
ARTICLE OPEN

SREBF1-based metabolic reprogramming in prostate cancer
promotes tumor ferroptosis resistance
Guojiang Wei 1,2,3,5, Ying Huang1,2,5, Wenya Li1,2,5, Yuxin Xie1,2,3, Deyi Zhang1,2,3, Yuanjie Niu 1,2,3,4✉ and Yang Zhao 1,2,3✉

© The Author(s) 2025

Metabolic reprogramming in prostate cancer has been widely recognized as a promoter of tumor progression and treatment
resistance. This study investigated its association with ferroptosis resistance in prostate cancer and explored its therapeutic
potential. In this study, we identified differences in the epithelial characteristics between normal prostate tissue and tissues of
various types of prostate cancer using single-cell sequencing. Through transcription factor regulatory network analysis, we focused
on the candidate transcription factor, SREBF1. We identified the differences in SREBF1 transcriptional activity and its association
with ferroptosis, and further verified this association using hdWGCNA. We constructed a risk score based on SREBF1 target genes
associated with the biochemical recurrence of prostate cancer by combining bulk RNA analysis. Finally, we verified the effects of the
SREBPs inhibitor Betulin on the treatment of prostate cancer and its chemosensitization effect. We observed characteristic
differences in fatty acid and cholesterol metabolism between normal prostate tissue and prostate cancer tissue, identifying high
transcriptional activity of SREBF1 in prostate cancer tissue. This indicates that SREBF1 is crucial for the metabolic reprogramming of
prostate cancer, and that its mediated metabolic changes promoted ferroptosis resistance in prostate cancer in multiple ways.
SREBF1 target genes are associated with biochemical recurrence of prostate cancer. Finally, our experiments verified that SREBF1
inhibitors can significantly promote an increase in ROS, the decrease in GSH, and the decrease in mitochondrial membrane
potential in prostate cancer cells and confirmed their chemosensitization effect in vivo. Our findings highlighted a close association
between SREBF1 and ferroptosis resistance in prostate cancer. SREBF1 significantly influences metabolic reprogramming in prostate
cancer cells, leading to ferroptosis resistance. Importantly, our results demonstrated that SREBF1 inhibitors can significantly
enhance the therapeutic effect and chemosensitization of prostate cancer, suggesting a promising therapeutic potential for the
treatment of prostate cancer.
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INTRODUCTION
Prostate cancer is the most prevalent malignant tumor among
men in Europe and the United States, ranking as the second
leading cause of male cancer-related deaths [1]. This disease is
highly heterogeneous, with its progression linked to multiple
gene deletions or mutations, including FOXA1, ZNF292, CHD1,
PTEN, and TP53 [2, 3]. Prostate growth and development are
dependent on androgens, and androgen deprivation therapy
(ADT) remains the cornerstone of current prostate cancer
treatment [4]. However, due to the complex heterogeneity of
prostate cancer, the therapeutic efficacy of ADT can vary
significantly, thereby affecting patient prognosis. Furthermore,
nearly all patients eventually develop resistance to castration
therapy after a certain treatment period [5]. The mechanisms
underlying castration resistance are extremely complex and
ultimately result in the failure of treatments targeting the
androgen receptor (AR) signaling pathway. Therefore, there is
an urgent need to identify novel therapeutic targets for prostate
cancer.

Metabolic reprogramming is a distinct characteristic of prostate
cancer. Normal prostate tissue exhibits unique metabolic features,
notably the secretion of large amounts of citric acid, a semen
component that is abundantly synthesized in prostate cells [6, 7].
Citric acid serves as a crucial hub linking cell metabolism,
particularly by mediating lipid metabolism through the amphi-
bolic pathway. Consequently, the substantial secretion of citric
acid from normal prostate tissues can be utilized to synthesize
fatty acids and cholesterol during cancer development [8]. On one
hand, the metabolic shift in prostate cancer enables cancer cells to
adapt to their energy requirements, while simultaneously, the
utilization of cholesterol for the synthesis of endogenous steroid
hormones promotes the proliferation of prostate cancer cells [9].
Consequently, exploring the metabolic vulnerabilities in prostate
cancer may provide a direction for novel treatment strategies.
Ferroptosis is a unique form of iron-dependent cell death

characterized by the accumulation of excessive lipid peroxidation
in the cell membrane [10]. Resistance to ferroptosis not only
facilitates tumor development but also contributes to tumor

Received: 4 November 2024 Revised: 27 January 2025 Accepted: 12 February 2025

1Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China. 2Tianjin Institute of Urology, The Second Hospital of Tianjin
Medical University, Tianjin, People’s Republic of China. 3Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China.
4Department of Urology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China. 5These authors contributed equally: Guojiang Wei, Ying Huang, Wenya Li.
✉email: niuyuanjie@tmu.edu.cn; yang.zhao@tmu.edu.cn

www.nature.com/cddiscovery

Official journal of CDDpress

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41420-025-02354-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41420-025-02354-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41420-025-02354-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41420-025-02354-7&domain=pdf
http://orcid.org/0009-0003-8766-0174
http://orcid.org/0009-0003-8766-0174
http://orcid.org/0009-0003-8766-0174
http://orcid.org/0009-0003-8766-0174
http://orcid.org/0009-0003-8766-0174
http://orcid.org/0009-0001-8271-9021
http://orcid.org/0009-0001-8271-9021
http://orcid.org/0009-0001-8271-9021
http://orcid.org/0009-0001-8271-9021
http://orcid.org/0009-0001-8271-9021
http://orcid.org/0000-0003-4656-172X
http://orcid.org/0000-0003-4656-172X
http://orcid.org/0000-0003-4656-172X
http://orcid.org/0000-0003-4656-172X
http://orcid.org/0000-0003-4656-172X
https://doi.org/10.1038/s41420-025-02354-7
mailto:niuyuanjie@tmu.edu.cn
mailto:yang.zhao@tmu.edu.cn
www.nature.com/cddiscovery


resistance to treatment [11]. Multiple mechanisms are involved in
ferroptosis resistance in prostate cancer. Liang et al. first reported
that AR induce ferroptosis resistance in prostate cancer by
regulating the activity of MBOAT2 [12]. Yi et al. demonstrated
that SREBPs activation mediated by the PI3K-AKT-mTOR pathway
can promote ferroptosis resistance in prostate cancer [13].
However, the relationship between SREBPs-mediated metabolic
reprogramming and ferroptosis resistance in prostate cancer
remains unclear.
We confirmed the association between SREBF1-mediated

metabolic reprogramming in prostate cancer and ferroptosis in
human samples, using a combination of single-cell sequencing
and Bulk-RNA analysis. Additionally, we validated SREBF1 as a
potential therapeutic vulnerability and an effective target for
prostate cancer by employing SREBF1 inhibitors.

