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CHEK2 knockout is a therapeutic target for TP53-mutated
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Currently, there is still a lack of novel and effective drug targets to improve the prognosis of hepatocellular carcinoma (HCC).
Additionally, the role of CHEK2 in HCC has not been reported yet. The eQTLgen database and two HCC Genome-Wide Association
Study (GWAS) datasets (ieu-b-4953, ICD10 C22.0) were used to find the drug target: CHEK2. Next, Colony, Edu, β-gal, and cell cycle
analysis were facilitated to evaluate the role of CHEK2 knockout in HCC. In addition, Nultin-3 was added to evaluate the apoptosis of
TP53-mutated HCC cells with CHEK2 knockout. Furthermore, MitoSox, electron microscopy, mitochondrial ATP, and NADH+/NADH
levels were assessed in the CHEK2 knockout HCC cells with or without Metformin. Finally, cell-derived tumor xenograft was used to
evaluate the role of CHEK2 knockout in vivo. We initially identified a potential drug target, CHEK2, through GWAS data analysis.
Furthermore, we observed a significant upregulation of CHEK2 expression in HCC, which was found to be correlated with a poor
prognosis. Subsequently, the results indicated that knocking out CHEK2 selectively affects the proliferation, cell cycle, senescence,
and apoptosis of TP53-mutant HCC cells. Additionally, the introduction of Nultin-3 further intensified the functional impact on TP53-
mutant cells. Then ClusterProfiler results showed high CHEK2 and TP53 mutation group was positively enriched in the
mitochondrial ATP pathway. Then we used MitoSox, electron microscopy, mitochondrial ATP, and NADH+ /NADH assay and found
knockout of CHECK could induce the ATP pathway to inhibit the growth of HCC. Our research introduces a novel drug target for
TP53-mutant HCC cells via mitochondrial ATP, addressing the limitation of Nultin-3 as a standalone treatment that does not induce
tumor cell death.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the most common type of liver
cancer and ranks as the fifth leading cause of cancer-related
deaths worldwide [1]. The rising incidence of HCC highlights the
pressing need for innovative therapeutic strategies, as the current
drug treatments have limited efficacy. While drugs like sorafenib
and lenvatinib have shown some success in improving patient
prognosis, multicenter studies have revealed their limited impact
on long-term survival due to treatment resistance and side effects
[2]. Therefore, actively searching for novel and effective drug
targets to enhance the prognosis of HCC patients is of crucial
clinical importance.
The eQTLgen database serves as a large-scale research resource

for studying the association between genetic regulatory loci
known as expression quantitative trait loci (eQTL) and transcrip-
tome expression in the human genome [3]. It aims to decipher the
relationship between these eQTLs and RNA expression levels by
integrating single-nucleotide polymorphism (SNP) information
covering millions of loci across the human genome with RNA
sequencing data from diverse tissues and cell types. Similarly,
Mendelian randomization (MR) studies also utilize genetic
variation in the form of SNPs as instruments for causal inference

between exposures and outcomes, providing insights into
whether observed associations are consistent with causal effects
[4]. In MR studies, confounding bias can be minimized since
genetic variations are inherently randomized at birth, ensuring
that they are not influenced by external factors and reducing the
possibility of reverse causation as genetic variants are determined
before disease development [5]. By combining the approaches of
eQTLgen and MR, we could potentially identify target genes for
HCC treatment, as this joint analysis helps us explore potential
causal relationships in a more robust manner. In recent years,
significant advancements have been made in identifying drug
targets for various diseases using the mentioned approach above.
For instance, several studies have discovered that anti-lipid drugs
like HMGCR and PCSK9 inhibitors can effectively reduce COVID-19-
related outcomes [6]. Additionally, TYK2 has emerged as a
potential drug target for multiple autoimmune disorders [7]. In
this study, we selected two HCC Genome-Wide Association Study
(GWAS) datasets (ieu-b-4953, ICD10 C22.0) and found that CHEK2
could be a potential drug target gene.
CHEK2, also known as Checkpoint kinase 2, is a critical protein

kinase involved in the regulation of cell cycle progression [8]. It is
involved in processes such as DNA double-strand breaks, DNA
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damage, and abnormal cell proliferation. When cells experience
DNA damage, CHEK2 is activated and transmits signals by
phosphorylating a series of substrates [9, 10]. This activation
initiates the cell cycle checkpoint, halts cell cycle progression, and
allows for DNA repair. Mutations in the CHEK2 gene have been
found to be correlate with various cancers, particularly hereditary
cancers like breast and colorectal cancer [11, 12]. Specifically,
mutations in the CHEK2 gene can result in the loss or impairment
of protein function, affecting DNA repair and cell cycle regulation
mechanisms, thereby increasing the individual’s risk of developing
cancer [13]. For instance, one of the common CHEK2 mutations
associated with breast cancer is c.1100delC [14]. This mutation
leads to a protein truncation and is significantly associated with
genetic susceptibility to breast cancer. Research on CHEK2 in HCC
is limited, with only a study indicating high expression of CHEK2 in
HCC tissues [15]. However, the mechanisms by which CHEK2
affects the prognosis of HCC patients remain unclear.

