattacharjee V, Cosentino L, Kadariya Y, Jelinek J, et al. Correction to: Thymine DNA glycosylase as a novel target for melanoma. Oncogene. 2022;41(23):3300–1.

    Google Scholar 

  23. Wang G, Rao P. Succinate dehydrogenase-deficient renal cell carcinoma: a short review. Arch Pathol Lab Med. 2018;142(10):1284–8.

    Google Scholar 

  24. Xu H, Long S, Xu C, Li Z, Chen J, Yang B, et al. TNC upregulation promotes glioma tumourigenesis through TDG-mediated active DNA demethylation. Cell Death Discov. 2024;10(1):347.

    Google Scholar 

  25. Bracci PM. Obesity and pancreatic cancer: overview of epidemiologic evidence and biologic mechanisms. Mol Carcinog. 2012;51(1):53–63.

    Google Scholar 

  26. Ariston Gabriel AN, Jiao Q, Yvette U, Yang X, Al-Ameri SA, Du L, et al. Differences between KC and KPC pancreatic ductal adenocarcinoma mice models, in terms of their modeling biology and their clinical relevance. Pancreatology. 2020;20(1):79–88.

    Google Scholar 

  27. Geeraerts SL, Heylen E, De Keersmaecker K, Kampen KR. The ins and outs of serine and glycine metabolism in cancer. Nat Metab. 2021;3(2):131–41.

    Google Scholar 

  28. Zeng JD, Wu WKK, Wang HY, Li XX. Serine and one-carbon metabolism, a bridge that links mTOR signaling and DNA methylation in cancer. Pharmacol Res. 2019;149:104352.

    Google Scholar 

  29. Lu X, Han D, Zhao BS, Song CX, Zhang LS, Dore LC, et al. Base-resolution maps of 5-formylcytosine and 5-carboxylcytosine reveal genome-wide DNA demethylation dynamics. Cell Res. 2015;25(3):386–9.

    Google Scholar 

  30. Raiber EA, Murat P, Chirgadze DY, Beraldi D, Luisi BF, Balasubramanian S. 5-Formylcytosine alters the structure of the DNA double helix. Nat Struct Mol Biol. 2015;22(1):44–9.

    Google Scholar 

  31. Apte MV, Wilson JS, Lugea A, Pandol SJ. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology. 2013;144(6):1210–9.

    Google Scholar 

  32. Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell. 2013;23(6):739–52.

    Google Scholar 

  33. Malik SS, Coey CT, Varney KM, Pozharski E, Drohat AC. Thymine DNA glycosylase exhibits negligible affinity for nucleobases that it removes from DNA. Nucleic Acids Res. 2015;43(19):9541–52.

    Google Scholar 

  34. Chen D, Lucey MJ, Phoenix F, Lopez-Garcia J, Hart SM, Losson R, et al. T:G mismatch-specific thymine-DNA glycosylase potentiates transcription of estrogen-regulated genes through direct interaction with estrogen receptor alpha. J Biol Chem. 2003;278(40):38586–92.

    Google Scholar 

  35. Wilson DM 3rd, Barsky D. The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA. Mutat Res. 2001;485(4):283–307.

    Google Scholar 

  36. Tomkinson AE, Howes TR, Wiest NE. DNA ligases as therapeutic targets. Transl Cancer Res. 2013;2(3).

  37. Pandey S, Anang V, Schumacher MM. Mitochondria driven innate immune signaling and inflammation in cancer growth, immune evasion, and therapeutic resistance. Int Rev Cell Mol Biol. 2024;386:223–47.

    Google Scholar 

  38. Chari ST, Wu B, Lopez C, Lustigova E, Chen Q, Van Den Eeden SK, et al. Risk of pancreatic cancer in glycemically defined new-onset diabetes: a prospective cohort study. Gastroenterology. 2025.

  39. Sah RP, Sharma A, Nagpal S, Patlolla SH, Sharma A, Kandlakunta H, et al. Phases of metabolic and soft tissue changes in months preceding a diagnosis of pancreatic ductal adenocarcinoma. Gastroenterology. 2019;156(6):1742–52.

    Google Scholar 

  40. Sharma A, Smyrk TC, Levy MJ, Topazian MA, Chari ST. Fasting blood glucose levels provide estimate of duration and progression of pancreatic cancer before diagnosis. Gastroenterology. 2018;155(2):490–500.e2.

    Google Scholar 

  41. Gumpper-Fedus K, Hart PA, Belury MA, Crowe O, Cole RM, Pita Grisanti V, et al. Altered plasma fatty acid abundance is associated with cachexia in treatment-naive pancreatic cancer. Cells. 2022;11(5).