RESULTS
Overview of single-cell sequencing characteristics of normal
prostate tissue and different types of prostate cancers
Our study included normal prostate tissue cells, prostate cancer
cells from radical prostatectomy (RP) samples representing
primary cancer, and prostate cancer cells from castration-
resistant prostate cancer (CRPC) samples. Following quality control
(QC), a total of 51,092 cells were included in the study.
Subsequently, all cells were divided into 33 clusters by setting
the resolution to 0.6. These clusters were annotated based on
characteristic gene expression differences, identifying T cells, B
cells, Macrophages, Endothelial cells, Fibroblasts, Mast cells,
Monocytes, and Epithelial cells (Fig. 1A). It is noteworthy that
regardless of the sample origin, epithelial cells constituted the
predominant cell type, accounting for 32.54%, 37.56%, and
59.37% of normal, primary cancer, and CRPC samples, respectively.
Interestingly, in CRPC-derived samples, the proportion of T cells
significantly decreased, accounting for only 10.39% of all cells,
compared to 29.55% and 37.22% in normal and primary cancer
samples, respectively (Fig. 1B, C). Differential gene expression
analysis identified several highly expressed genes in epithelial
cells, including KLK3, PRAC1, and TSPAN1. KLK3, which encodes
the prostate-specific antigen (PSA), is specifically expressed in
prostate tissues, and is widely used in prostate cancer screening.
Prostate Cancer Susceptibility Candidate Protein 1(PRAC1) is
highly expressed in the prostate [14]. TSPAN1 is upregulated in
various cancers and is regulated by androgens, promoting the
proliferation and migration of prostate cancer [15] (Fig. 1D).
Furthermore, we identified characteristic differences between
different clusters through Gene Set Variation Analysis (GSVA) of
the average expression levels. Epithelial cells exhibited higher
activity in pathways, such as the PI3K-AKT pathway, P53 pathway,
MYC, androgen response, glycolysis, fatty acid metabolism, and
bile acid metabolism. T cells showed high activity in the interferon,
IL-2, and IL-6 signaling pathways, whereas fibroblasts exhibited
uniquely high activity in the epithelial-mesenchymal transition
pathway (Fig. 1E).

Characteristics of different types of epithelial cells
Given the lipid-related metabolic signatures observed in epithelial
cells, we further analyzed the epithelial cells (Fig. 2B). Citrate, as a
hub linking glycolysis and lipid metabolism, including fatty acid
and cholesterol synthesis, plays an important role in prostate
cancer (Fig. 2A). Through gene differential analysis, we identified
significant gene expression differences in epithelial cells from
normal, primary cancer, and CRPC samples. In the primary cancer
samples, the expression of PCA3, ERG, NPY, and AMACR was
significantly upregulated, making them the characteristic genes
with the largest expression differences. PCA3, a long non-coding
RNA (lncRNA), is highly expressed specifically in prostate cancer
and has been used for urine detection of prostate cancer [16]. The

ERG gene serves as a prostate cancer marker, and the ERG-TMPRSS
gene fusion is one of the most common gene rearrangements in
prostate cancer [17]. AMACR holds significant value in the
pathological diagnosis of prostate cancer, serving as a character-
istic marker, and its expression is closely related to the fatty acid
metabolism in prostate cancer [18]. ATP-related genes were
significantly upregulated in the CRPC cells (Fig. 2C). Subsequently,
we observed significant differences in the characteristics of the
epithelial cells derived from these three sources using GSVA. In
normal samples, some inflammation-related pathways showed
higher activity, whereas epithelial cells derived from primary
cancer samples mainly exhibited higher activity in androgen
response, fatty acid metabolism, cholesterol metabolism, and
other pathways. Epithelial cells derived from the CRPC samples
were primarily concentrated in the E2F, MYC, and DNA repair
pathways. Epithelial cells derived from primary cancer and CRPC
samples showed higher activity in the glycolysis and MTORC1
pathways (Fig. 2D). Overexpression of ACLY, a key gene in the flow
of citric acid to lipid metabolism, was observed in epithelial cells
derived from tumor samples. The average expression levels in
primary cancer samples were 0.6657, while in CRPC samples, it
was 0.3280, and in normal samples, it was only 0.1954. FASN, a key
gene in mediating fatty acid metabolism, also exhibited high
expression levels in primary cancer samples and CRPC samples,
with values of 0.6295 and 0.6141, respectively, compared to
0.1640 in normal samples. SCD, which mediates the formation of
monounsaturated fatty acids (MUFA) and is related to ferroptosis
resistance, showed expression levels of 0.7122, 0.2897, and 0.1811
in primary cancer, CRPC, and normal samples, respectively (Fig.
2E).

Transcription factor regulatory network of prostate
epithelial cells
We analyzed the transcription factor activity in epithelial cells
using SCENIC, resulting in the identification of 219 transcription
factors. Among these, 30 transcription factors exhibited a higher
activity based on an RSS value greater than 0.2 and a Z value
greater than 1.4. These included SREBF1, SREBF2, and FOXA1
(Table S1). The average area under the curve (AUC) of the regulons
in each group was calculated. The activities of SREBF1 and FOXA1
were higher in the primary cancer samples, while the activities of
FOXC1 and TP73 were higher in normal samples, and the activities
of transcription factors such as FOXA3 were higher in the CRPC
samples (Fig. 3A). The RSS values of SREBF1 were higher in primary
cancer and CRPC samples, with values of 0.32 and 0.40,
respectively, while the value was only 0.21 in the Normal sample
(Fig. 3B). We visualized the target genes of SREBF1, including
HMGCS1, DHCR7, SC5D, SCD1, ACLY, FASN, and LDLR. (Fig. 3C and
Table S2). Furthermore, the transcriptional activity of SREBF1 was
higher in primary cancer samples (Fig. 3D, E).

Characteristic differences based on SREBF1 transcriptional
activity grouping
We divided all cells into SREBF1-positive and SREBF1-negative
groups based on the binary regulon AUC matrix in SCENIC, and
analyzed the differences between the two groups (Fig. 4A).
Notably, “positive” and “negative” mentioned above do not
represent the presence or absence of SREBF1 activity, but only
the classification of the binary results of regulon AUC, represent-
ing the level of SREBF1 activity in cells. We conducted GSVA on the
two groups and found significant differences in the pathways
related to cholesterol and fatty acid metabolism. Among them, the
“Cholesterol Metabolism with Bloch and Kandutsch-Russell Path-
ways” showed the most obvious enrichment difference (t Value:
60.78), while in fatty acid metabolism, “Omega9 Fatty Acid
Synthesis” ranked second (t Value: 55.68). Both the Bloch and
Kandutsch-Russell pathways are involved in cholesterol synthesis.
Omega 9 Fatty Acid (MUFA) Synthesis is associated with anti-
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Fig. 1 Overview of single-cell RNA sequencing characteristics of prostate cancer. A tSNE plot showing cell clusters after dimensionality
reduction and cell type annotation following quality control. B tSNE plot displaying facet diagrams from Normal, Primary cancer, and CRPC
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Fig. 2 Characteristic differences in epithelial cells of prostate tissue and different types of prostate cancer. A Schematic diagram of
intracellular energy metabolism, with highlighted products and enzymes. B tSNE plot of epithelial cells, colored by sample types: Normal,
Primary cancer, and CRPC. C Differential gene analysis in epithelial cells from Normal, Primary cancer, and CRPC samples, showing genes with
the largest average log fold change (LogFC). D Heatmap displaying the average gene set variation analysis (GSVA) scores in epithelial cells
from Normal, Primary cancer, and CRPC samples. The gene set used is Hallmark from MSigDB. E Violin plot showing the expression levels of
ACLY, FASN, and SCD genes in epithelial cells from Normal, Primary cancer, and CRPC samples.
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ferroptosis and is mainly regulated by SCD. Other pathways, such
as the “Mevalonate Arm of Cholesterol Biosynthesis Pathway”
(t value: 30.43) and “Mevalonate Pathway” (t Value: 27.68), also
showed significant differences. Cholesterol can synthesize endo-
genous androgens to promote prostate cancer cell proliferation,
and high activity of the Mevalonate (MVA) pathway is associated
with resistance to ferroptosis (Fig. 4B, D). We compared
differences in the expression of some SREBF1 targeted genes
related to ferroptosis between the two groups. SCD, FASN, and
ACLY were significantly upregulated in SREBF1-positive cells, while
cholesterol-related LDLR and DHCR7 were also significantly up-
regulated in SREBF1-positive cells. Additionally, we observed the
up-regulation of AR and MBOAT2, which are involved in the anti-
ferroptosis mechanism of MBOAT2, in SREBF1-positive cells (Fig.
4C).
Furthermore, we focused on the gene expression differences in

the cholesterol synthesis pathway, from acetyl-CoA to cholesterol
(Fig. 4E). Almost all genes were highly expressed in the SREBF1-
positive group, with a higher expression ratio. Only PMVK and
FDPS showed higher average expression levels in the SREBF1-
negative cells, but their expression percentages were lower. This
indicated that the cholesterol synthesis pathway was highly
activated in the SREBF1-positive group, with an average expres-
sion percentage of genes in 7-dehydrocholesterol (7-DHC)
synthesis, including EBP (81.05%), SC5D (95.72%), and MSMO1
(73.30%), which was significantly higher than that of DHCR7
(54.94%) (Fig. 4F).

Single-cell sequencing hdWGCNA identifies modules
associated with SREBF1 and their characteristics
We performed hdWGCNA analysis of epithelial cell subsets. First,
the topological overlap matrix (TOM) was calculated by selecting
an optimal soft power of 10 (Figs. 5A and S1A). The eigenvalues
between each module were then calculated for correlation
analyses between modules (Fig. 5B) and between modules and
traits. Highly connected genes within each module were
determined by calculating the eigengene-based connectivity,
kME (Fig. 5E). We performed a correlation analysis between the
modules and single-cell sequencing data features. Single-cell data
features were the activity scores (AUCell scores) of the transcrip-
tion factors identified by SCENIC in each cell (Fig. 5C). Among
them, the module with the strongest correlation with SREBF1
activity was epithelial cells-M1, with correlation coefficients of
0.91, 0.84, and 0.39 in the Normal, Primary cancer, and CRPC
groups, respectively (Figs. 5C and S1B, C, D). The hub genes of
Epithelial cells-M1 are shown in Fig. 5D. KEGG pathway enrich-
ment analysis of the hub genes in Epithelial cells-M1 showed
significant enrichment in ferroptosis and fatty acid metabolism-
related pathways (Fig. 5F).

Construction of a biochemical recurrence risk score for
prostate cancer based on SREBF1 target genes combined with
bulk RNA seq analysis
We performed a correlation analysis between all genes in the
TCGA prostate cancer samples and SREBF1, and the results are
shown in Fig. 6A. Among these, SCD1 showed the strongest
correlation with SREBF1, with a correlation coefficient of 0.77. SCD-
mediated MUFA synthesis is associated with anti-ferroptosis.
Additionally, some genes directly related to cholesterol synthesis
also have a high correlation, such as IDI1, LSS, and DHCR24.
SREBF2 and SREBF1, both parts of the SREBPs family related to
cholesterol metabolism, are often discussed together. ACAT2,
HMGCS1, and HMGCR, key genes related to the MVK pathway in
cholesterol synthesis, were highly correlated with SREBF1 (Fig. 6A
and Table S3). Additionally, we used GSVA to analyze the activity
of related gene sets in prostate cancer samples. Prostate cancer
samples were divided into two groups based on the expression
level of SREBF1. The GSVA score results showed that in the SREBF1

high expression group, the omega-9 fatty acid and the cholesterol
synthesis pathways had higher activity (Fig. 6B).
Subsequently, we used the SREBF1 target gene to construct a

risk score for the biochemical recurrence (BCR) of prostate cancer.
First, a total of 48 genes associated with the biochemical
recurrence of prostate cancer were screened using univariate
Cox regression (Fig. 6C). Sixteen target genes associated with
biochemical recurrence of prostate cancer were further screened
out by Lasso regression, including MAN1C1, CTBS, LAMC1, DEGS1,
TRNT1, DHX30, FSTL1, EIF4G1, FAM50B, GRB10, SPTBN2, NADSYN1,
SYTL2, NAGLU, SERPINB5, and PRDM15 (Fig. 6D, E). In the
univariate Cox analysis of these 16 genes associated with
biochemical recurrence of prostate cancer, only three genes had
a risk-reducing effect (Fig. S2). Subsequently, a multivariate Cox
regression analysis based on these 16 genes was used to construct
a risk score (Fig. 6F). The KM survival curve showed that the high-
risk and low-risk groups, based on the median risk score of the
TCGA cohort (0.9230274), had significant differences in BCR
survival analysis, with the high-risk group having a higher risk of
biochemical recurrence (Fig. 6H). We also validated the model
using an external cohort (GSE116918), which showed that the
high-risk group had a higher risk of biochemical recurrence (Fig.
6G, I). The ROC curve demonstrated the model efficiency of the
risk score grouping based on TCGA cohort associated with BCR
risk, with AUC values of 0.7843, 0.8153, and 0.8643 at one year,
three years, and five years, respectively (Fig. 6J). We included
clinical indicators, such as age, Gleason grouping (≤7 points for
Gleason low-risk group), and pathological T stage, to compare
their relationship with BCR risk with the risk grouping we
constructed in multivariate Cox analysis. The T3 stage in
pathological T stage was associated with increased BCR risk
(HR= 3.65, P= 0.0186), and the high-risk group of the risk score
was also associated with increased BCR risk (HR= 3.59, P= 0.0033)
(Fig. 6K). Based on these features, a nomogram was constructed
(Fig. 6L).

The SREBF1 inhibitor Betulin significantly promotes
ferroptosis in prostate cancer
Considering the regulation of metabolic reprogramming in
prostate cancer by SREBF1 and its relationship with ferroptosis,
we investigated the effect of the SREBF1 inhibitor Betulin on
promoting ferroptosis in prostate cancer. RSL3, an inhibitor of the
classical ferroptosis-resistant pathway, was used as a positive
control to promote ferroptosis. Our experiments involved the
androgen-sensitive prostate cancer cell line LNCaP and the
castration-resistant prostate cancer cell line PC3.
We verified the expression of SREBF1 target genes and

ferroptosis-related genes in drug-treated cell lines using quanti-
tative real-time polymerase chain reaction (qRT-PCR). In the LNCaP
cell line, the expression of target genes such as SCD1, DHCR7,
MSMO1, CYP51A1, and EBP decreased significantly, and GPX4
decreased to a certain extent (Fig. 7A). However, in the PC3 cell
line, ferroptosis-related genes such as SCD5, GPX4, and SLC7A11
were not affected much in the Betulin group (Fig. 7B). Next, we
detected intracellular reactive oxygen species (ROS) to determine
the degree of ferroptosis in prostate cancer cells after Betulin
treatment. Fluorescence microscopy revealed a significant
increase in ROS levels in both LNCaP and PC3 cells following
Betulin treatment (Fig. 7C, D). The results of intracellular ROS
detection using flow cytometry were consistent. In LNCaP cells,
the Mean Fluorescence Intensity (MFI) of ROS detection in the
Betulin group was significantly increased (126), compared with 89
in the RSL3 group and 64.73 in the control group (Fig. 7E).
Similarly, in the PC3 cell line, the average MFI of ROS detection in
the Betulin and RSL3 group were 85.07 and 67, respectively, which
were significantly higher than the 30.87 in the control group (Fig.
7F). Intracellular glutathione (GSH) levels were measured to
observe intracellular oxidative stress. In LNCaP cells, GSH
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Fig. 5 The relationship between SREBF1 and ferroptosis revealed by hdWGCNA. A Dendrogram of hdWGCNA in prostate cancer epithelial
cells. B Correlation diagram between modules identified by hdWGCNA. C Correlation analysis between the modules identified by hdWGCNA
and the transcription factor activities identified by SCENIC. D Top 40 hub genes of Epithelial cells-M1 module. E Hubgenes of all modules
identified by hdWGCNA, ranked by kME. F KEGG pathway enrichment analysis of hub genes in the Epithelial cells-M1 module.
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decreased significantly in the Betulin group and RSL3 group, with
levels of 13.94 μg/106 cells and 11.82 μg/106 cells, respectively,
compared to 19.33 μg/106 cells in the control group. Similarly, in
PC3 cells, GSH also decreased in the Betulin group and RSL3

group, with levels of 16.16 μg/106 cells and 12.73 μg/106 cells,
respectively, compared to 17.28 μg/106 cells in the control group
(Fig. 7G). Finally, we examined whether castration and Betulin
treatment had a synergistic effect on hormone-sensitive prostate
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cancer cell lines. We observed that the Q value was greater than 1
at Betulin concentrations ranging from 0.625 μg/mL to 40 μg/mL,
indicating a synergistic effect between the two treatments. The Q
value was highest around 10 μg/mL, indicating the most
significant synergistic effect (Fig. 7H).

Betulin decreased mitochondrial membrane potential in
prostate cancer cells and exhibited synergistic therapeutic
effects with docetaxel
Previous research has shown that the SREBF1 inhibitor Betulin can
significantly increase ROS levels and decrease GSH levels in
prostate cancer cells. Detection of mRNA levels revealed a
decrease in the expression of genes closely related to lipid
metabolism and ferroptosis resistance, including SCD1, DHCR7,
and MSMO1. Since ferroptosis is closely related to the intracellular
ferrous ion content, we examined whether Betulin affects
intracellular ferrous ion levels using intracellular ferrous ion
staining. The results indicated that the intracellular ferrous ion
content did not change significantly in either the PC3 or LNCaP
cell lines (Fig. 8A, B), suggesting that Betulin-mediated ferroptosis
is not related to cellular ferrous ion content. Subsequently, we
observed changes in the mitochondrial membrane potential,
which decreased in both PC3 and LNCaP prostate cancer cell lines
(Fig. 8C, D). Currently, ADT is the primary treatment for prostate
cancer; however, almost all patients develop castration resistance
after a period of treatment, making chemotherapy drugs crucial
for advanced prostate cancer. Finally, we investigated the
potential synergistic effects of Betulin and docetaxel, which are
chemotherapeutic drugs commonly used in advanced prostate
cancer. Different concentrations of Betulin and docetaxel were
combined to treat PC3 cell lines (Fig. 8E). Synergy analysis
revealed a synergistic therapeutic effect, with a ZIP synergy score
of 5.54 (Fig. 8F, G).

Verification of Betulin’s therapeutic effect and its
chemosensitizing effect on docetaxel in vivo
We constructed a PC3 prostate cancer subcutaneous xenograft
tumor model and used Betulin, docetaxel alone, or a combination
of Betulin and docetaxel to observe their therapeutic effects (Fig.
9A). Betulin and docetaxel moderately inhibited tumor growth
when used alone, whereas the tumor growth inhibitory effect was
more pronounced when used in combination
(Fig. 9B, D, E). No significant effect was noted on the body weight
of the mice, whether they were used alone or in combination (Fig.
9C). The analysis of variance results of the factorial design showed
that Betulin treatment (F= 24.800, P < 0.001, partial eta squared =
0.608) and docetaxel treatment (F= 55.272, P < 0.001, partial eta
squared = 0.776) had significant main effects. Notably, the
interaction effect of Betulin and docetaxel treatment was
significant (F= 6.922, P= 0.018, eta squared = 0.302) (Fig. 9F).
Oil Red O staining showed that Betulin treatment significantly
reduced the level of tissue lipid droplets (Fig. 9G, H), and Ki-67
staining indicated that Betulin and docetaxel treatment alone
inhibited tumor proliferation, with the combination of Betulin and
docetaxel showing a stronger inhibitory effect (Fig. 9I, J).

DISCUSSION
Metabolic reprogramming is a hallmark of cancer that encom-
passes alterations in glucose, lipid, and amino acid metabolism
[19]. Cancer cells adapt their energy metabolism to fulfill their high
energy demands, often altering their metabolic pathways to suit
their needs. Warburg first discovered that cancer cells prefer
glycolysis for their energy supply, a phenomenon known as the
“Warburg effect” [20]. Despite being less efficient in ATP
production, glycolysis offers several advantages to tumor cells,
marking the earliest chapter in the understanding of tumor
metabolic changes.
Metabolic reprogramming in cancer affects various biological

behaviors of cancer cells, promoting proliferation, metastasis, and
drug resistance. The reprogramming of lipid metabolism is
particularly important in cancers [21, 22]. Lipids, including fatty
acids and cholesterol, play critical roles in energy storage,
metabolism, and various biological functions within cells, such
as serving as the main components of cell membranes and acting
as signaling molecules [23]. In prostate cancer, the unique
metabolic features of high zinc concentrations and citrate
accumulation and production further emphasize the importance
of lipid metabolism reprogramming. However, the vulnerability of
prostate cancer to metabolic changes presents new therapeutic
opportunities and directions for cancer treatment.
Ferroptosis is an iron-dependent form of cell death character-

ized by lipid peroxidation and is closely linked to lipid metabolism
[24]. Resistance to ferroptosis is a common feature of tumor cells.
Elevated levels of ROS associated with ferroptosis resistance can
induce genetic mutations and enhance the malignancy of tumor
cells. Additionally, tumor cells can significantly bolster their
defence against oxidative stress through ferroptosis resistance,
enabling their survival and resistance to drug treatments [25].
In this study, we investigated the relationship between

metabolic reprogramming and ferroptosis in prostate cancer
regulated by SREBF1. First, we analyzed the characteristics of
different cell types in prostate cancer samples using single-cell
sequencing and identified high levels of activation of pathways
such as the PI3K-AKT pathway, P53 pathway, MYC pathways,
androgen response, glycolysis, fatty acid metabolism, and bile acid
metabolism in prostate cancer epithelial cells. Of particular interest
were lipid-related metabolic pathways such as androgen
response, glycolysis, fatty acid metabolism, and bile acid
metabolism. Next, we observed characteristic differences in
epithelial cells among Normal, Primary cancer, and CRPC samples
and found that epithelial cells derived from primary cancer
samples mainly exhibited higher activity in the androgen
response, fatty acid metabolism, cholesterol metabolism, and
other pathways. Additionally, epithelial cells derived from both
primary cancer and CRPC samples showed higher activity in
glycolysis and the MTORC1 pathway.
We observed a significant upregulation of ACLY, FASN, and

SCD1 in primary cancer and CRPC samples. ACLY is the first
enzyme in the citric acid pathway, which leads to lipid
metabolism. The significantly upregulated expression of ACLY in
epithelial cells from primary cancer and CRPC samples suggests

Fig. 6 Bulk-RNA seq analysis based on SREBF1 and its target genes and risk scoring model associated with biochemical recurrence of
prostate cancer. A Histogram of correlation analysis between all genes and SREBF1 expression in TCGA-PRAD. B Violin plot of gene sets GSVA
scores. C Risk forest plot of genes associated with biochemical recurrence of prostate cancer obtained by univariate Cox regression analysis.
D Coefficient path diagram of genes in Lasso regression analysis. E Cross-validation curve in Lasso regression analysis, nfolds = 10.
F Distribution of risk scores and biochemical recurrence characteristics of samples in TCGA cohort. G Distribution of risk scores and
biochemical recurrence characteristics of samples in GSE116918 cohort. H KM curve of biochemical recurrence based on risk score grouping in
the TCGA cohort. I KM curve of biochemical recurrence based on risk score grouping in the GSE116918 cohort. J ROC curve of the risk score
group-based prediction model for biochemical recurrence in the TCGA cohort. KMultivariate Cox regression analysis of risk scores and clinical
data associated with biochemical recurrence. L Nomogram based on risk score and clinical data associated with biochemical recurrence. BCR
biochemical recurrence, p_T pathological T stage, ROC Curve receiver operating characteristic curve, AUC area under curve, KM Curve
Kaplan–Meier curve.
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increased utilization of citric acid in the lipid synthesis pathway
during tumorigenesis. Furthermore, FASN and SCD1, both
associated with fatty acid metabolism, were significantly upregu-
lated in primary cancer and CRPC samples. FASN is a key enzyme

that mediates fatty acid synthesis, whereas SCD1 plays a crucial
role in monounsaturated fatty acid (MUFA) synthesis. SCD1, a key
regulator of the fatty acid metabolic pathway, regulates ferrop-
tosis resistance [26].
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We further investigated the relationship between transcription
factors and metabolic changes by analyzing the transcription
factor regulatory network. Among the 30 transcription factors with
high activity in the epithelial cells of single-cell samples, SREBF1
caught our attention.
SREBPs are a family of basic helix-loop-helix leucine zipper

transcription factors that regulate de novo synthesis of fatty acids
and cholesterol, as well as cholesterol uptake, making them
closely associated with lipid metabolism [27–29]. Our analysis
revealed that the target genes of SREBF1 included HMGCS1,
DHCR7, SC5D, SCD1, ACLY, FASN, and LDLR.
We observed that SREBF1 activity was highest in epithelial cells

from primary cancer samples and accordingly divided cells into
SREBF1_POS and SREBF1_NEG groups based on the transcrip-
tional activity of epithelial cells to observe the differences
between them. Significant differences were evident in several
fatty acid- and cholesterol-related pathways that also play crucial
roles in ferroptosis resistance. One of the most significant
differences was observed in the Cholesterol Metabolism pathway,
specifically in the steps from Lanosterol to cholesterol synthesis.
The exact reaction sequence between lanosterol and cholesterol is
not yet fully understood. Based on the reaction sequence of
DHCR24, the synthesis pathway from lanosterol to cholesterol can
be divided into two pathways: the Bloch and the
Kandutsch–Russell pathways [30]. The upregulation of cholesterol
synthesis is conducive to the synthesis of endogenous androgens,
which activate AR independently of exogenous androgens,
thereby promoting the proliferation of prostate cancer. AR
activation may further upregulate the activity of SREBF1, forming
a positive feedback loop [31, 32].
Furthermore, Omega9 Fatty Acid Synthesis, which produces

MUFA, has been shown to confer ferroptosis resistance. Interest-
ingly, there were significant differences in pathways related to the
Mevalonate (MVA) pathway, including the Mevalonate Arm of
Cholesterol Biosynthesis Pathway and the Mevalonate Pathway.
The MVA pathway is the first stage in cholesterol synthesis,
generating the structural precursors of the steroid substances,
isopentenyl pyrophosphate (IPP), and dimethylallyl pyropho-
sphate (DMAPP) from acetyl-CoA.
The MVA pathway is an important contributor to selenoprotein

synthesis, and GPX4 is a selenoprotein with selenocysteine in its
active center. Because the genetic code for selenocysteine is UGA,
which is the same as the stop codon, a specific transporter is
required to insert selenocysteine into GPX4 [33]. This transporter is
a selenocysteine tRNA that contains isopentenyladenosine and
can decode the genetic code for selenocysteine by precisely
inserting selenocysteine into the corresponding protein. However,
the maturation of selenocysteine tRNA requires tRNA-isopentenyl
transferase to catalyze the transfer of the isopentenyl group from
isopentenyl pyrophosphate (IPP) to specific adenine sites on
selenocysteine tRNA precursors [34]. Therefore, upregulation of
this pathway can promote resistance to ferroptosis. We also
observed that the cholesterol synthesis pathways, including the
MVA pathway, were highly activated in the SREBF1_POS group.
In the combined Bulk-RNA seq analysis, we observed that genes

closely related to SREBF1 were mainly involved in pathways
related to fatty acid synthesis and cholesterol synthesis, with some

of these genes acting as key regulators in these pathways. For
instance, SCD1, which showed the highest correlation with
SREBF1, is crucial for regulating MUFA synthesis, whereas ACLY
and FASN are key genes involved in fatty acid synthesis. These
findings were consistent with those of our single-cell sequencing
analyses. Survival analysis further indicated that high expression of
SCD1, ACLY, DHCR7, and SREBF1 was associated with poor
prognosis.
Interestingly, studies by Li et al. and Freitas et al. showed that

the cholesterol synthesis precursor 7-dehydrocholesterol (7-DHC)
can confer resistance to ferroptosis [35, 36]. The average
expression levels of the genes involved in 7-DHC synthesis,
including EBP and SC5D, were higher than those in DHCR7. Li et al.
suggested that the high expression of DHCR7 promotes ferrop-
tosis. However, we believe that this should be discussed in this
context. Firstly, when the activity of genes involved in 7-DHC
synthesis is significantly higher than that of DHCR7, excess of
7-DHC is available to resist ferroptosis. Secondly, the continuous
and strong activation of the cholesterol synthesis pathway leads
to sufficient 7-DHC production, regardless of the level of DHCR7
expression level. Moreover, cholesterol synthesis in prostate
cancer is conducive to the production of endogenous steroid
hormones, thereby promoting tumor progression.
It is noteworthy that our results also revealed significant activity

and enrichment of SREBF2. Furthermore, correlation analysis
demonstrated a strong association between the expression levels
of SREBF2 and SREBF1, suggesting that these two factors may
interact rather than function independently. SREBF1 primarily
participates in the synthesis of fatty acids and cholesterol as well
as cholesterol uptake, while SREBF2 predominantly regulates
cholesterol metabolism and absorption [22]. Elevated activation of
cholesterol synthesis pathways driven by SREBPs, including the
mevalonate pathway, not only enhances ferroptosis resistance in
prostate cancer but also increases cholesterol flux towards steroid
hormone synthesis [37]. Steroid hormones, such as testosterone
and dihydrotestosterone (DHT), further contribute to the progres-
sion of prostate cancer.
A biochemical recurrence risk scoring model based on the

SREBF1 target gene identified several genes closely related to the
biochemical recurrence of prostate cancer and demonstrated a
good predictive effect. However, the mechanisms underlying the
biochemical recurrence of prostate cancer require further
investigation.
Finally, we investigated the effect of the SREBF1 inhibitor

Betulin on promoting ferroptosis in prostate cancer. Previous
studies have confirmed that Betulin exhibits significant anti-
prostate cancer activity [38]. Here, we explored its effect on
ferroptosis in tumor cells. Our results demonstrated that
treatment with Betulin led to a significant down-regulation of
SREBF1 target genes associated with ferroptosis resistance at
the genetic level. Additionally, intracellular ROS levels
increased significantly, whereas GSH content decreased.
Furthermore, the combination of castration treatment and
Betulin treatment exhibited a synergistic therapeutic effect. In
addition, our experiments showed no significant changes in
the intracellular ferrous ion content, whereas the mitochondrial
membrane potential decreased significantly after Betulin

Fig. 7 Validation of the SREBF1 inhibitor Betulin’s ability to promote ferroptosis in prostate cancer cells. qRT-PCR analysis of the
expression of some SREBF1 target genes and ferroptosis-related genes in LNCaP (A) and PC3 (B) cell lines (n= 3). Fluorescence microscopy
observation of ROS content in LNCaP (C) and PC3 (D) cells. Hoechst was used to stain the nuclei, and ROS was visualized using the DCFH-DA
probe (n= 3). Cell flow cytometry analysis of ROS content in LNCaP (E) and PC3 (F) cells. Quantitative comparison by Mean Fluorescence
Intensity (MFI) (n= 3). G Measurement of GSH content in LNCaP and PC3 cells (n= 6). H Cell viability assay in LNCaP cells after androgen
deprivation culture and Betulin treatment. The left y-axis represents cell viability, and the right y-axis represents the Q value calculated for
each concentration group (n= 3). CS charcoal Stripped. Data were presented as mean ± SD. (ns, P ≥ 0.05; *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001).
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treatment. Ferrous ions play a critical role in ferroptosis [10].
Notably, this study observed no changes in intracellular ferrous
ion levels following the application of the SREBF1 inhibitor.
This finding suggests that ferroptosis resulting from SREBF1

inhibition is not independent of the regulation of ferrous ion
levels. Betulin and docetaxel exert synergistic therapeutic
effects. In vivo experiments verified the excellent therapeutic
effect of Betulin and its chemosensitizing effect on docetaxel,
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suggesting that SREBF1 inhibitors may have a promising
therapeutic potential in prostate cancer.
Some limitations of this study should be noted. Although the

Harmony method was used to correct for the batch effect, the
batch effect between different datasets cannot be ignored.
Secondly, scRNA-seq studies with more patients and more cell
numbers are conducive to eliminating individual differences
between patients. Therefore, other mechanisms of ferroptosis
resistance based on SREBPs still need to be explored and
biologically verified. Our study provided directions and potential
therapeutic targets for prostate cancer for future research.
In conclusion, our study revealed the role of SREBF1-mediated

metabolic reprogramming in prostate cancer and its association
with ferroptosis resistance. By combining single-cell sequencing
and Bulk-RNA analysis, we demonstrated that the metabolic
changes regulated by SREBF1 promote ferroptosis resistance in
prostate cancer. Moreover, we found that SREBF1 inhibitors have
excellent chemosensitizing effects in prostate cancer therapy,
highlighting their potential for therapeutic applications in prostate
cancer.

MATERIALS AND METHODS
Data acquisition and processing
Prostate cancer single-cell RNA sequencing data were obtained from the
GEO datasets GSE193337 and GSE137829. GSE193337 includes normal
prostate tissue, prostate cancer RP tissue, and GSE137829 includes CRPC-
derived tumor tissue. Bulk RNA sequencing data were obtained from the
TCGA database. Data analysis and processing were conducted using the R
language (version 4.2.1) and Python. The Seurat package (v5.0.3) was
utilized for single-cell sequencing analysis and visualization, while
PySCENIC was used for the prediction of transcriptional regulatory factors
from single-cell sequencing data.

Single-cell RNA sequencing analysis
We initially merged single-cell sequencing data from the GSE193337 and
GSE137829 datasets. Quality control was performed on the merged data
using the following criteria: (1) Cells with fewer than 200 measured
genes (min.features = 200) and genes covered by fewer than 3 cells
(min.cells = 3) were filtered out. (2) Cells with gene expression counts
below 201 (considered low-quality cells) or more than 8000 genes
(indicating potential doublets) were excluded. (3) Cells with more than
20% of unique molecular identifiers (UMIs) derived from the mitochondrial
genome were also excluded. (4) Mitochondrial genes, ribosomal genes,
hemoglobin genes, and MALAT1 were removed. The Harmony package
was used to remove batch effects between single-cell datasets from
different sources. Data dimensionality reduction was performed using the
RunPCA method, and 25 principal components were used for subsequent
analyses. Nonlinear dimensionality reduction and result presentation were
achieved using UMAP and tSNE. Cell clusters were manually annotated
based on knowledge and relevant literature.

Single-cell RNA sequencing transcription factor analysis
We employed PySCENIC to analyze and identify transcriptional regulators
based on single-cell sequencing data [39]. The analysis and result
visualization were performed in R using the SCENIC package. The
GRNboost algorithm was used to construct a co-expression network
between transcription factors and candidate target genes. TF-motif
enrichment analysis was performed to identify direct targets of the

transcription factors. Each processed TF and its potential direct target
genes were used as regulons for subsequent analyses. AUCell was used to
score all genes in each regulon. The resulting score is the Area Under Curve
(AUC), which represents the “activity” of regulons in each cell.

hdWGCNA
hdWGCNA (v0.3.03) analysis was performed on all epithelial cell
subpopulations. The optimal SoftPower was determined using the
TestSoftPowers() function. Correlation analysis between modules and
features was conducted using the ModuleTraitCorrelation() function.
Transcription factors were identified and screened by SCENIC. The analysis
involved adding the transcription factor AUCell activity scores to the
metadata in the Seurat object, with module features labeled as “hMEs”.
Finally, KEGG pathway enrichment analysis was performed on the
Hubgenes of specific module.

Bulk-RNA Seq analysis
RNA-seq data and clinical data were obtained from the XENA and TCGA
databases. Gene set expression activity scores in different samples were
analyzed using GSVA. To construct the risk score, the target genes of
SREBF1 identified by SCENIC were first analyzed using univariate Cox
regression analysis to identify genes significant with biochemical
recurrence of prostate cancer. LASSO regression was then used to further
filter these genes for risk score construction. The coefficients used to
calculate the risk score were derived from the multivariate Cox analysis.
External validation was performed using the GEO dataset (GSE116918). Risk
grouping was based on the median risk score calculated from the TCGA
cohort, which distinguished between high-risk and low-risk groups. A
nomogram was constructed by performing multivariate Cox regression
analysis on both the risk grouping and clinical data. Samples with missing
data were excluded from the cohort.

Cell culture and drug treatment
Cell lines were cultured in a humidified incubator at 37 °C with 5% CO2.
They were obtained from Procell Life Science & Technology Co., Ltd and
authenticated by STR cell sequencing to confirm their identity and
ensure that they were free of mycoplasma contamination. RPMI-1640
medium (Procell, PM150110) supplemented with 10% fetal calf serum
(Procell, 164210-50) was used for cell culture, and charcoal-stripped
serum was used to simulate androgen-deprived conditions. Betulin was
added to the culture medium at a concentration of 5 μg/mL [38]. RSL3
was used as the positive control for ferroptosis induction at a
concentration of 0.1 μM.

Quantitative real-time polymerase chain reaction (qRT-PCR)
RNA was extracted using TRIzol reagent (Invitrogen). Subsequently, cDNA
was synthesized following the manufacturer’s protocol (Evo M-MLV RT Mix
Kit with gDNA Clean for qPCR Ver.2, AG11728). Real-time PCR was
performed using the Applied Biosystems 7900 Real-Time PCR System
(Thermo Scientific) and SYBR Green PCR Master Mix (Roche). β-actin was
used as the internal control, and the primer sequences are listed in Table
S4.

Detection of intracellular ROS
The ROS fluorescent probe 2′,7′-Dichlorodihydrofluorescein diacetate
(DCFH-DA) (Aladdin, H131224) was used for intracellular ROS detection.
DCFH-DA was added to the cells to achieve a final concentration of 20 μM.
During cell flow cytometry analysis, the cells were incubated with DCFH-
DA for 30min, and detection was performed at an excitation wavelength
of 488 nm and an emission wavelength of 525 nm. For fluorescence

Fig. 8 Changes in ferroptosis-related characteristics of prostate cancer cells treated with Betulin and the synergistic therapeutic effect of
Betulin and docetaxel. A Intracellular ferrous ion staining was performed using the ferrous ion probe FerroOrange, and cell nuclei were
stained using DAPI (n= 3). B Quantification of ferrous iron staining. C Intracellular mitochondrial membrane potential staining, using JC-1
staining, aggregates are in red, and monomers are in green (n= 3). D Quantification of JC-1 staining, results were shown as the ratio of
aggregates to monomers. E Heat map of cell activity, with the horizontal axis representing the betulin treatment concentration and the
vertical axis representing the docetaxel treatment concentration (n= 5). F Heat map of drug combination synergistic effects, presented as the
analysis results of the zero interaction potency (ZIP) model, completed by SynergyFinder. G 3D heat map of drug combination synergy,
presented as the analysis result of zero interaction potency (ZIP) model, completed by SynergyFinder. ZIP zero interaction potency (ZIP). Data
were presented as mean ± SD. (ns, P ≥ 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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Fig. 9 In vivo experiment of betulin combined with docetaxel in the treatment of PC3 prostate cancer subcutaneous xenograft
tumor model. A Schematic of experimental design and procedure (n= 5). B Image of the tumor after treatment. C Body weight change curve
of mice during the treatment process. D Tumor size change curve during treatment. E Tumor weight after treatment completion. F Results of
the variance analysis of the factorial design for treatment effects. G Oil red O staining of tumor tissue after treatment. H Quantification of Oil
Red O staining. I Ki-67 staining of tumor tissue after treatment. J Quantification of Ki-67 staining. i.p. intraperitoneal Injections, SC
subcutaneous. Data were presented as mean ± SD. (ns, P ≥ 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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microscopy, the cells were incubated with DCFH-DA for 30min, and the
nuclei were stained with Hoechst stain.

Detection of intracellular glutathione
After experimental treatment, the cells were collected, counted, and
subjected to GSH detection. GSH reacts with 5,5’-dithiobis-2-nitrobenoic
acid (DTNB) to produce GSSG, which was detected at a wavelength of
412 nm. The detection procedure was performed according to the
manufacturer’s instructions (Solarbio, BC1170).

Cell counting kit-8 (CCK-8) and drug synergistic analysis
The CCK-8 test kit was purchased from ApexBio Technology (K1018). This
procedure was carried out according to the manufacturer’s instructions. To
explore the effects of Betulin and androgen deprivation on cells, the
charcoal-adsorbed serum group was used as the androgen deprivation
group, and Betulin medication group was set with a concentration
gradient of 0, 0.625, 1.25, 2.5, 5, 10, 20, and 40 µg/mL. The test was
performed after 48 hours of culture. The Jin Zhengjun method was used to
determine whether there is a synergistic inhibition of cell proliferation
between androgen-deprived culture and Betulin treatment [40–42]. The
specific formula: Q= E(A+B)/(EA+ EB–EA·EB), EA is the effect of A treatment,
EB is the effect of B treatment, and E(A+B) is the joint treatment effect. A Q
value greater than 1 indicates a synergistic effect. When investigating the
effects of Betulin and docetaxel on PC3 cells, a Betulin treatment group
(with a concentration gradient of 0.625, 1.25, 2.5, 5, and 10 µg/mL), a
docetaxel treatment group (with a concentration gradient of 0.375, 0.75,
1.5, 3, 6, and 12 nmol/L), and a combined treatment group were set up.
The concentration of Betulin was converted to a molar concentration.
SynergyFinder was used to analyze the synergistic effects of the two
treatments when used in combination [43].

Ferrous ions and mitochondrial membrane potential staining
FerroOrange was used as a fluorescent probe for ferrous ions to perform
fluorescence imaging of ferrous ions in cells. DoJinDo (F374) was used as
the product, and the procedure was performed according to the
manufacturer’s instructions. JC-1 was used as a fluorescent probe to
detect changes in the cell membrane potential. Beyotime (C2006) was
used for detection according to the manufacturer’s instructions.

Animal experiment
All mice were housed under specific pathogen-free (SPF) conditions. Mice
had ad libitum access to water and standard rodent chow. To establish a
PC3 prostate cancer subcutaneous tumor mouse model, the PC3 cell line
was subcutaneously inoculated into the dorsal flank of 5–6 week-old male
nude mice, with 3 × 106 cells inoculated per mouse. The tumor size
(including length and width) was measured daily, and the tumor volume
was estimated using the formula V = (width2 × length)/2. When solid
tumors became palpable, the mice were randomly divided into four
groups: (1) Control group (vehicle group); (2) Betulin group: intraperitoneal
injection of 2 mg/kg Betulin once every three days; (3) Docetaxel group:
intraperitoneal injection of 2 mg/kg docetaxel once a week; (4) Betulin and
Docetaxel combination group: the dose and frequency of administration
were the same as those of the single drug groups. The operations, and
vehicles of the injected drugs were consistent across all four groups. After
14 days of treatment, the mice were sacrificed, and the tumors were
dissected for subsequent experiments. Experimenters were blinded to
treatment allocation. Data collection and analysis were performed on
anonymized datasets to ensure objectivity. For Oil Red O and Ki-67
immunohistochemical staining, fresh tumor tissues were dehydrated, and
frozen sections were prepared. An Oil Red O stock solution was prepared
by dissolving 0.3 g of Oil Red O powder in 50ml of isopropanol. The Oil
Red O stock solution was then mixed with distilled water at a ratio of 3:2 to
obtain the Oil Red O working solution. Before use, the working solution
was filtered with a 0.22-micron microporous membrane. The sections were
rinsed with 60% isopropanol, stained with the Oil Red O working solution
for 15min, washed with 60% isopropanol until the background is colorless,
and rinsed with distilled water to remove the excess stain. Finally,
hematoxylin was used to stain the nucleus.

Graphing and statistical analysis
Graphing and statistical analyses were primarily conducted using R
language, RStudio, SPSS, and Prism 9. The figures were formatted using

Affinity Designer and Affinity Photo. Fluorescence, immunohistochemistry,
and Oil Red O staining were quantified using Image J and Fiji software. All
experiments were performed independently at least three times, and the
number of independent experiments is reported in the figure legend.
Statistical analyses included unpaired two-tailed t-tests to compare
differences between two groups and one-way ANOVA to compare
differences between multiple groups. Unless otherwise stated, P < 0.05
was considered statistically significant. No statistical methods were used to
predetermine sample size.
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All data are mentioned in the methods.
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