RESULTS
CHEK2 could be a potential drug target for HCC
To identify the potential HCC drug targets, we initially searched for
two HCC GWAS datasets (ICD10 C22.0, ieu-b-4953) as outcome
data and downloaded data from the eQTLgen database as
reference data. Through SMR analysis, we identified 726 and 314
potential drug target genes based on the top SNPs in each
dataset, respectively. Taking the intersection of these gene sets,
we obtained six common genes (CHEK2, GOLPH3, PEX10, PLCH2,
RP3-395M20.2, RP3-395M20.3). The workflow is illustrated in Fig.
1A and the SMR and MR analysis of these six genes are listed in
Table 1. The results indicated CHEK2, PLCH2, RP3-395M20.2, and
RP3-395M20.3 could be risk factors for HCC, while PEX10 could be
a protective factor for HCC. Next, we investigated the expression
levels of these potential target genes in both HCC and normal
groups, we selected a total of 25 HCC expression datasets and
found that CHEK2 exhibited significant upregulation in a majority
of the HCC datasets (20/23), except for two datasets where it was
not detected. However, the expression of other drug target genes
in various HCC datasets was found to be inconsistent (Fig. 1B).
Therefore, based on our observations, we hypothesize that CHEK2
may play a more significant role in HCC. Consequently, we have
chosen to further investigate CHEK2 in our subsequent studies.
The eQTLgen database we used was based on the SNP analysis of
blood samples. Hence, we extracted both tissue and serum
samples from 20 HCC patients and collected serum samples from
20 healthy individuals. We observed that the RNA levels of CHEK2
were significantly higher in both the serum and tissue samples of
HCC patients compared to normal samples (Fig. 1C, D).
Furthermore, between serum and tissue samples from the 20
pairs of HCC patients, we discovered a positive association in the
expression of CHEK2. (Fig. 1E). Moreover, for investigating the
clinical indices of CHEK2 in HCC, we selected TCGA, ICGC, and GAO
et al. cohorts and we found higher CHEK2 group predicted poor
overall survival rates than the lower CHEK2 group (Fig. 1F–H). In
addition, in comparison to the low CHEK2 group, we found that
the high CHEK2 group had worse disease-free interval (DFI),
disease-specific survival (DSS), and progression-free interval (PFI)
(sup Fig. 1A–C). Then, using IHC analysis, we discovered that the
CHEK2 protein levels in the HCC group were significantly higher
than those in the Normal group (Fig. 1I). Additionally, in HCC
samples, there was a strong association between the IHC levels of
CHEK2 and Ki67 (Fig. 1J).

Knockout of CHEK2 selectively induces proliferation arrest,
cell cycle blockade, and senescence in HCC cells with TP53
mutation
To elucidate the role of CHEK2 in HCC, we performed single-gene
GSEA for CHEK2 using three databases: TCGA, ICGC, and GAO et al.

We observed the enrichment of CHEK2 in multiple cell cycle
functions (Fig. 2A–C). Interestingly, CHEK2 also showed enrich-
ment in Lamin binding, which is a marker of senescence.
Therefore, we validated the expression of CHEK2 in five HCC cell
lines (97H, LM3, BEL-7404, Huh7 and hepG2) and observed
relatively higher expression of CHEK2 in LM3, Huh7, and HepG2
cell lines (sup Fig. 2A). We initiated plate cloning and Edu
experiments as our initial investigations and we found inhibition
of CHEK2 could inhibit the cell proliferation of LM3 and Huh7 cells,
while the proliferation capacity of HepG2 cells was found to be
unaffected by CHEK2 expression (Fig. 2D, E; sup Fig. 2B–D). Then,
through the cell cycle and senescence experiments, we discovered
that inhibiting CHEK2 significantly induced G0 phase arrest and
promoted senescence in LM3 and Huh7 cells. However, HepG2
cell cycle or senescence functionality was unaffected by
CHEK2 suppression (Fig. 2F, G; sup Fig. 2E–G). Further, western
blot analysis confirmed the previous findings as well (Fig. 2H–K).
Based on previous studies, it was indicated that LM3 and Huh7 are
HCC cell lines with TP53 mutation, while HepG2 is a TP53 wild-
type HCC cell line. Therefore, we hypothesize that the knockout of
CHEK2 selectively induces proliferation arrest, cell cycle blockade,
and senescence in HCC cells with TP53 mutation.

Combining Nultin-3 further induces cell cycle arrest and
inhibits growth in CHEK2-inhibited HCC cells with TP53
mutation
To further investigate the relationship between CHEK2 and TP53-
mutated HCC cells, we analyzed data from three cohorts (TCGA,
ICGC, and GAO et al.) and found a significant upregulation of
CHEK2 expression in tissues with TP53 mutations (Fig. 3A).
Additionally, we compared the genomes of the groups with low
and high CHEK2 levels. Our analysis revealed a higher frequency of
TP53 mutations in the high CHEK2 group. Furthermore, we
observed increased frequencies of copy number variants (CNV) in
the high CHEK2 group compared to the low CHEK2 group across
various chromosomal arms (Fig. 3B). To assess the correlation
between TP53 mutation, CHEK2 expression, and patient survival,
we generated a Kaplan-Meier survival curve. Interestingly, patients
with high CHEK2 expression and TP53 mutation had a worse
prognosis compared to other subgroups (Fig. 3C–E). Hence, we
hypothesize that simultaneous inhibition of TP53 mutation and
knockout of CHEK2 may further suppress cell cycle progression,
proliferation et al. in HCC with TP53 mutation. We then selected
Nultin-3, which has been investigated as a potential therapeutic
agent specifically targeting TP53-mutated cancer cells [16].
Furthermore, we further supplemented with 10 μM Nultin-3 in
the previous knockout of CHEK2 HCC cell lines (LM3, Huh7).
Subsequently, we performed cloning formation, Edu assay,
β-galactosidase staining, and cell cycle experiments. We observed
that the addition of Nultin-3 could induce a more pronounced
arrest of HCC cells in the G0/G1 phase, inhibiting proliferation, and
further promoting senescence (Fig. 3F–I; sup Fig. 3A–D). Further-
more, western blot analysis also confirmed the previous findings
(Fig. 3J, K).

Knockout of CHEK2 triggers apoptosis in Nultin-3-treated
HCC cells
Research suggests that Nutlin-3-mediated p53 activation can
induce reversible tumor cell cycle arrest, while without causing cell
apoptosis [17]. We increased the concentration gradient from the
standard 10 μM and observed that a single treatment with Nutlin-
3 did not show significant changes in TP53-mutated HCC cell lines,
as assessed by Annexin-V and 7-AAD double staining. Interest-
ingly, we found that knocking out CHEK2 in HCC cell lines resulted
in increased apoptosis, particularly in the early stages of apoptosis
(Fig. 4A; sup Fig. 4A, B). Furthermore, we validated the above
results by assessing the caspase-3 green apoptosis-assay reagent.
We found increased apoptosis in HCC cells with CHEK2 knockout
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(Fig. 4B). Additionally, western blotting results confirmed these
findings (Fig. 4C). Hence, knockout of CHEK2 could trigger
apoptosis in Nultin-3 treated HCC cells.

Combining Nultin-3 and knockout of CHEK2 exacerbates the
loss of mitochondrial ATP in HCC
To further investigate the potential pathways linking CHEK2 and
TP53-mutated HCC cells, we initially divided samples into three
groups in TCGA, ICGC, and GAO et al. databases: high CHEK2/TP53
mutation, low CHEK2/TP53 wild, and mixed. Subsequently, the
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) enrichment analyses were performed. In the results,
we consistently found that the high CHEK2/TP53 mutation group
was associated with cell cycle across all three databases, which
aligns with our previous findings. Interestingly, we also discovered
that the high CHEK2/TP53 mutation group exhibited enrichment in
ATP-related pathways (Fig. 5A). The synthesis of ATP primarily
occurs through the chemical reactions of oxidative phosphorylation
within the mitochondria [18]. High-energy electrons must be
transferred from carriers like NADH to respiratory chain complexes
found in the inner mitochondrial membrane in order for this
process to proceed. Further, we observed a significant decrease in

ATP levels and NADH+/NADH ratio upon knocking out CHEK2.
Furthermore, the addition of Nutlin-3 further intensified this
process (Fig. 5B–E). Adenosine Monophosphate-Activated Protein
Kinase (AMPK) acts as a critical cellular energy sensor and regulator.
When cellular ATP levels decrease, AMPK is activated [19]. Hence,
we have also validated this point through western blotting (Fig. 5F).
In addition, Consistent with previous findings, we further investi-
gated the mitochondrial state using transmission electron micro-
scopy. We observed that the combined knockout of CHEK2 and
treatment with Nutlin-3 promoted mitochondrial swelling and loss
of cristae, as detected by transmission electron microscopy (Fig.
5G). In addition, we used the JC1 method to assess mitochondrial
membrane potential. Our results demonstrated that the combined
knockout of CHEK2 and treatment with Nutlin-3 further induced
the dissipation of mitochondrial membrane potential (Fig. 5H).
Dysfunctional electron transport in mitochondria could also lead to
an increase in mitochondrial membrane potential (Δψm), which, in
turn, promotes the generation of ROS [20]. This relationship
between mitochondrial membrane potential and ROS production
has been established in previous studies [21]. Finally, combined
knockout of CHEK2 and treatment with Nutlin-3 further induced
the generation of MitoSox level (Fig. 5I–L).
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Combining Nultin-3 and knockout of CHEK2 could influence
several biological processes of HCC via mitochondrial ATP
To further investigate whether HCC cells treated with knockout of
CHEK2 and Nutlin-3 could affect various biological processes in
HCC through the mitochondrial ATP pathway, we selected
Metformin, which acts on several cellular pathways to enhance
ATP production in tumor cells via inhibiting complex I of the
mitochondrial electron transport chain [22]. From functional
assays, we observed treatment of Metformin could reverse the
cellular senescence, cell cycle arrest, reduced cell proliferation, and
increased apoptosis of HCC cells combined with CHEK2 knockout
and Nutlin-3 treatment (Fig. 6A–D; sup Fig. 5A–D). Next, we
facilitated western blot analysis to prove these results (Fig. 6E). In
addition, treatment of Metformin could also reverse the apoptotic
HCC cells (Fig. 6F, G; sup Fig. 5E, F). Finally, we further confirmed
that Metformin can effectively restore mitochondrial dysfunction
and decrease in mitochondrial ATP levels caused by combined
CHEK2 knockout and Nutlin-3 treatment (Fig. 6H–Q). The results
were consistent with our expectations. Hence, combining Nultin-3
and knockout of CHEK2 could influence several biological
processes of HCC via the mitochondrial ATP pathway.