  42. Morris, JPt, Yashinskie JJ, Koche R, Chandwani R, Tian S, Chen CC, et al. alpha-Ketoglutarate links p53 to cell fate during tumour suppression. Nature. 2019;573(7775):595–9.

    Google Scholar 

  43. Atallah R, Olschewski A, Heinemann A. Succinate at the crossroad of metabolism and angiogenesis: roles of SDH, HIF1alpha and SUCNR1. Biomedicines. 2022;10(12).

  44. Laukka T, Mariani CJ, Ihantola T, Cao JZ, Hokkanen J, Kaelin WG Jr, et al. Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. J Biol Chem. 2016;291(8):4256–65.

    Google Scholar 

  45. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7(1):77–85.

    Google Scholar 

  46. Zhang W, Lang R. Succinate metabolism: a promising therapeutic target for inflammation, ischemia/reperfusion injury and cancer. Front Cell Dev Biol. 2023;11:1266973.

    Google Scholar 

  47. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004;22(22):4632–42.

    Google Scholar 

  48. Tan AC, Jimeno A, Lin SH, Wheelhouse J, Chan F, Solomon A, et al. Characterizing DNA methylation patterns in pancreatic cancer genome. Mol Oncol. 2009;3(5-6):425–38.

    Google Scholar 

  49. Ueki T, Toyota M, Sohn T, Yeo CJ, Issa JP, Hruban RH, et al. Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res. 2000;60(7):1835–9.

    Google Scholar 

  50. Luo L, Fu S, Du W, He LN, Zhang X, Wang Y, et al. LRRC3B and its promoter hypomethylation status predicts response to anti-PD-1 based immunotherapy. Front Immunol. 2023;14:959868.

    Google Scholar 

  51. Atlante S, Visintin A, Marini E, Savoia M, Dianzani C, Giorgis M, et al. alpha-ketoglutarate dehydrogenase inhibition counteracts breast cancer-associated lung metastasis. Cell Death Dis. 2018;9(7):756.

    Google Scholar 

  52. Huang Y, Wang G, Liang Z, Yang Y, Cui L, Liu CY. Loss of nuclear localization of TET2 in colorectal cancer. Clin Epigenet. 2016;8:9.

    Google Scholar 

  53. Muller T, Gessi M, Waha A, Isselstein LJ, Luxen D, Freihoff D, et al. Nuclear exclusion of TET1 is associated with loss of 5-hydroxymethylcytosine in IDH1 wild-type gliomas. Am J Pathol. 2012;181(2):675–83.

    Google Scholar 

  54. Xu X, Yu T, Shi J, Chen X, Zhang W, Lin T, et al. Thymine DNA glycosylase is a positive regulator of Wnt signaling in colorectal cancer. J Biol Chem. 2014;289(13):8881–90.

    Google Scholar 

  55. Xu X, Watt DS, Liu C. Multifaceted roles for thymine DNA glycosylase in embryonic development and human carcinogenesis. Acta Biochim Biophys Sin. 2016;48(1):82–9.

    Google Scholar 

  56. Zhou W, Zhang L, Chen P, Li S, Cheng Y. Thymine DNA glycosylase-regulated TAZ promotes radioresistance by targeting nonhomologous end joining and tumor progression in esophageal cancer. Cancer Sci. 2020;111(10):3613–25.

    Google Scholar 

  57. Nowsheen S, Wukovich RL, Aziz K, Kalogerinis PT, Richardson CC, Panayiotidis MI, et al. Accumulation of oxidatively induced clustered DNA lesions in human tumor tissues. Mutat Res. 2009;674(1-2):131–6.

    Google Scholar 

  58. Wei S, Perera MLW, Sakhtemani R, Bhagwat AS. A novel class of chemicals that react with abasic sites in DNA and specifically kill B cell cancers. PloS one. 2017;12(9):e0185010.

    Google Scholar 

  59. Tong J, Song J, Zhang W, Zhai J, Guan Q, Wang H, et al. When DNA-damage responses meet innate and adaptive immunity. Cell Mol Life Sci. 2024;81(1):185.

    Google Scholar 

  60. de Latouliere L, Manni I, Iacobini C, Pugliese G, Grazi GL, Perri P, et al. A bioluminescent mouse model of proliferation to highlight early stages of pancreatic cancer: a suitable tool for preclinical studies. Ann Anat = Anatomischer Anz. 2016;207:2–8.

    Google Scholar 

  61. Pettersson US, Walden TB, Carlsson PO, Jansson L, Phillipson M. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PloS One. 2012;7(9):e46057.

