Table 1 Properties of different nanomaterials in cancer therapy.

From: Nanomedicine-induced programmed cell death in cancer therapy: mechanisms and perspectives

Nanodrugs

Nanomaterials

Cancer cells

Function

Active/passive

TP-PMs [115]

Polymeric micelles

HT29

Induce apoptosis

Passive

TP/Ce6-LP + L [116]

Liposomes

HCC cells

Inhibit HCC progression

Passive

Apt-NPs-DTX [117]

Polymeric nanoparticle

CT26

Enhanced CT26 killing CC cells

Passive

C16-N/T hydrogel [118]

Nanogels

HCC cells

Restrain tumor proliferation

Passive

TPL@nano-gel [114]

Nanogels

MCF-7and MDA-MB-231

Inhibit antiangiogenic capacity

Passive

TP/Curc-NPs [119]

Polymeric nanoparticles

SKOV-3

Reduce triptolide-induced toxicity

Passive

PTX/TP-LPN [36]

Polymeric nanoparticles

NSCLC cells

Synergistic effect on lung cancer xenografts

Passive

TPL/NPs [120]

Polymeric nanoparticles

MCF-7and MDA-MB-231

Induce apoptosis/ Inhibit the expression of matrix metalloproteinases

Active

GC-TP-NPs [38]

Polymeric nanoparticles

HCC cells

Block TNF/NF-κB/BCL2 signaling

Active

Au-Dox [121]

Metallic nanoparticle

Cancer cells

Reduce cancer vitality

Passive

177Lu-BN-PLGA (PTX) [122]

Polymeric nanoparticles

MDA-MB-231

Facilitate paclitaxel delivery system

Passive

DOXs@BSA NPs [27]

Polymeric nanoparticles

Cancer cells

Improve serum stability

Passive

FEM@PFC [123]

Polymeric nanoparticles

Cancer cells

Immunosuppression and redox balance in TME

Passive

PPy-Te NPs [37]

Polymeric nanoparticles

Cancer cells

Improve biocompatibility

Passive

AuNRs@SiO2-RB@MnO2 [34]

Msetallic nanoparticles

Cancer cells

Improve the accuracy of tumor imaging

Passive