Inhibition of CHEK2 suppresses HCC proliferation in vivo
To learn more about the function of mice with CHEK2 deletion, we
established a CDTX model of HCC. Our findings revealed that
knocking out CHEK2 can suppress the development of HCC, and
this effect was intensified when Nultin-3 was introduced (Fig. 7A).
Subsequently, we conducted IHC analysis and observed that P53,
cytC, BAX, and phosphorylated AMPK levels increased in the
presence of Nultin-3 and CHEK2 deletion, but Ki67 and BCL2
expression was decreased (Fig. 7B). Finally, we selected human
tissue sections from both TP53-mutant and TP53 wild-type HCC
samples and observed consistent results with our previous
findings (Fig. 7C). Overall, our results showed combination of
Nultin-3 and CHEK2 knockout appears to have a greater potential
for inhibiting HCC through the mitochondrial ATP pathway.

DISCUSSION
Currently, the clinical management of HCC primarily relies on
surgical resection and chemotherapy, but these approaches have
limitations and often yield unsatisfactory outcomes [23]. For the
treatment of advanced HCC, only the multi-kinase inhibitors
sorafenib and lenvatinib have received approval [24]. Regorafenib,
a different multi-kinase inhibitor, and nivolumab, an anti-PD-1
antibody, have just come to light as new-generation medications
for the treatment of advanced HCC [25]. The prognosis for patients
is still poor in spite of these developments. Additionally, there are
currently few alternatives for druggable targets in preclinical
research for HCC therapy. Finding more possible targets that can
be successfully addressed for treatment is therefore urgently
needed. The current gold standard for determining disease
inference causal links is randomized controlled trials (RCTs).
However, implementing RCTs can be challenging due to ethical
restrictions [26]. MR is an alternative approach that can serve as a
substitute for RCT studies, and its evidence level is only slightly
lower than that of RCTs. Therefore, using the eQTLgen database
and MR methods, we have identified six potential drug targets
(CHEK2, GOLPH3, PEX10, PLCH2, RP3-395M20.2, RP3-395M20.3) for
HCC. Finally, based on the significant upregulation of CHEK2 gene
expression in 25 HCC databases, we have selected CHEK2 as the
focus of our subsequent research. Despite being considered a
tumor suppressor gene in colorectal and breast cancer, CHEK2 can
paradoxically function as a potential oncogene in HCC, as our
research findings suggest. In line with our study, Wu et al. have
also reported similar conclusions [15]. This discrepancy may be
attributed to the distinct tumor microenvironment in HCC
compared to the other two types of cancer, which couldTa
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contribute to the significantly lower postoperative survival rate
observed in HCC. Therefore, understanding the functional role of
the potential drug target CHEK2 is crucial for improving post-
operative prognosis in HCC patients.
To mimic the CRISPR technology of drug targets, we

constructed two sgCHEK2 sequences. Interestingly, we observed
that the knockout of CHEK2 in LM3 and Huh7 cell lines resulted in
decreased proliferation capacity and increased cellular senes-
cence. Additionally, more HCC cells were arrested in the G0/G1
phase. However, the knockout of CHEK2 in the hepG2 cell line had
no significant impact. Some studies revealed that LM3 and Huh7
cell lines harbor TP53 mutations, while hepG2 is a TP53 wild-type
cell line. TP53 mutations are among the most common genetic
abnormalities in HCC [27]. Studies have shown a high prevalence
of TP53 mutations in HCC patients, especially in advanced stages
of HCC [28]. TP53 mutations could also promote HCC cell
proliferation, invasion, and metastasis while inhibiting apoptosis
and DNA repair, thereby accelerating tumor progression and
typically indicating a poor prognosis [29]. Previous studies by
Wang et al. have shown that inducing senescence in TP53-mutant
liver cancer cells, followed by targeted elimination of these
senescent cells using specific drugs, can improve patient survival
[30]. However, it’s crucial to understand that senescent and
apoptotic cells are not the same thing. Senescent cells may release
a variety of interleukins and inflammatory substances known as
the SASP (senescence-associated secretory phenotype), which can
further induce proliferation and metastasis of HCC cells [31].
Overall, HCC patients with TP53 mutations have a poorer
prognosis, and currently, the Food and Drug Administration
(FDA) has not approved any drugs specifically targeting TP53
mutations. Therefore, our research findings, indicating that
knockout of CHEK2 selectively weakens the relevant biological

functions of HCC cells with TP53 mutations, may provide a
potential target for TP53-mutant HCC cells.
Research indicates that under normal conditions, MDM2 binds

to p53 and promotes its degradation, thus inhibiting p53 activity
[32]. However, Nutlin-3 is a compound that inhibits the interaction
between p53 and MDM2, resulting in increased stability and
activity of p53 [16]. When applied to tumor cells, Nutlin-3 can
restore the tumor-suppressive function of p53 and induce cell
cycle arrest. Although Jiang et al. found that Nutlin-3 can regulate
p53-mediated ferroptosis in human cancer cells, it is generally
believed that Nutlin-3 does not induce cell death, which may limit
its effectiveness in cancer treatment [17]. Interestingly, our study
discovered that knockout of CHEK2 not only further enhances cell
cycle arrest but may also act as a switch to initiate apoptosis in
response to Nutlin-3. This provides broader prospects for the use
of Nutlin-3 in treating TP53-mutant HCC.
In this study, we identified significant enrichment of HCC cells

with TP53 mutations and high expression of CHEK2 in the
mitochondrial ATP pathway. Mitochondrial ATP plays a crucial role
in tumors [33]. As the primary supplier of cellular energy,
mitochondria generate the majority of ATP through oxidative
phosphorylation. Tumor cells have high-energy demand due to their
rapid proliferation, leading to an increase in mitochondrial numbers
and enhanced respiratory chain activity [34]. By supplying sufficient
ATP, mitochondria support tumor cell growth, division, and invasion.
However, when mitochondrial function is impaired in tumor cells,
ATP production decreases, resulting in metabolic disturbances and
the occurrence of phenomena such as mitochondrial membrane
depolarization, reduced activity of respiratory chain complexes, or
increased lactate production (known as the Warburg effect). For
example, Daglish et al. found that IMT1B directly inhibits
mitochondrial DNA transcription and drastically lowers ATP

Fig. 2 Knockout of CHEK2 selectively induces proliferation arrest, cell cycle blockade, and senescence in HCC cells with TP53 mutation.
A–C Single-gene GSEA of low and high CHEK2 groups in the TCGA, ICGC, and GAO et al. databases. D–G Colony, Edu, cell cycle and β-gal
staining of control, sgCHEK21# and sgCHEK22# groups in LM3, Huh7, and hepG2 cell lines (n= 3). H–K Western blot results of control,
sgCHEK21# and sgCHEK22# groups in LM3, Huh7, and hepG2 cell lines.
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synthesis in mitochondria by targeting human mitochondrial RNA
polymerase (POLRMT), which is overexpressed in many cancer cells
[35]. Furthermore, the downregulation of mitochondrial ATP is
involved in the regulation of programmed cell death, known as
apoptosis. Mitochondria release cytochrome c and other apoptotic
proteins, activating apoptotic pathways, suppressing tumor cell
survival, and exerting antitumor effects. For instance, Lv et al.
discovered that Ainsliadimer A binds to cysteine 173 of PRDX1 and
methionine 172 of PRDX2, thereby triggering the mitochondrial
apoptotic pathway and ultimately inhibiting colon cancer develop-
ment [36]. In addition, we found that in HCC cell lines, knocking out
CHEK2 can change the potential and permeability of the
mitochondrial membrane. Most solutes cannot pass freely through
the mitochondrial inner membrane because it is a lipid bilayer
structure with extremely selective permeability. The ATP concentra-
tion gradient between the cytoplasm and mitochondria is
maintained by particular transport proteins on the mitochondrial
inner membrane that control the exchange of ATP and ADP. One
such protein is the ADP/ATP translocase [37]. Therefore, we
speculate that knocking out CHEK2 in HCC cells may increase the

permeability of the mitochondrial inner membrane, leading to the
release of ATP from mitochondria into the cytoplasm. This process
may play a role in activating apoptotic pathways, such as the
important marker cytC [38].
In this study, we initially identified the drug target CHEK2 for

HCC through MR screening and found that CHEK2 knockout
selectively induces growth arrest in TP53-mutant cells. Addition-
ally, we observed that the combination of Nultin-3 and CHEK2
knockout is more likely to inhibit HCC through the mitochondrial
ATP pathway. However, there are limitations in this study. Firstly,
we haven’t fully understood how CHEK2 knockout affects Nultin-3
and ultimately triggers the mitochondrial apoptotic pathway. To
better understand their connection, further research is required.
Secondly, mitochondrial function has a dual nature, and some
studies suggest that impaired mitochondrial function can make
tumor cells more adaptable to hypoxic environments and
promote cell proliferation, metastasis, and drug resistance.
Although our study mainly focuses on mitochondrial ATP and
the apoptotic pathway to explain this phenomenon, the metabolic
environment disruption associated with HCC needs further

Fig. 3 Combining Nultin-3 further induces cell cycle arrest and inhibits growth in CHEK2-inhibited HCC cells with TP53 mutation.
A Expression of CHEK2 between the TP53 wild and mutation groups in the TCGA, ICGC, and GAO et al. databases. B Landscape of genomic
mutations and CNV data between the low CHEK2 and high CHEK2 groups in HCC. C–E KM analysis of high CHEK2/TP53 mutation, low CHEK2/
TP53 wild, and mixed groups in the TCGA, ICGC, and GAO et al. databases. F–I Colony, Edu, cell cycle and β-gal staining of control, Nultin-3,
and sgCHEK21#+Nultin-3 groups in LM3, Huh7 cell lines (n= 3). J, K Western blot results of control, sgCHEK21# and sgCHEK21#+Nultin-3
groups in LM3, Huh7 cell lines.
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exploration. Overall, our research introduced a putative target for
TP53-mutant HCC cells and overcomes the limitation of Nultin-3
alone, which fails to induce tumor cell death.

METHODS
Design and ethics of MR study
Figure 1 A illustrates the design of the MR study. The study utilized publicly
available data from a comprehensive genome-wide association study on
blood expression, which can be found at the page (https://eqtlgen.org/cis-
eqtls.html). Two datasets from HCC GWAS were incorporated into this
analysis. The UK Biobank dataset (ID: ieu-b-4953), encompassing 372,184
European samples and 6,304,034 SNPs, was obtained from the website
(https://gwas.mrcieu.ac.uk/datasets/ieu-b-4953/). Additionally, data from
Jiang et al. (ID: ICD10 C22.0) was acquired from the website (https://
www.ebi.ac.uk/gwas/efotraits/EFO_0000182), featuring 456,348 European
samples [39]. All included studies have received approval from their
respective ethical review committees.

MR analysis and potential drug targets selecting
We conducted a robust two-sample MR analysis using eQTL index SNPs to
examine the association between eQTL and HCC. To enhance the validity
of our findings, we employed Summary-data-based Mendelian Randomi-
zation (SMR) analysis, which is based on summary data, to identify
potential drug targets for HCC. The SMR test provided significance levels,
allowing us to assess the strength of associations [40]. Furthermore, we
utilized the Heterogeneity in Dependent Instrument (HEIDI) test, which
offers improved accuracy compared to other methods involving GWAS and
molecular eQTL data, to distinguish pleiotropic models from linkage
models. Associations with a P-value less than 0.05 in the HEIDI test were
considered likely to be influenced by pleiotropy and thus excluded from
further analysis. We performed the SMR analysis using the SMR software
tool (version 1.3.1). The procedure was according to Yang et al. reported
(https://yanglab.westlake.edu.cn/software/smr/#SMR&HEIDIanalysis).

Collection and processing of expression profiles and
clinical data
To detect the gene expression levels of six specific genes (CHEK2, GOLPH3,
PEX10, PLCH2, RP3-395M20.2, RP3-395M20.3) in both HCC and normal tissues,
we utilized various public datasets. These included the Cancer Genome Atlas
(TCGA), International Cancer Genome Consortium (ICGC), GAO et al cohorts
[41, 42], as well as 22 Gene Expression Omnibus database (GEO) datasets

(GSE5364, GSE6222, GSE6764, GSE14323, GSE14520, GSE19665, GSE25097,
GSE25599, GSE36376, GSE45436, GSE55092, GSE62232, GSE77314, GSE84402,
GSE89377, GSE64990, GSE101685, GSE101728, GSE102083, GSE112790,
GSE121248, GSE144269). For clinical data, we relied on the TCGA, ICGC, and
GAO et al. cohorts [43]. The data from the TCGA-LIHC database was
downloaded from the website (https://portal.gdc.cancer.gov). The data from
the ICGC-LIRI-JP database was obtained from the website (https://dcc.icgc.org/
). Meanwhile, the data from several GEO databases were downloaded from
the website (https://www.ncbi.nlm.nih.gov/geo/). Additionally, we extracted
detailed clinical information about the Gao et al. cohort (OEP000321) directly
from the supplementary files of the respective paper, while the expression
profiles were accessed from the website (https://ngdc.cncb.ac.cn/).

Patients and sample collection
This study obtained ethical approval from the Nanjing Drum Tower
Hospital Ethics Committee. The patients were divided into two cohorts.
Cohort 1 consisted of 20 HCC patients who underwent hepatectomy. For
each HCC patient, an HCC specimen, a matched normal specimen, and a
fresh plasma sample before surgery were collected and analyzed.
Furthermore, serum samples were obtained from 20 healthy individuals.
Further, these 20 samples were paraffin-embedded into slides.

Cell culture
LM3 (human HCC cell line), Huh7 (human HCC cell line), and HepG2
(human HCC cell line) were purchased from Genechem (Shanghai, China),
which were cultured in DMEM medium mixed with 10% FBS.

RNA extraction and qRT-PCR analysis
Total RNA was extracted from tissue and serum samples of 20 patients
using Trizol reagent (Ambion, Austin, TX, USA). Subsequently, cDNA
synthesis was performed using a first-strand cDNA synthesis kit (Vazyme,
China). Real-time PCR was conducted using SYBR-Green fluorescence-based
assays for signal detection (Vazyme) with complementary DNA. The
housekeeping gene GAPDH was used as a reference for data normalization.
The primer sequences used in the assay were as follows: For GAPDH, F:
TGCACCACAACTGCTTAGC, R: GGCATGGACTGTGGTCATGAG. For CHEK2, F:
TTGTCAAGAAGTTGTTGGTAGTGG, R: GTAGAGCTGTGGATTCATTTTCCT.

Single-gene for gene-set enrichment analysis (GSEA)
To analyze potential pathways related to CHEK2 expression, we utilized the
TCGA, ICGC, and GAO et al. datasets. GSEA was employed to generate an
ordered list of all genes based on their correlation with CHEK2 expression

Fig. 4 Knockout of CHEK2 triggers apoptosis in Nultin-3-treated HCC cells. A Apoptosis analysis of control and sgCHEK21# groups with 0,
10, 20 μM Nutlin-3 in LM3, Huh7 cell lines (n= 3). B Caspase-3 staining of control and sgCHEK21# groups with 0, 10, 20 μM Nutlin-3 in LM3,
Huh7 cell lines (n= 3). C Western blot results of control and sgCHEK21# groups with 0, 10, 20 μM Nutlin-3 in LM3, Huh7 cell lines.
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in each dataset [44]. The reference gene sets used for analysis included
KEGG, GO, Hallmarks, and Reactome [45–47]. We set the default threshold
as |normalized enrichment score (NES)| ≥1, taking into account both
nominal P-value and FDR q-value. The filter criteria for enrichment were set
as nominal P-value < 5% and FDR q-value < 25%. Subsequently, we
compared gene enrichment differences between the high-level CHEK2
group and the low-level CHEK2 group using GSEA Version 4.0.3 software.

Constructed sgRNAs and established stable cell lines
We obtained and constructed sgRNAs targeting CHEK2 from Transheep Bio
(Shanghai, China). To establish stable cell lines, HCCLM3(LM3), Huh7, and
hepG2 cells were transfected with external 1 µg/mL of puromycin
(ApexBio). Stable expression cell lines were successfully generated. Cloned
sgRNA sequences used are as follows: sgCHEK21#: AAGGGCCCATAATC
GAGCCC; sgCHEK22#: CTGCCCCCTGGGCTCGATTA.

Fig. 5 Combining Nultin-3 and knockout of CHEK2 exacerbates the loss of mitochondrial ATP in HCC. A ClusterProfiler results of high
CHEK2/TP53 mutation, low CHEK2/TP53 wild, and mixed groups in the TCGA, ICGC, and GAO et al. databases. B–E ATP level and NADH
+/NADH ratio of control, sgCHEK21# and sgCHEK21#+Nultin-3 groups in LM3, Huh7 cell lines. F Western blot results of control, sgCHEK21#

and sgCHEK21#+Nultin-3 groups in LM3, Huh7 cell lines. G–L transmission electron microscopy, JC1 and MitoSox level of control, sgCHEK21#

and sgCHEK21#+Nultin-3 groups in LM3, Huh7 cell lines (n= 3).
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Western blot procedure
The transfected cells were treated by the previously described method
[48]. Several primary antibodies were listed: CHEK2 (#3440 S, CST, USA),
β-actin (#81115-1-RR, Proteintech, China), H2A.X (#10856-1-AP,

Proteintech), BAX (#41162, CST), cytC (#12245-1-AP, Proteintech), MDM2
(#66511-1-Ig, Proteintech), CyclinD1 (#60186-1-Ig, Proteintech), P53
(#60283-2-Ig), Cleaved PARP (#5625 S, CST), BCL2 (#15071 S, CST), AMPK
(#5832, CST) and Phospho-AMPKα (Thr172, #50081, CST).

Fig. 6 Combining Nultin-3 and knockout of CHEK2 could influence several biological processes of HCC via mitochondrial ATP. A–D β-gal
staining, colony, Edu and cell cycle of control, sgCHEK21# + Nultin-3 and sgCHEK21# + Nultin-3 + Metformin groups in LM3, Huh7 cell lines
(n= 3). E–GWestern blot results and apoptosis assays of control, sgCHEK21# + Nultin-3 and sgCHEK21#+Nultin-3+Metformin groups in LM3,
Huh7 cell lines. H–Q ATP level, NADH+/NADH ratio, transmission electron microscopy, JC1 and MitoSox level of control, sgCHEK21#+Nultin-3
and sgCHEK21# + Nultin-3 + Metformin groups in LM3, Huh7 cell lines (n= 3).
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Immunohistochemistry (IHC)
IHC was performed according to the previous protocol [49]. Paraffin-
embedded slides were incubated with the antibodies mentioned above.
For the detection of the primary antibody, an avidin-biotin-peroxidase
complex was employed. Anti-digoxigenin-HRP (anti-DIG HRP) antibodies
and DAB were employed for the detection process. The staining intensity
was assessed manually by two experienced pathologists, who scored the
presence of brown-stained lymphocytes as positively stained cells. The IHC
scores were calculated based on the average proportion of positively
stained cells observed in five random fields.

Colony formation assay
Transfected cells were seeded in culture dishes and incubated for 24 h.
Subsequently, after removing the culture media, cells were grown in 4ml
of DMEM supplemented with 5% FBS until visible cell colonies formed.
Colony counting was performed after staining with crystal violet using a
light microscope.

Edu assay
An Edu labeling assay was conducted using the Edu Kit (#C0075S,
Beyotime, China) following the manufacturer’s protocol. After incubation,
the cells were stained with DAPI for 10min. Edu-positive cells were then
captured using a suitable imaging technique.

Cell cycle analysis
After being fixed by spending the night at –20 °C in 70% ethanol, the
cells underwent three cold PBS washes. Following the manufacturer’s

recommendations, the samples were then stained with PI/RNase
Staining Buffer (BD Pharmingen, Franklin Lakes, NJ, USA) for 15 min at
room temperature. A BD FACSCanto II Flow Cytometer was used to
evaluate the labeled cells. Software called ModFit LT 3.1 was used for
data analysis.

SA-β-gal staining
Following the manufacturer’s instructions, cells were stained for the
presence of SA-galactosidase using the Senescen-galactosidase Staining
Kit (#C0602, Beyotime). Cells were briefly rinsed in PBS and then fixed for
15min in the fixative solution. They were then treated with the staining
solution for an overnight period at 37 °C without CO2. Finally, using an
inverted microscope, green-stained positive cells were viewed and
counted from three distinct positions within each well.

Apoptosis assessment
The collected and washed transfected cells were incubated sequentially
with Annexin-V-FITC (BD, USA; 10 μL, 15 min) and propidium iodide (PI;
5 μL, 5 min protected from light). Subsequently, flow cytometry was used
for analysis.

The mutational landscape in the low and high CHEK2 groups
The GISTIC2 module on the website (https://clue.io/) was utilized to obtain
copy number variation data from the TCGA-LIHC database. The mutational
landscape was then analyzed using R packages “MOVICS” and “maftools“
[50, 51].

Fig. 7 Inhibition of CHEK2 suppresses HCC proliferation in vivo. A Construction of CDTX model for HCC between the control, sgCHEK21#

and sgCHEK21#+Nultin-3 groups (n= 5). B IHC results of CDTX model for HCC between the control, sgCHEK21# and sgCHEK21#+Nultin-3
groups (n= 5). C IHC results of TP53 mutation and TP53 wild HCC slices.
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MitoSOX detection
HCC cells were labeled with MitoSOX (M36005, Invitrogen, USA) to
examine mitochondrial production of reactive oxygen species (ROS).
Briefly, 1 × 105 cells were suspended in 100 μL of pre-warmed HBSS. Then,
100 μL of MitoSOX (20 μM) diluted in pre-warmed HBSS was added to each
well. At 37 °C, the cells were incubated for 20min. The stained cells were
examined using a BD FACSCanto II Flow Cytometer following incubation.

Detection of ATP and NAD/NAD+ ratio
For analysis of mitochondrial function, HCC cells were seeded in a 24-well
plate and treated with an ATP assay kit (#S0026, Beyotime) and NADH+/
NADH ratio assay kit (#S0175, Beyotime). Following the instructions
provided, the samples were subsequently analyzed using a microplate
reader.

Electron microscopy
HCC cells that had been transfected were fixed for 2 h in a post-fixative
solution made of 0.1 M sodium cacodylate buffer, 0.8% potassium
ferrocyanide, and 2% osmium tetroxide. The samples were dehydrated
in several acetone baths before being implanted in Embed 812 resin. After
that, uranyl acetate and lead citrate were used to cut and post-stain
ultrathin slices. Using a JEOL 1200EX transmission electron microscope,
images and observations of the samples were taken at random.

Cell-derived tumor xenograft (CDTX) for HCC
We initially established a xenograft HCC model in male nude mice. Every
5 × 106 LM3/control, LM3/shCHEK21#, LM3/shCHEK21#+ Nultin-3 cells were
inoculated into the right axillary subcutaneous area. The nude mice were
euthanized after 4 weeks, and the tumors from each group were taken out.
Then, using a cannula needle, the tumors were implanted into the livers of
8-week-old mice, who were then uniformly put to death after 2 weeks. All
mice were randomly assigned to the experiments.

Statistical analysis
All the statistical data analyses were carried out and generated via R
software 4.1.3, all the plots were produced from R package “ggplot2”. All
experiment’s quantitative data were given as mean SD. Student’s t-test or
Wilcoxon test was used for data evaluation. Statistical significance was
exhibited as follows: ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001,
****p < 0.0001.

DATA AVAILABILITY
The results of this study are supported by the data available at the IEU database
(https://gwas.mrcieu.ac.uk/datasets/ieu-b-4953/), eQTLgen database (https://
eqtlgen.org/cis-eqtls.html), GWAS catalog (https://www.ebi.ac.uk/gwas/efotraits/
EFO_0000182), TCGA (https://portal.gdc.cancer.gov), ICGC (https://dcc.icgc.org/),
and GEO (https://www.ncbi.nlm.nih.gov/geo/).
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