    Google Scholar 

  62. Siddiqui I, Erreni M, Kamal MA, Porta C, Marchesi F, Pesce S, et al. Differential role of Interleukin-1 and Interleukin-6 in K-Ras-driven pancreatic carcinoma undergoing mesenchymal transition. Oncoimmunology. 2018;7(2):e1388485.

    Google Scholar 

  63. Middonti E, Astanina E, Vallariello E, Hoza RM, Metovic J, Spadi R, et al. A neuroligin-2-YAP axis regulates progression of pancreatic intraepithelial neoplasia. EMBO Rep. 2024;25(4):1886–908.

    Google Scholar 

  64. Adler J, Parmryd I. Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytom Part A. 2010;77(8):733–42.

    Google Scholar 

  65. Humbert N, Kovalenko L, Saladini F, Giannini A, Pires M, Botzanowski T, et al. Thia)calixarenephosphonic acids as potent inhibitors of the nucleic acid chaperone activity of the HIV-1 nucleocapsid protein with a new binding mode and multitarget antiviral activity. ACS Infect Dis. 2020;6(4):687–702.

  66. Tian C, Kasavajhala K, Belfon KAA, Raguette L, Huang H, Migues AN, et al. ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J Chem Theory Comput. 2020;16(1):528–52.

    Google Scholar 

  67. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004;25(9):1157–74.

    Google Scholar 

  68. Rubenstein AB, Blacklock K, Nguyen H, Case DA, Khare SD. Systematic comparison of amber and rosetta energy functions for protein structure evaluation. J Chem Theory Comput. 2018;14(11):6015–25.

    Google Scholar 

  69. Roe DR, Cheatham TE 3rd. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013;9(7):3084–95.

    Google Scholar 

  70. Cipolla L, Bertoletti F, Maffia A, Liang CC, Lehmann AR, Cohn MA, et al. UBR5 interacts with the replication fork and protects DNA replication from DNA polymerase eta toxicity. Nucleic Acids Res. 2019;47(21):11268–83.

    Google Scholar 

Download references

Funding

This research was funded by the AIRC, Associazione Italiana per la Ricerca sul Cancro (AIRC), My First AIRC “Giorgio e Adriana Squinzi” MFAG number 23099 to Francesco Spallotta, MFAG number 28858 to Livia Perfetto, Start Up number 30656 to Gian Luca Rampioni Vinciguerra and IG number 22910 to Federico Bussolino; Sapienza University of Rome, “Progetto Ateneo 2023” to Francesco Spallotta; funded by European Union-Next Generation EU, Missione 4 C2 Investimento 1.1 PRIN-PNRR number P2022R7WRC; CUP B53D23025120001 to Chiara Cencioni and Eduardo Maria Sommella; PRIN-PNRR number P2022E3BTH; CUP B53D23024970001 to Francesco Spallotta; funded by PNRR M4C2—Dalla ricerca all’impresa—3.1: Fondo per la realizzazione di un sistema integrato di infrastrutture di ricerca e innovazione “Potentiating the Italian Capacity for Structural Biology Services in Instruct-ERIC (ITACA.SB)” CUP: B53C22001790006; PNRR PE8 Age-IT., cofounding from Next Generation EU [DM 1557 11.10.2022], in the context of the National Recovery and Resilience Plan, Investment PE8—Project Age-It: “Ageing Well in an Ageing Society”; Project PRIN MIUR 2022HYF8KS to Gianni Colotti; MUR (PNRR D3 4 Health) and FPRC 5xmille Ministero Salute 2022 – CARESS and Ricerca Corrente 2025 to Federico Bussolino; Project "Pathogen Readiness Platform for CERIC ERIC upgrade" - PRP@CERIC CUP J97G22000400006 to Pietro Campiglia.

Author information

Author notes
  1. These authors contributed equally: Silvia Malatesta, Virginia Vigiano Benedetti.

  2. These authors jointly supervised this work: Chiara Cencioni, Francesco Spallotta.

Authors and Affiliations

  1. Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy

    Silvia Malatesta, Livia Perfetto & Francesco Spallotta

  2. Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy

    Silvia Malatesta & Francesco Spallotta

  3. Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy

    Virginia Vigiano Benedetti

  4. Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy

    Emanuela Salviati, Pietro Campiglia & Eduardo Maria Sommella

  5. Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), Rome, Italy

    Barbara Illi, Valerio Licursi, Francesca Troilo & Gianni Colotti

  6. SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy

    Isabella Manni & Giulia Piaggio

  7. Department of Oncology, University of Torino, Orbassano, Italy

    Emanuele Middonti, Federico Bussolino & Federica Di Nicolantonio

  8. Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy

    Emanuele Middonti, Federico Bussolino & Federica Di Nicolantonio

  9. Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant’Andrea Hospital, Sapienza University, Rome, Italy

    Gian Luca Rampioni Vinciguerra

  10. Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, National Research Council (IGM-CNR), Pavia, Italy

    Lina Cipolla & Simone Sabbioneda

  11. Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy

    Mattia Mori

  12. Institute of System Analysis and Informatics “Antonio Ruberti”, National Research Council (IASI-CNR), Rome, Italy

    Chiara Cencioni

Authors
  1. Silvia Malatesta
    View author publications

    Search author on:PubMed Google Scholar

  2. Virginia Vigiano Benedetti
    View author publications

    Search author on:PubMed Google Scholar

  3. Emanuela Salviati
    View author publications

    Search author on:PubMed Google Scholar

  4. Barbara Illi
    View author publications

    Search author on:PubMed Google Scholar

  5. Isabella Manni
    View author publications

    Search author on:PubMed Google Scholar

  6. Emanuele Middonti
    View author publications

    Search author on:PubMed Google Scholar

  7. Gian Luca Rampioni Vinciguerra
    View author publications

    Search author on:PubMed Google Scholar

  8. Valerio Licursi
    View author publications

    Search author on:PubMed Google Scholar

  9. Francesca Troilo
    View author publications

    Search author on:PubMed Google Scholar

  10. Gianni Colotti
    View author publications

    Search author on:PubMed Google Scholar

  11. Lina Cipolla
    View author publications

    Search author on:PubMed Google Scholar

  12. Simone Sabbioneda
    View author publications

    Search author on:PubMed Google Scholar

  13. Livia Perfetto
    View author publications

    Search author on:PubMed Google Scholar

  14. Giulia Piaggio
    View author publications

    Search author on:PubMed Google Scholar

  15. Federico Bussolino
    View author publications

    Search author on:PubMed Google Scholar

  16. Federica Di Nicolantonio
    View author publications

    Search author on:PubMed Google Scholar

  17. Pietro Campiglia
    View author publications

    Search author on:PubMed Google Scholar

  18. Eduardo Maria Sommella
    View author publications

    Search author on:PubMed Google Scholar

  19. Mattia Mori
    View author publications

    Search author on:PubMed Google Scholar

  20. Chiara Cencioni
    View author publications

    Search author on:PubMed Google Scholar

  21. Francesco Spallotta
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Each author significantly contributed to the conceptualization of the study, the acquisition, analysis, or interpretation of data, as well as the drafting of the paper. All authors approved the final version of the manuscript. CC and FS designed the research and carried out experiments; SM, VVB, ES, BI, IM, and EM performed the experiments; VL, LP, EMS analyzed data and performed bioinformatics; GLRV performed histological evaluation; EMS supervised metabolomics analyses; MM performed molecular dynamics; LC and SS performed PLA experiments; FT and GC performed SPR experiments; GP, FB, FDN, PC gave conceptual advice; CC and FS wrote the manuscript and supervised the study. All authors discussed the results and implications of the study.

Corresponding authors

Correspondence to Chiara Cencioni or Francesco Spallotta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All methods were performed in accordance with the relevant guidelines and regulations. All animal studies were approved by the Institutional Animal Care of Regina Elena National Cancer Institute (Rome, Italy) and by the Government Committee of National Minister of Health (protocol permit number: 362/2021-PR) and conducted according to EU Directive 2010/63/EU and Italian D.L. 2614/2014 for animal experiments following the Institutional Guidelines for Animal Care and Welfare. The present study does not include human subjects.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by Dr Gerry Melino

Supplementary information

Supplemental methods, figures and tables

Uncropped western blots

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malatesta, S., Vigiano Benedetti, V., Salviati, E. et al. α-ketoglutarate/succinate ratio imbalance impairs thymine DNA glycosylase function and base excision repair process increasing susceptibility to pancreatic cancer. Cell Death Dis (2026). https://doi.org/10.1038/s41419-026-08475-w

Download citation

  • Received: 04 September 2025

  • Revised: 27 January 2026

  • Accepted: 09 February 2026

  • Published: 21 February 2026

  • DOI: https://doi.org/10.1038/s41419-026-08475-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • About the Editors
  • Open access publishing
  • Contact
  • For Advertisers
  • Press Releases
  • About the Partner
  • Upcoming Conferences

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Cell Death & Disease (Cell Death Dis)

ISSN 2041-4889 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited