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Roles of the gut microbiota in hepatocellular carcinoma: from
the gut dysbiosis to the intratumoral microbiota
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Hepatocellular carcinoma (HCC) is closely linked to alterations in the gut microbiota. This dysbiosis is characterized by significant changes
in the microbial population, which correlate with the progression of HCC. Gut dysbiosis ultimately promotes HCC development in several
ways: it damages the integrity of the gut-vascular barrier (GVB), alters the tumor microenvironment (TME), and even affects the
intratumoral microbiota. Subsequently, intratumoral microbiota present a characteristic profile and play an essential role in HCC
progression mainly by causing DNA damage, mediating tumor-related signaling pathways, altering the TME, promoting HCC metastasis,
or through other mechanisms. Both gut microbiota and intratumoral microbiota have dual effects on HCC progression; a comprehensive
understanding of their complex biological roles will provide a theoretical foundation for potential clinical applications in HCC treatment.
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FACTS

1. Gut dysbiosis drives HCC progression through mechanisms
such as gut-vascular barrier (GVB) disruption, tumor micro-
environment (TME) remodeling, and translocation of micro-
bial metabolites (e.g., LPS, SCFAs) that induce chronic
inflammation and immune suppression.

2. TLR4 signaling is a central hub linking gut dysbiosis to HCC
progression. LPS-TLR4 interactions drive stemness, angio-
genesis, and metastasis through various signaling pathways,
metabolites, and immune cells, highlighting its potential as
a therapeutic target.

3. Bile acids and SCFAs mediate dual roles in HCC. While
hydrophobic bile acids (e.g., DCA) promote HSC senescence
and Treg expansion, SCFAs like butyrate suppress tumor
growth via CD8+ T cell activation. However, acetate’s role is
context-dependent, influenced by dietary factors and
microbial sources.

4. Intratumoral microbiota exhibits HCC-specific profiles, with
increased Proteobacteria, Firmicutes, and Fusobacterium in
tumor tissues. These microbes are closely associated with gut
microbiota and contribute to DNA damage, signaling pathway
activation (e.g., TLR4/JNK), and immunosuppression.

OPEN QUESTIONS

1. How do HCC etiologies (e.g., viral vs. non-viral) shape gut
and intratumoral microbiota heterogeneity? Are microbial

biomarkers (e.g., Klebsiella for microvascular invasion)
universally applicable across subtypes?

2. What molecular pathways link microbial metabolites to
epigenetic reprogramming (e.g., TET2 in B cells, FOXP3 in
Tregs) and HCC progression? Can these pathways be
reversed through dietary or pharmacological interventions
to become therapeutic targets in the clinical treatment
of HCC?

3. Since the relationship between the microbiota and the
immune system is so intimate, can modulation of specific
microbial taxa (e.g., Akkermansia, Bifidobacterium) or meta-
bolites (e.g., butyrate) enhance immunotherapy efficacy
(e.g., anti-PD-1) in HCC? What are the optimal strategies for
microbiota-targeted adjuvant therapies?

4. What mechanisms govern the translocation and coloniza-
tion of gut-derived microbes into HCC tissues? How do
intratumoral microbiota interact with the TME to influence
immune evasion or metastasis?

INTRODUCTION
Hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is the most common type of liver
malignancy, accounting for approximately 90% of cases, and one
of the most common cancers worldwide. It is also one of the most
harmful tumors, characterized by high morbidity and mortality
rates [1, 2]. According to 2022 GLOBOCAN estimates, there were
865,269 new cases worldwide, accounting for 4.3% of the new
cancer cases that year. Moreover, it is the third leading cause of
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cancer-related death globally, causing 757,948 deaths (7.8%) in
2022 [3].
The pathophysiology of HCC, from oncogenesis to progression,

is a complex, multistep process involving dysregulation of cancer
driver genes and related signaling pathways [4, 5], abnormal
infiltration of immune cells [6, 7], metabolic factors (such as
glucose, lipids, and key enzymes) [8–12], and many other factors.
Among these factors, the gut microbiota plays a significant role.

Gut microbiota
Gut microbiota composition. The human gastrointestinal tract
harbors a complex ecosystem of approximately 2000 genera of
bacteria, fungi, archaea, and viruses [13, 14]. The collective
genomes of these microorganisms, known as the gut microbiome,
encode an estimated five million genes [15, 16]. In this review, we
concentrate primarily on the gut bacteria, highlighting the
predominance of Bacteroidetes and Firmicutes, which together
account for nearly 90% of the bacterial population. Other less
dominant bacteria include Proteobacteria (Pseudomonadota),
Actinobacteria (Actinomycetota), and Verrucomicrobia [17].

Gut microbiota function. The gut microbiota has important
functions for the host. The microbes not only participate in food
digestion, molecules decomposition and synthesis, and absorp-
tion, providing energy and nutritional support for the host [18, 19],
but they also maintain the normal host-physiological functions by
regulating metabolism [20–22]. By directly or indirectly interacting
with the immune system and other aspects of the internal
environment, the gut microbiota further protects the host against
pathogen invasion and influences disease progression [23–25].

GUT DYSBIOSIS IN HCC
Gut microbial dysbiosis is the imbalance or other similar alteration
in the composition and/or function of the gut microbiota, which
may lead to or worsen diseases [26, 27].

The dysbiosis profile
Several studies have found that the gut microbiota in HCC is
characterized by a distinctive dysbiosis profile [28]. The structure
of the gut microbiota was found to be significantly altered in HCC
patients compared to non-HCC patients with or without liver
cirrhosis, while no significant difference in gut microbiome
composition was found in HCC patients with different etiologies
[29]. Across various studies involving different populations, fecal
samples, and sample sizes, the trends in the gut dysbiosis profiles
in HCC were concordant, though there were subtle differences in
the exact results. For example, the phyla Firmicutes and
Actinobacteria were significantly increased in the gut of HCC
patients [30]. The genus Clostridium increased during HCC
progression and may be related to bile acid metabolism [30, 31].
The genus Ruminococcus is greatly increased in patients with HCC
compared to other liver diseases [32], yet this genus tends to
colonize the intestines of HCC patients without liver microvascular
invasion [33], which demonstrates the nuanced differences in gut
microbiota distribution across HCC subtypes. The genera Enter-
ococcus also tends to be increased in the gut of HCC patients
[34, 35], including the Enterobacter ludwigii, which showed a
significant increase of 100 times higher in HCC than other
compared groups [36], and the Enterococcaceae which could be a
potential marker for HCC diagnosis [37]. The genera Streptococcus
and Lactobacillus belong to Firmicutes and enriched in the gut of
HCC as well [38–40]. Although the genus Bifidobacterium mainly
belongs to the phylum Actinobacteria, its abundance tends to be
reduced in the gut of HCC patients as the beneficial bacteria [35],
and decreases further as the disease progresses [34]. The genera
belonging to the phylum Actinobacteria and increased in the gut
of HCC patients include Atopobium [41] and Gemmiger [42]. In the

phyla Bacteroidetes, fecal samples from HCC patients have higher
levels of the genera Desulfovibrio [30], Bacteroides [30, 35], and
Parabacteroides [42]. In the phyla Proteobacteria, levels of
Escherichia coli [41] and Shigella [33] were increased as well.
Beneficial bacteria, typically reduced in the gut of HCC patients,

include Akkermansia, Prevotella_2, Subdoligranulum and Faecali-
bacterium were decreased [38–40].
In a study held by Yang et al. [33] examining fecal microbiota

profiles in 364 hepatitis B virus (HBV)-HCC patients and controls,
Streptococcus (14.14% v.s. 5.67%) and Escherichia-Shigella (11.5% v.s.
9.55%) were more abundant in HCC than the control group, while
Agathobacter was strongly decreased even though it belongs to the
phylum Firmicutes. Li et al. [32] examined the gut microbiota in 68
patients with HCC, 33 patients with liver cirrhosis (LC), and 34 normal
controls (NC). In their results, 21 genera, including Roseburia,
Lachnospira, and Ruminococcus, were increased in HCC compared
to LC, and 42 genera including Veillonella, Faecalibacterium, Alistipes,
and Phaecolarctobacterium, were strongly decreased in HCC
compared to NC. Nevertheless, 35 species, such as Phocaeicola
vulgatus, Lachnospira eligens, Bacteroides uniformis, and Ruminococcus
bicirculans, differed between HCC and LC. The other significantly
increased species in HCC compared to NC included Veillonella
parvula, Veillonella sp. T1–7, Veillonella atypica, and Veillonella dispar,
and the decreased including Phocaeicola dorei, Bacteroides uniformis,
Faecalibacterium prausnitzii, etc.

Selective gut microbiota as potential biomarkers in HCC
Selective gut bacteria have emerged as potential biomarkers for
HCC detection, demonstrating high sensitivity and specificity. For
instance, Odoribacter splanchnicus and Ruminococcus bicirculans
are potential species-level biomarkers of HCC [32], and the
combinatorial detection of Coriobacterium, Atopobium and
Coprococcus at the genus level was of high diagnostic value in
HCC as well [43].
As biomarkers of HCC, the abundance of some gut bacteria

closely changed with phenotypes during the tumorigenesis or
progression. In a study by Ren et al. [42] analyzing fecal samples
from patients, there are 13 genera including Parabacteroides and
Gemmiger which were increased in early stage HCC and could
serve as microbial markers for the early diagnosis of HCC. In a
study by Zhang et al. [34] studying HCC patients as well, higher
levels of Enterococcus and Enterobacteriaceae and lower levels of
Actinobacteria and Bifidobacterium were statistically related to
higher HCC stage and thus worse prognosis. The abovementioned
Streptococcus and Escherichia-Shigella were more abundant in HCC
and kept ascending during HCC progression thus had the
potential of HCC biomarkers as well [33]. There were also
significant differences in the gut microbiota between HCC patients
with and without microvascular invasion (HCC-MVI or HCC-NVI),
HCC-MVI is often accompanied by high invasiveness, high
metastasis, and higher malignancy. In HCC-MVI compared to
HCC-NVI, Klebsiella, Proteobacteria, Prevotellaceae, and Enterobac-
teriaceae were significantly enriched, whereas Firmicutes, Rumino-
coccus, and Monoglobaceae were significantly decreased. Among
these gut bacteria, Klebsiella was the key biomarker that
distinguished the two subgroups, even predicting clinical out-
comes [44]. In 2019, Ni et al. [45] found that pro-inflammatory
bacteria significantly increased in HCC patients compared to
healthy controls. Furthermore, they introduced an assessment
metric, the degree of dysbiosis (D(dys)), and found that it
significantly increased in HCC patients compared to healthy
controls. In addition, D(dys) increased consistently with HCC stage,
although the differences among the stages were not significant.
In 2020, Huang et al. [31] collected fecal samples from 113 HBV-

related HCC patients and 100 healthy controls for 16S rRNA
sequencing, and selected 32 paired tumor and adjacent non-
tumor liver tissues from the HCC group for next-generation RNA
sequencing [31]. As a result, they found the increased abundance
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of Lachnospiracea incertae sedis was accompanied by a decrease in
cluster of differentiation (cd) 6 expression, the increased
abundance of Bacteroides was accompanied by a decrease in
mitogen-activated protein kinase (mapk) 10 expression, and both
of the bacteria were in line with sorrower disease-free survival
(P= 0.0092 and 0.084, respectively). This result makes sense
because CD6 and MAPK10 are tumor suppressors associated with
better clinical prognosis. The profiles of gut microbiota and their
biomarkers closely related with HCC progression are summarized
in Fig. 1.

BREAKDOWN OF GUT-VASCULAR BARRIER INTEGRITY DUE TO
GUT DYSBIOSIS
Foremost among all mechanisms, the initial biological event
linking gut dysbiosis to tumor progression is the disruption of the
gut-vascular barrier (GVB). The gut barrier consists of three layers.

The outermost layer is the mucus layer, which mainly exists to
shield against pathogens such as certain bacteria [46, 47]. To
strongly decrease bacterial migration into the inner section of this
mucus layer, antimicrobial peptides (e.g., defensins, lysozyme, and
c-lectin Reg3γ) are secreted by intestinal epithelial cells and
immune cells (Paneth cells), and immunoglobulin A (IgA) is
secreted by plasma cells [48]. The middle layer consists of tightly
connected epithelial cells, which ensure selective nutrient transfer
while limiting the entry of gut microbes, especially pathogens,
from the gut into the host [49]. The innermost layer is the blood
vessel endothelium. If pathogens translocate through the
intestinal epithelium into the bloodstream, they are mostly
blocked by this layer and eliminated by circulating macrophages
or engulfed by dendritic cells (DCs) before being transported to
mesenteric lymph nodes [50].
In the healthy state, the GVB is characterized by the selective

permeability of nutrients, metabolites, water, and bacterial

Fig. 1 Gut microbiota (GM) and intratumoral microbiota profiles in hepatocellular carcinoma (HCC), and GM biomarkers associated with HCC
progression.
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products, the GVB integrity is governed by cellular, neural,
immune, and hormonal factors [51]. While in the context of gut
microbiota dysbiosis, the integrity of the GVB can be is
compromised through a series of interconnected mechanisms.
The disruption of the gut barrier, also known as increased
intestinal permeability or “leaky gut,” is driven by several factors
related with the gut microbiota dysbiosis, briefly including: (1)
Inflammation: Chronic low-grade inflammation, often a result of
dysbiosis, can lead to the release of pro-inflammatory cytokines
and chemokines that damage the tight junctions between
intestinal epithelial cells, thereby increasing permeability [51].
For example, HCC patients had a higher level of Proteobacteria,
which favors intestinal mucosa inflammation and thus higher gut
barrier permeability [52]. Another example, increased harmful
microbiota approaching the epithelium can contribute to the
local inflammation [53], and dysbiosis-caused increased popula-
tions of pathogenic species of bacteria like E. coli, Bacteroides
Enterococci and Clostridium histolyticum, which could dismiss
higher levels of lipopolysaccharides (LPS) damaging the enter-
ocytes, thus disrupting GVB [54]. (2) Direct Invasion by
Pathogens: Some bacteria associated with dysbiosis can invade
the gut mucosa, causing damage to the epithelial layer or its
function [51, 55]. (3) Metabolic Disruptions: Some products or
metabolites which are secreted or regulated by the gut
microbiota can affect the balance and function of the intestinal
epithelium, leading to barrier dysfunction [56]. Akkermansia,
which is decreased in HCC [35], protects the GVB by metabolites
like acetate and propionate [57, 58]. This bacteria can also
improve GVB by upregulating the expression of some TJ proteins
or significantly reduce the LPS level [59].
As a result, gut dysbiosis increases the permeability of the

barrier, which allows substances such as short-chain fatty acids
(SCFAs), bile acids (BAs), bacterial constituents, choline, and
endogenous ethanol to enter the liver, increasing the hepatic
metabolic load and inflammatory stimulation, thus increasing the
progression of HCC [60]. Due to increased intestinal permeability,
factors such as viable pathogenic bacteria, Gram-negative
microbial products, and pro-inflammatory luminal metabolites
can translocate from the intestinal lumen to the liver via the portal
circulation and thereby alter the hepatic microenvironment
[49, 61].

MECHANISMS BY WHICH THE GUT MICROBIOTA INFLUENCES
THE HCC-RELATED MICROENVIRONMENT
The gut microbiota can profoundly affect the immune micro-
environment of the liver and thereby trigger hepatocarcinogen-
esis via the following processes: (1) microbial activation of
signaling like Toll-like receptor (TLR)-4; (2) microbial stimulation
of tumor microenvironment (TME) cells; and (3) influence of gut
microbiota-associated metabolites. The typical examples are
summarized in Table 1.

PAMP-PRR (TLR4) related signal pathways
Pattern-recognition receptors (PRRs) can sense gut microor-
ganisms based on their pathogen-associated molecular pat-
terns (PAMPs; namely, “microbe-associated molecular
patterns”, MAMPs) and subsequently exert biological effects.
Among the PRRs, TLR4 is an important PRR that plays an
immunosuppressive role and it is a key contributor to
hepatocarcinogenesis [62, 63].
TLR4 is widely expressed in liver cancer stem cells, hepatocytes,

Kupffer cells, hematopoietic stem cells, DCs, natural killer (NK)
cells, B cells, and T cells. TLR4 predominantly recognizes LPS from
Gram-negative bacteria [63–66] and is downregulated by HCC-
suppressing microRNAs (miRNAs) such as miR122 [67]. Gut
dysbiosis and TLR4 (and associated signaling) are required not
for the initiation of HCC, but for its development [68].

TLR4 is overexpressed in HCC [69] and correlates with
microvascular invasion, early recurrence, and poor prognosis in
HCC patients [66, 70, 71].
In early HCC patients, LPS-producing gut bacterial genera and

LPS were both increased [42]. LPS activated the TLR4-AKT-SOX2
signaling pathway and thereby induced HCC stem cells [72].
Furthermore, LPS/TLR4 signaling promoted HPC fibrotic differ-
entiation and increased interleukin (IL)-6 and tumor necrosis
factor (TNF)-α production in rats transplanted with
diethylnitrosamine-induced HCC and with exogenous hepatic
progenitor cells (HPCs) [73].
In another study, TLR4 recognized LPS and directly activated

c-Jun N-terminal kinase (JNK)/MAPK signaling to improve
epithelial-mesenchymal transition (EMT), tumor cell invasion, and
metastasis [74]. Furthermore, the TLR4-MyD88 (namely Myeloid
Differentiation Primary Response 88) axis activated STAT3 (Signal
Transducer and Activator of Transcription 3) and SP1 (Specificity
Protein 1), which are both transcription factors of the mRNA of the
vascular endothelial growth factor (VEGF), so VEGF was over-
expressed, which improved HCC angiogenesis and pulmonary
metastasis [65].
In addition to directly affecting tumor cells, TLRs modulate

other immune cells or stromal cells to affect the HCC TME.
Dysbiotic microbiota in Nlrp6(−/−) mice (the mice with mutant NLR
family, pyrin domain containing 6) induces a TLR4-dependent
expansion of hepatic monocytic myeloid-derived suppressor cells
(mMDSCs) and suppresses T-cell abundance. This phenotype is
transmissible via fecal microbiota transfer and reversed by
antibiotics, pointing to the high plasticity of the TME. While the
loss of Akkermansia muciniphila correlates with mMDSC abun-
dance, its reintroduction restores intestinal barrier function and
strongly reduces liver inflammation and fibrosis. Furthermore, a
study showed that cirrhosis patients have increased bacterial
abundance in hepatic tissue, which induces pronounced tran-
scriptional changes, including activation of fibro-inflammatory
pathways and cancer immunosuppression processes. This study
demonstrated that the gut microbiota closely shapes the hepatic
inflammatory microenvironment, offering new approaches for
cancer prevention and therapy. TLR4 seemed to indirectly manage
the recruitment of regulatory T cells (Tregs) and interacted with
macrophages to promote intrahepatic metastasis [75]. TLR4
induced neutrophil extracellular traps (NETs) in the liver and
thereby promoted alcoholic steatosis and, eventually, alcoholic
HCC [76], it increased HCC metastasis potential mainly bypassing
tumorous inflammatory response [77].
Other signaling pathways downstream of the gut microbiota

exerted more complicated and even dual effects. For example,
certain nonpathogenic E. coli strains stimulated the transcription
of genes related to nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) mediated inflammatory signaling path-
ways, while upregulated negative feedback regulators in
nucleotide-binding oligomerization domain (NOD)-like signaling
pathways, such as tumor necrosis factor alpha-induced protein 3
(TNFAIP3), tempered the inflammatory reaction [78]. Understand-
ing whether and how these factors influence HCC development
requires further exploration.

HCC-associated cells and TME
The TME is a complex integrated system mainly composed of
tumor cells, surrounding immune and inflammatory cells, tumor-
related fibroblasts, nearby interstitial tissues, microvessels, and
various cytokines and chemokines [79, 80]. Gut microbes and their
metabolites can influence HCC pathogenesis and progression by
changing the intestinal microenvironment, altering ligands for
specific receptors and modulators of certain protein activities,
modulating signaling pathways, and ultimately influencing the
expression of various genes in key cells and multiple cytokine
levels in the TME [64, 81]. How the gut microbiota influenced HCC
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progression through the interaction with molecular signaling
pathways and various cells were summarized in Fig. 2.
In addition to hepatocytes and HCC cells, the HCC TME involves

the following cells: (1) immune cells, such as neutrophils,
circulating monocytes/macrophages, resident macrophages (Kupf-
fer cells), DCs, NK cells, natural killer T (NKT) cells, B cells, and T
cells such as CD8+ T cells, CD4+ T cells, Tregs, and γδ T cells [82]
and (2) other liver-resident cells in the environment or stroma
surrounding the HCC cells, such as hepatic stellate cells (HSCs),
fibroblasts, and liver sinusoidal endothelial cells [83, 84].

Neutrophils. Tumor-associated neutrophils (TANs) in HCC can be
categorized as antitumorigenic (N1) or pro-tumorigenic (N2) [85].
Pro-tumorigenic N2 TANs support HCC by forming decondensed
chromatin embedded with granular proteins, namely NETs [85].
Gut microbiota-induced LPS-TLR4 signaling promoted pro-
tumorigenic N2 TANs and related NETs in alcoholic HCC [76].
During HCC treatment, TANs were reported to recruit tumor-
associated macrophages and Tregs through the secretion of
chemokine (C-C motif) Ligand (CCL) 2 and CCL17 to induce drug
resistance [86].

Macrophages. Macrophages are classified into two functionally
and phenotypically distinct categories: macrophages with an
embryonic origin that reside in the liver after specific differentia-
tion (Kupffer cells), and macrophages differentiated from circulat-
ing monocytes (circulating monocyte-derived macrophages,
called “macrophages” below for short) [87]. When circulating
macrophages are recruited to the liver via stimulation by
pathological factors in the TME, they polarize into different
phenotypes (mainly M1 and M2) [88]. M1 macrophages have an
antigen-presenting function, so they can combat pathogenic
microorganisms [89] and tumor formation [90], exerting pro-
inflammatory effects [91]. M2 macrophages usually support anti-
inflammation effects [91], tissue remodeling and angiogenesis
[92, 93], while promoting tumors [94]. The gut microbiota can alter
macrophage polarization by stimulating certain signaling path-
ways in the gut microenvironment. In a mouse model of colon
inflammation, deoxycholic acid (DCA) was enriched by increased
levels of Gram-positive bacteria, which promoted macrophage
polarization toward the pro-inflammatory M1 phenotype (partially
through TLR2 transactivated by the M2 muscarinic acetylcholine
receptor) [95]. However, there was no concrete evidence that bile
acids regulated HCC via these mechanisms.
When gut dysbiosis promoted M2 macrophage polarization,

HCC pathogenesis was promoted. For example, IL-25, which was
secreted by colonic hyperplastic epithelial tuft cells and induced
by gut dysbiosis, increased the M2 percentage (CD206/CD68) and
Chemokine (C-X-C motif) Ligand (CXCL) 10 secretion of macro-
phages to promote HCC [96]. Macrophages also contributed to
HCC subcomponent phenotypes. A study in 2022 found an
increased proportion of M2-type tumor-associated macrophages
in HCC patients with microvascular invasion compared to HCC
patients without microvascular invasion (P < 0.001). The exact
mechanism underlying this phenomenon needs to be further
explored [44].

Kupffer cells. Kupffer cells are the key cells that interact with LPS
in the liver, and they also play a key role in inducing cytokines
such as TNFα and IL-6, which promote the development of HCC
associated with microbe-related LPS-TLR signaling [97]. In addition
to HCC, Kupffer cells can affect other liver diseases. For example,
Kupffer cells ameliorate early alcohol-induced liver injury after
endotoxin activation via TLR4 [98]. In an animal model of non-
alcoholic steatohepatitis (NASH), various factors such as metabolic
disorders, oxidative stress, and translocated bacterial products
activated Kupffer cells via TLRs, especially TLR4, leading to
increased NF-κB signaling and pro-inflammatory cytokineTa
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production [99]. When translocated bacterial DNA bound to TLR9
on Kupffer cells, the cells produced IL-1b, thereby stimulating
hepatocytes to accumulate lipids and inducing liver fibrosis [100].

NKT cells. In a mouse model reported in 2018 [101], NKT cell
accumulation was regulated by CXCL16 from liver sinusoidal
endothelial cells, which was controlled by gut microbiome-
mediated primary-to-secondary bile acid conversion. For example,
bile acid-modulating commensal bacteria like C. scindens, could
convert primary bile acids into secondary bile acids. While
antibiotics significantly increased primary bile acids, tauro-
β-muricholic acid (T-β-MCA) and β-MCA, and decreased secondary
bile acids, T-ω-MCA, taurodeoxycholic acid, ω-MCA, taurolitho-
cholic acid, and tauroursodeoxycholic acid. Secondary bile acid ω-
MCA decreased cxcl16 mRNA expression, whereas the primary bile
acid T-β-MCA induced Cxcl16 mRNA. As a result, antibiotics
indirectly upregulated CXCL16 in liver sinusoidal endothelial cells.
Next, the accumulated CXCL16 bound to C-X-C Chemokine
Receptor (CXCR) 6 on NKT cells and thereby recruited them,
which led to anti-tumor effects against HCC. In contrast, bile acid-
modulating bacteria (such as C. scindens) induced HCC progres-
sion via the bile acid-CXCL16-CXCR6 axis. In a NASH-associated
HCC mouse model, NKT cells were stimulated by the gut microbe
A. muciniphila, which thereby prevented HCC progression [102].

B cells. B cells contribute to NASH pathogenesis by activating
metabolic T cells and monocyte-derived macrophages (via IgA
secretion), thereby promoting fibrosis [103].
In the HCC TME, B cells usually interact with T cells to enhance

anti-tumor effects thus improving prognosis [104]. For instance, B
cells could be triggered by oxidative stress and then activate Tet
methylcytosine dioxygenase 2 (TET2) to promote IL-10 expression

[105], and high levels of IL-10 in B cells are usually correlated with
HCC progression [106]. Theoretically, gut microbiota could
regulate the TET2 level in B cells by modulating oxidative stress
[107], and TET2 downregulation supported antitumor immunity to
improve anti-programmed death (PD)-1 treatment for HCC [105].
In this way, TET2 inhibition in B cells by the gut microbiota may
aid HCC treatment.

T cells. In the pathogenesis of HCC, the gut microbiota and their
metabolites often interact with Tregs to establish immunosup-
pression in the liver [108].
In 2021, nonalcoholic fatty liver disease (NAFLD)-HCC was

characterized by expansion of Bacteroides caecimuris (P < 0.0001)
and Veillonella parvula (P= 0.002) and dysbiosis of other gut
microbes [28]. Accordingly, flow cytometry showed that NAFLD-
HCC induced the recruitment of effector IL-10+ Tregs, thus
attenuating the expansion of cytotoxic CD8+ T cells [28]. Both
Tregs and CD8+ T cells in HCC TME expressed dysfunction
markers such as PD-1, Lag-3, and Tim-3 [109].
Many studies have determined the critical role of CD8+T cells in

defending against HCC initiation and progression, which improves
prognosis [110]. Different CD8+ T cells may predict different HCC
incidences. CD8+ resident memory T cells and Tregs were
enriched in HBV-related HCC, whereas Tim-3+CD8+ T cells and
CD244+ NK cells were enriched in non-viral-related HCC [111].
CD8+T cells were recently found to predict truly recurrent HCC
[112]. Single-cell RNA-sequencing of 34 samples from 20 recurrent
HCC patients showed that the TME of truly recurrent HCC had
more KLRB1 (Killer Cell Lectin Like Receptor B1, namely
CD161)+CD8+ T cells with memory phenotype and low cytotoxi-
city, while the TME of de novo recurrent HCC had more cytotoxic
and exhausted CD8+ T cells [112].

Fig. 2 The gut microbiota influences HCC progression through the interaction with molecular signaling pathways and various cells. LPS/
TLR4 signaling (activated by Gram-negative bacteria) promotes fibrotic differentiation of hepatic progenitor cells (HPCs) and enhances IL-6/
TNF-α production, disrupting Ras and p53 pathways to drive malignant proliferation. The TLR4-MyD88 axis activates STAT3 and SP1,
upregulating VEGF expression and promoting angiogenesis/metastasis. C. scindens converts primary bile acids into secondary bile acids,
decreasing CXCL16 expression and NKT cell recruitment. LTA from Gram-positive bacteria activates IL-33/IL-1β in hepatic stellate cells (HSCs)
via TLR2, promoting Treg-mediated HCC progression.
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CD8+ T cells are generally considered to have anti-tumor
effects, while expression of other different markers would present
different states and functions of T cells, thus may exert totally
different effects on HCC. For example, in the pro-inflammation and
pro-tumoral environment formed by the gut microbiota,
CD8+CXCR6+PD1+ T cells usually have an auto-aggressive,
exhaustive and resident phenotype, which ultimately contribute
to HCC pathogenesis [113].
With the effect of inhibiting the proliferation, activation and

functions of other cytotoxic T cells, Foxp3+ CD4+ regulatory T cells
(Tregs) became the most crucial subset of CD4+ T cells during HCC
progression, especially from simple steatosis to HCC for their
immunosuppressive effects [108]. Deoxycholic acid (DCA) and
lithocholic acid (LCA) were the most abundant metabolites of the
gut microbiota, and some gut microbiota may synthesize certain
molecules of the bile acids [114]. Certain LCA derivative,
isoalloLCA, was found to stimulate mitochondrial reactive oxygen
species to upregulate FOXP3, thus exerting an immunosuppres-
sive effect by inducing Treg differentiation [115].
3β-hydroxydeoxycholic acid (isoDCA) also induced Treg differ-
entiation by acting on DCs to activate FOXP3 [116]. Some
subtypes of LCA or DCA synthesized by the gut microbiota may
also mediate T cells through certain mechanisms.

HSCs. In a mouse model of HCC induced by a high-fat diet [117],
lipoteichoic acid (a cell wall component of Gram-positive gut
microbes) triggered IL-33 and IL-1β released from senescent HSCs.
IL-33 was IL-1β-dependent and promoted HCC development via
Treg activation in the TME. In 2017, a mouse model was used to
show that obesity-induced lipoteichoic acid suppressed antitumor
immunity and thereby promoted HCC [118]. The lipoteichoic acid
enhanced the senescence-associated secretory phenotype and
the COX2 level in HSCs in a process involving TLR2. As a result,
COX2-mediated prostaglandin E2 (PGE2) boosted Tregs and PD-1+

CD8+ T cells by binding to PTGER4 (Prostaglandin E Receptor 4) on
them, thereby contributing to HCC progression. Tregs can
upregulate PD-1 on CD8+ T cells, and PD-1 is an inhibitory
molecule that impairs the antitumor effect of T cells [119]. COX2
overexpression and excess PGE2 production were detected in
HSCs in human NASH-triggered HCC, suggesting that the gut
microbiota-driven COX2-PGE2-PTGER4 pathway may function in
human NASH-associated HCC [118].

Fibroblasts. In HCC progression, cancer-associated fibroblasts
induced neutrophil chemotaxis, protected neutrophils from
spontaneous apoptosis, and activated neutrophils via the IL6-
STAT3 signaling cascade, and then these neutrophils impaired T
cell function via the Prostaglandin E Receptor 41/PD-L1 signaling
pathway [120].

Microbe-derived metabolites mediate HCC progression
Bile acids. Bile acids are key metabolites related to gut bacteria or
the whole gut microbiota [115]. They are synthesized from
amphipathic cholesterol in the liver and directly regulated by the
farnesoid X receptor (FXR)-fibroblast growth factor 19 (FGF19) axis
[121] and G protein-coupled bile acid receptor 1 (GPBAR1/TGR5)
[122]. Bile acids are modulated by gut bacteria to generate
bioactive molecules [115], with the major effect of solubilizing
dietary lipids to help their absorption in the small intestine [123].
After that, about 95% of bile acids are reabsorbed and recycled via
the gut–liver axis, and the remaining 5% of bile acids enter the
colon to facilitate the production of the major serum bile acids,
DCA and LCA, via dihydroxylation; this process is mediated by gut
microbes [3, 124, 125].
One of the most important biological effects of bile acids is their

crucial role in the differentiation of T cells and macrophage
polarization. Distinct derivatives of LCA and DCA (including iso-, 3-
oxo-LCA/DCA, allo-, 3-oxoallo-, and isoalloLCA) are involved

[126, 127]. 3-oxoLCA inhibited the differentiation of Th17 cells
by binding to the small molecule agonist RORγt [115], while
isoalloLCA stimulated anti-inflammatory Treg differentiation by
upregulating FOXP3 via mitochondrial reactive oxygen species
generation and the binding of NR4A1 at the Foxp3 locus [128].
3β-hydroxydeoxycholic acid (isoDCA) also induced Treg differ-
entiation by acting on DCs to activate FOXP3 [116]. In a mouse
model of colonic inflammation, DCA was enriched after Gram-
positive bacteria increased, and DCA then promoted macrophage
polarization toward the pro-inflammatory M1 phenotype partially
via TLR2 transactivated by the M2 muscarinic acetylcholine
receptor [95]. As T cells and macrophages both affect the
hepatocarcinogenesis-related immune response, bile acids may
regulate HCC via these mechanisms.
In recent years, there has been increasing evidence that the gut

microbiota influences hepatic metabolic homeostasis by regulat-
ing bile acid synthesis and metabolism, leading to HCC develop-
ment and progression.
DCA, a hydrophobic bile acid, has been reported to be closely

related to DNA damage and cell survival [129, 130]. In mice,
dietary or genetic obesity increased the DCA level (related to
dysbiosis). DCA then induced HSC senescence, thus stimulating
the secretion of multiple cytokines that induce hepatocarcinogen-
esis [131].
Hydrophobic bile acids, under the control of the gut microbiota,

may promote HCC. During NASH-HCC formation and develop-
ment, when bacterial taxa involved in bile acid metabolism (such
as the genera Clostridium, Bacteroides, and Desulfovibrio) were
significantly increased, the taurochenodeoxycholate (TCDCA) level
was strongly increased, while decreasing hydrophobic bile acids
reversed NASH-HCC progression [30]. In further in vitro tests, DCA-,
LCA-, and TCDCA-treated HepG2 cells all grew faster and had
higher oncoprotein levels, illustrating the hepatocarcinogenesis-
promoting effects of these hydrophobic bile acids [30]. These
findings were further supported by Ma et al. in 2018 [101]. They
found that gut microbiota-mediated primary-to-secondary bile
acid conversion indirectly disturbed NKT cell accumulation and
thereby interfered with HCC-related immune responses via the
CXCL16-CXCR6 axis.
In 2020, Huang et al. [31] found that several groups of bile acid-

associated gut microbes (Bacteroides, Lachnospiracea incertae
sedis, and Clostridium XIVa) were related to transcriptome changes
in the TME in HBV-related HCC patients, suggesting that bile acids
may be important mediators of the communication between the
gut microbiota and HCC, but the mechanisms need further study.
Furthermore, in 2023, Li et al. [32] found that taurochenodeoxy-
cholic acid and glycochenodeoxycholate were both tightly
associated with HCC in their cohort study, indicating the potential
diagnostic value of secondary bile acids in HCC.
The liver not only regulates bile acid production and

enterohepatic circulation, but also absorbs nutrients from the
portal vein and metabolites from the gut microbiota [132], thus
regulating lipid and glucose metabolism [133]. The gut microbiota
complements the host with additional metabolic functions
including the digestion of complex polysaccharides [134, 135]
and the production of fatty acids [136, 137], amino acids [138], and
vitamins [139]. The gut bacteria have the genetic potential to
perform thousands more chemical reactions than humans [140].
SCFAs are metabolites that are controlled by the gut microbiota
and have the greatest impact on HCC.

SCFAs. Several studies have found that the gut microbiota in
HCC is characterized by a distinctive dysbiosis profile [28]. During
HCC development, the gut microbiota supports SCFA production
and elicits a T cell immunosuppressive phenotype. SCFAs, which
are produced by the anaerobic fermentation of dietary fiber by
the gut microbiota, are characteristically altered during the
pathogenesis of HCC, and greatly influence tumor immunity.
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For example, in a study in 2021, the gut microbiota of NAFLD-
HCC patients compared to patients with other liver diseases was
characterized by expansion of Proteobacteria at the phylum level,
and expansion of Enterobacteriaceae and reduction of Oscillospir-
aceae and Erysipelotrichaceae at the family level. At the species
level, Bacteroides caecimuris (P < 0.0001) and Veillonella parvula
(P= 0.002) were significantly enriched in the NAFLD-HCC patients
compared to the NAFLD-cirrhosis patients and non-NAFLD
controls [28].
Furthermore, genes related to acetate and butyrate/acetylpho-

sphate synthesis were both overexpressed in the NAFLD-HCC
patients compared to the others [28]. Accordingly, Oxaloacetate
and acetylphosphate, crucial SCFA intermediates, were signifi-
cantly elevated in the feces of the NAFLD-HCC patients [28]. The
feces of the NAFLD-HCC patients had characteristically higher
levels of SCFAs such as acetate, butyrate, and formate (P < 0.0001
for all) compared to the NAFLD-cirrhosis patients and non-NAFLD
controls. In the serum, the increased SCFAs were butyrate
(P= 0.005) and propionate (P= 0.0002) [28]. Based on statistical
analysis of patient data, the gut microbes related to NAFLD-HCC
seemed to activate the expansion of effector IL-10+ Tregs and
restrain the expansion of cytotoxic CD8+ T cells partially via the
effects of SCFAs [28].
HCC development and the associated immune response

involves the participation of many T cells, and many studies have
identified a potential role of SCFAs in mediating the biological
effects of the gut microbiota on T-cell immunity [141–143].
Dysbiosis leads to the generation of excessive amounts of SCFAs.
SCFAs, especially propionate, reduced IL-17 and IL-22 production
by intestinal γδ T cells, and thus had the potential to suppress
anti-tumor immunology [142]. On the contrary, Butyrate can be
used in the tricarboxylic acid cycle (rather than relying on
glycolytic input) in CD8+ T cells, so the cells preferentially exhibit
oxidative phosphorylation. This increases CD8+ T cell activity and
their long-term survival as memory cells, thus theoretically protect
anti-tumor immunology [143]. Some SCFAs (under the control of
the gut microbiota) have been reported to promote an
immunosuppressive response in an anti-inflammatory environ-
ment by strongly regulating Tregs and CD8+ T cells in other
diseases [143–145], suggesting the complex role of these SCFAs
in HCC.
Several studies have reported the anti-HCC role of SCFAs. In an

HBx (HBV-encoded oncoprotein) transgenic (HBxTg) mouse model
fed SCFAs (consisting of the sodium salts of butyrate, propionate,
and acetate), HCC foci were reduced and the altered signaling
pathways affected by HBx were rescued, including those involving
inflammation, phosphatidylinositol 3-kinase, epidermal growth
factor, Ras, and NF-κB signaling. SCFAs also dose-dependently
reduced HBx-transfected cell viability, suggesting that SCFAs may
delay the progression of HBV-HCC, but the detailed mechanisms
remain unclear. One of the mechanisms may involve SCFAs
downregulating disabled homolog 2 (DAB2) and thus depressing
Ras pathway activity [146].
In a mouse model of HCC, Lactobacillus reuteri was markedly

reduced, together with decreased SCFAs levels, especially acetate.
Further research found that L. reuteri could increase acetate levels,
and acetate then reduced the production of IL-17A in hepatic type
3 innate lymphoid cells (ILC3), thus exerting an anti-tumor effect.
Moreover, the combination of acetate with PD-1/PD-L1 blockade
significantly enhanced antitumor immunity [147]. This implied
that SCFAs such as acetate may not only be regulated by the gut
microbiota and affect HCC by influencing T cell-associated
immune effects, but may also influence HCC treatment by
influencing immune checkpoint inhibitors.
Acetate seems to be a double-edged sword in the HCC process,

different sources of acetate may have totally opposite effects.
Song et al. recently found that acetate generated by Bifidobacter-
ium pseudolongum suppressed NAFLD-HCC in two mouse models

and NAFLD-HCC cell lines [148]. B. pseudolongum was the most
depleted bacterium in mice with NAFLD-HCC, and B. pseudolon-
gum supplementation significantly suppressed NAFLD-HCC for-
mation. Acetate was verified as the crucial metabolite generated
by B. pseudolongum. It bound to G protein-coupled receptor 43
(GPR43) on hepatocytes in the liver. GPR43 activation suppressed
the IL-6/JAK1/STAT3 signaling pathway to restrain NAFLD-HCC
formation and progression. However, in the same year in mouse
models, Zhou et al. found that gut microbiota-derived acetate
induced by high dietary fructose upregulated uridine diphospho-
N-acetylglucosamine (UDP-GlcNAc) and enhanced protein
O-GlcNAcylation in HCC, thus promoting HCC progression [149].
The mechanism involved acetate produced from fructose by the
gut microbiota. The acetate served as a major hepatic acetyl-CoA
donor [150], which increased glutamine synthesis, leading to
higher O-GlcNAcylation in fructose-rich environments. Hyper-O-
GlcNAcylation of eukaryotic elongation factor 1A1 (eEF1A1) then
promoted cell proliferation and tumor growth [149].
Butyrate has antitumor properties. In HCC patients, the

abundance of butyric acid-producing gut bacterial genera was
decreased, butyrate metabolism was activated, and plasma
butyrate levels were decreased [42]. Butyrate supplementation
can not only inhibit HCC proliferation and metastasis, but also
improve the anticancer efficacy of sorafenib by regulating
intracellular calcium homeostasis [151] or affecting sorafenib-
targeted miRNAs [152]. Butyric acid also plays a crucial role in the
synergistic anti-HCC effect of peroxisome proliferator-activated
receptor (PPAR)-δ and berberine. Berberine suppressed HCC,
which was dependent on the binding of PPARδ to the promoters
of apoptotic genes such as caspase 3, B-Cell CLL/Lymphoma 2
(BCL2) associated X protein (BAX), and BCL2. Butyric acid
enhanced the efficacy of berberine by reducing PPARδ degrada-
tion via inhibiting the ubiquitin–proteasome system [153].
As summarized in Fig. 3, gut microbiota derived metabolites

usually have two-sided effects on modulating HCC progression.

FROM MICROENVIRONMENTAL IMBALANCE TO HCC
As indicated above, gut dysbiosis promotes HCC development
through multiple mechanisms: altering PRR expression (e.g., TLRs)
and downstream signaling, disrupting immune cell function, and
inducing gut-liver metabolic dysregulation. These processes drive
chronic inflammation, immune microenvironment remodeling,
and immune evasion. For example, during NAFLD-cirrhosis-to-HCC
progression, dysbiosis-induced SCFA accumulation expands IL-10+

Tregs and suppresses cytotoxic CD8+ T cells, fostering immuno-
suppression and hepatocarcinogenesis [28].
Enterobacterial dysbiosis alters the intestinal environment and

further exacerbates enterobacterial dysbiosis by changing the
immune microenvironment, thus creating a vicious cycle. Enter-
obacteriaceae, including Klebsiella, E. coli, Aspergillus, and Enter-
obacteriaceae, are among many potential pathogens. An
overabundance of Enterobacteriaceae in the gut releases large
amounts of LPS, which is positively correlated with upregulated
serum IL-6, IL-1, and TNF-a [154]. These pathological changes may
exacerbate enterobacterial dysbiosis by increasing transcellular
permeability, thus impairing intestinal barrier function [155]. This
ultimately exacerbates Enterobacteriaceae, Haemophilus, and
Enterococci overgrowth.
Regarding T cells and intestinal bacteria imbalance, gut

dysbiosis and metabolic disorders usually lead to an intensely
inflammatory environment in the liver [156], involving immune
cells such as CD8+ T cells and NKT cells in HCC pathogenesis [157].
For example, during the progression from NASH to HCC, IL-15
induced FOXO1 (Forkhead Box O1) downregulation and CXCR6
upregulation. This made liver-resident CXCR6+ CD8+ T cells
susceptible to stimulatory factors (including acetate and extra-
cellular ATP). As a result, CD8+CXCR6+PD1+ T cells were induced
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to attack both parenchymal and nonparenchymal cells in an
antigen-independent manner, and this auto-aggressive process
further aggravated liver injury and caused a pro-tumor environ-
ment. Moreover, CD8+CXCR6+PD1+ T cells have an exhaustive,
hyperactivated, and resident phenotype, and ultimately contribute
to HCC pathogenesis [113].
Accumulation of LPS itself can also promote HCC by triggering

tumorigenesis [97] and T cell-related immunosuppression [158].
Thus, gut dysbiosis disrupts the equilibrium between pro-

tumorigenic pathobionts (e.g., Enterobacteriaceae) and anti-
tumorigenic symbionts (e.g., Akkermansia), offering insights into
pathogenesis, therapeutic interventions, and biomarker discovery.

RELATIONSHIP BETWEEN GUT MICROBIOTA AND
INTRATUMORAL MICROBIOTA OF HCC
In recent years, there have been many studies on the intratumoral
microbiota. Intratumoral bacteria are predominantly intracellular,
mainly colonizing the cytoplasm of both immune cells and tumor
cells [159], and the colonization of intratumoral microbiota was
considered due to the hypoxic, immunosuppressed, and nutrient-
rich TME [160]. While establishing the relationship between gut
and intratumoral microbiota in HCC is complex, emerging
evidence suggests a potential correlation.

Some intratumoral microbiota are derived from gut
microbiota
In HCC, the intratumoral microbes mainly originate from the
hepatic blood system, biliary system, and normal adjacent tissues
[161]. As mentioned above, gut microbiota dysbiosis and gut
permeability are aggravated at the onset of HCC [52]. In this

situation, gut microbiota has the chance to get into the circulation
via Blood vessels in the intestines mucosa and mesentery, and can
even translocate into the liver via the portal circulation [49, 61]. In
a Lewis lung cancer mouse model [162], gut-derived A. muciniphila
(which was discussed above, exhibiting several anti-HCC effects)
was found migrating into the blood circulation and colonizing
local lung cancer tissue. In pancreatic cancer, the gut microbiota is
closely related to, and can significantly affect, the intratumoral
microbiota [163]. Gut microbes can translocate to and colonize
pancreatic tumor tissues, and they control the overall intratumoral
microbe composition. They alter immune function, ultimately
affecting tumor progression and patient survival [78, 164]. These
studies all implied that part of the origin of intratumoral
microbiota is the gut microbiota, and the gut microbiota has the
potential to mediate tumor progression by influencing the
intratumoral microbiota. As the primary organ of HCC, the liver
is exposed to the gut microbiota via the portal vein and blood
from the gut contributes to nearly 70% of the whole liver blood
supply [101, 165]. It is thus natural to consider whether the
intratumoral bacteria originated from the gut microbiota and had
the potential to influence tumor progression by acting with
each other.

Microbiota profiles in gut and in HCC tumor tissues seem to be
consistent
Unlike in the gut microbiota, Proteobacteria, Actinobacteria,
Bacteroidetes, and Firmicutes were the four dominant bacterial
phyla (accounting for up to 90% of the bacteria) in both HCC and
matched adjacent nontumor tissues, on the basis of different
spatial location and microenvironment [166, 167]. Each type of
tumor has a distinct intratumoral microbiome compositive feature

Fig. 3 The gut microbiota modulates HCC progression via metabolites. SCFAs (butyrate, propionate, acetate) downregulate PI3K/NF-κB
signaling in HBV-HCC. L. reuteri-derived acetate suppresses IL-17A in ILC3s, exerting anti-tumor effects. Bifidobacterium pseudolongum-derived
acetate binds GPR43, inhibiting IL-6/JAK1/STAT3 in NAFLD-HCC. Butyrate synergizes with berberine to stabilize PPARδ, enhancing apoptosis
via caspase 3/BAX.
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[159]. HCC presents characteristic intratumoral microbiota profile
that differs from other tumors as well [161, 168].
In a study by Sun et al. involving 28 patients with primary liver

cancer (including 11 patients with HCC), Pseudomonas was
significantly decreased at the genus level (probably due to its
antitumor effects) in the tumor tissues compared to the adjacent
normal tissues, and Rhizobiaceae at the family level and
Agrobacterium at the genus level were significantly increased in
the tumor tissues compared to the adjacent normal tissues [167].
In a study by Huang et al. [161] involving 28 normal liver tissues,
64 peritumoral, and 64 HCC tissues. At the phylum level, the HCC
tissues had higher levels of Proteobacteria, Firmicutes, and
Actinobacteriota, and lower levels of Patescibacteria and Acido-
bacteriota compared to the normal tissues. At the class level, the
HCC tissues were enriched in Gammaproteobacteria, Bacilli, and
Actinobacteria compared to the normal tissues. In particular, the
abundance of Gammaproteobacteria in HCC tissues was signifi-
cantly increased compared to the normal tissues. In the study by
He et al. [168] involving 99 HCC and adjacent normal tissues.
Enterobacteriaceae, Fusobacterium and Neisseria were significantly
increased in the HCC tissues compared to the adjacent normal
tissues, Pseudomonas was decreased in HCC tissue compared to
the norma. Specifically, the proportion of Proteobacteria in HCC
was slightly higher and the abundance of Actinobacteriota was
significantly lower at the phylum level. As for the genus level, the
abundances of the genera Dietzia, Faecalibacterium, Megamonas,
Hydrogenophaga, Agathobacter, Chryseobacterium, and Rumino-
coccaceae were significantly lower, while the abundances of
Neisseria, Clostridia_UCG-014, Fusobacterium, and Lactobacillus
were significantly higher in the HCC tissues compared to the
adjacent normal tissues.
The trends of the same microbiota in gut and in HCC tumor

tissues seem to be consistent. In a study by Sun et al. involving 91
HCC patients undergoing hepatectomy, Actinobacteria, which was
increased in the gut of HCC patients [30] (related to increased
stage and worse prognosis [34]), was notably enriched in HCC
tissues [166]. At the phylum level, Proteobacteria [33], Firmicutes
[30], Which were significantly increased in the gut of HCC patients,
were found to have a higher level in HCC tissue constantly [161].
Enterobacteriaceae, the expansion of which in gut was supposed
to belong to a distinctive gut dysbiosis profile of HCC [28], was
found increased in the HCC tissues, too [168]. At the genus level,
Faecalibacterium [32], Agathobacter [33], and Ruminococcaceae
[35], which were significantly decreased in the gut of HCC
patients, were found to have significantly lower levels in HCC
tissue compared to the adjacent normal tissues [168]. Lactobacillus
was significantly increased in both the gut [41] and the HCC
tissues [168] compared to the normal controls.
In summary, though HCC presents characteristic microbiota

profiles in both gut and HCC tissues which differ from other
tumors, the composition and trend of gut and microbiota had
much in common (Fig. 1).

Gut microbiota and intratumoral microbiota share the same
risk-predicters
Furthermore, there was significant microbial heterogeneity in the
intratumoral microbiota between different HCC patients and
between multiple tumor foci in the same patient [166]. HCC with
different risk factors (with or without HBV, cirrhosis, and so on) or
different prognoses also had different intratumoral microbiota
[161] (Fig. 4).
For example, Methylobacterium in HCC tissue was associated

with poor long-term survival in postoperative HCC patients [166].
At either family or genus level in HCC tissue, intratumoral
Pseudomonadaceae exhibited an anti-tumor effect and was
linearly associated with prognosis [167]. A high abundance of
Fusobacterium in HCC tissue was positively associated with HCC
progression [168].

A high level of Proteobacteria in the gut is associated with HCC-
MVI [44], gut inflammation and dysbiosis [52], basically patho-
logic status and poor prognosis. Correspondingly, high level of
Proteobacteria in HCC tissues is associated with the elevation of
aspartate aminotransferase (AST), alanine aminotransferase (ALT)
and TBA levels, which might also indicate a pathophysiological
hepatic condition [166]. Loss of Akkermansia in the gut correlates
with cellular immunity disorder, liver inflammation and intrahe-
patic metastasis in HCC, thus poor prognosis [102], lately loss of
Akkermansia in HCC tissue was found associated with poor long-
term survival in postoperative HCC patients as well [166]. A
higher abundance of Enterobacteriaceae in the gut statistically
correlates with HCC-MVI [44], higher HCC stage and worse
prognosis [34], higher abundance of Enterobacteriaceae in HCC
tissue was found related with HCC progression and thus
prognosis as well [168]. Although little is known about the
crosstalk between the gut microbiota and the intratumoral
microbiota, several studies have reported some gut microbiota as
HCC risk factors, may play roles in HCC tissue and related to HCC
progression and prognosis as well.

Mechanisms by which the gut microbiota affects the
intratumoral microbiota in HCC
The influence of the gut microbiota on the intratumoral
microbiome is a multifaceted and intricate process involving
various mechanisms.
Firstly, as discussed above, the gut-derived A. muciniphila

could migrate from the gut and colonize local lung cancer tissue
through blood circulation [162], and the gut microbiota can
translocate to and colonize pancreatic tumor tissues to control
the intratumoral microbiota composition, these facts imply that
the gut microbiota has the potential directly colonize the HCC
tissue to become and modulate the intratumoral microbiota.
Secondly, the gut microbiota contributes to the maintenance of
intestinal barrier integrity. Imbalances in the gut microbiota may
lead to compromised barrier function, allowing the translocation
of bacteria and bacterial products to affect the liver and tumor
via the portal venous system [169]. The gut microbiota
significantly affects the abundance, distribution and biological
role of the intratumoral microbiota by this way. Finally, we have
detailed how gut microbiota affects the TME through immune
cells [170, 171], metabolites [28, 147], etc., all of which can
influence the intratumoral microbiota. The gut microbiota is
closely related to the microvascular infiltration [44] and
inflammatory microenvironment [45, 49, 61] in tumors, which
all play an important role in the growth and reproduction of
bacteria in tumor tissues.

MECHANISMS BY WHICH THE INTRATUMORAL MICROBIOTA
AFFECTS HCC PROGRESSION
Regarding the mechanisms by which the intratumoral microbiota
affects HCC progression, although the exact mechanisms are not
yet fully known, we summarized three possible ways by which the
intratumoral microbiota may affect HCC progression, based on
existing studies on HCC and other tumors (Fig. 4).

Causing DNA damage
The intratumoral microbiota can cause chronic persistent inflam-
mation by disrupting the mucosal barrier via mechanical
stimulation, or by secreting toxins that lead to genetic material
damage or mutations, upregulating tumor-associated signaling
pathways and thus leading to genotoxicity and inducing
malignant transformation of cells. For example, HCC tissue had
significantly increased Proteobacteria at the phylum level and
significantly increased Gammaproteobacteria at the class level, and
the most representative product secreted by Gammaproteobac-
teria is cytolethal distending toxin (CDT) [172], which is a
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multimeric protein composed of three subunits, CdtA, CdtB, and
CdtC. CdtB causes significant dose-dependent DNA damage [173],
and may cause original HCC by this way.

Mediating tumor-related signaling pathways
The abovementioned Streptococcus and Veillonella were high in
HCC and increased with HCC progression [28, 33], and they were
also involved in the development of lung cancer related signaling
pathways [174]. Intratumoral Fusobacterium was increased in HCC
[168], and Fusobacterium nucleatum in CRC cells activated YAP
signaling and downregulated the transcription factor forkhead
box D3 (FOXD3), which reduced methyltransferase like protein
(METTL) 3 transcription. This subsequently reduced the m6A levels
of kinesin family member 26B (KIF26B) mRNA and thereby
upregulated its expression and inhibited its degradation, which
together contributed to CRC metastasis [175]. Although there are
no studies on their intratumoral effects in HCC, they (or other

functionally similar microbes) have the potential to induce HCC
progression by mediating signaling pathways.

Directly altering the TME
Intratumoral microbes may infiltrate the TME after being
stimulated by oxygen and chemotactic gradients [176], The
intratumoral microbiota is not only a key component of the
TME, but it can also reprogram tumor metabolism to affect tumor
invasion and metastasis.
In particular, the intratumoral microbiota affects the immune

cells in the TME to influence tumorigenesis and cancer treatment.
Intratumor microbes affected the immune checkpoint proteins: in
several tumors, fatty acid synthase 2 (fap2) expressed by
Fusobacterium nucleatum could directly bind to the checkpoint
protein TIGIT and thereby inhibit the anti-tumor activity of human
NK and T cells [170]. In CRC, enterotoxigenic Bacteroides fragilis
triggered colon tumorigenesis based on the generation of pro-

Fig. 4 Roles of intratumoral microbiota in HCC and other common tumors. For example, Gammaproteobacteria was increased and could
secrete cytolethal distending toxin (CDT) and thus cause significant dose-dependent DNA damage which may cause original HCC.
Intratumoral microbiota has the potential to intervene in HCC progression by influencing the function of immune cells such as macrophages,
T cells and MDSCs. Some downregulated intratumoral microbes might be protective microbes and were significantly positively correlated
with some metabolites also decreased in HCC tissues. In lung cancer, gut-derived Akkermansia muciniphila migrated into the blood circulation
and colonized local lung cancer tissue and then inhibited tumorigenesis mainly by modulating other intratumoral microbiota and activating
lung-resident γδ T cells. In CRC, the intratumoral microbiota pks+ Escherichia and Bacteroides fragilis increased metastasis by destroying the
gut–vascular barrier by the stimulation of IL-17 and DNA damage. Increased Fusobacterium nucleatum in CRC cells activated YAP signaling and
downregulated the transcription factor forkhead box D3 (FOXD3), which reduced METTL3 transcription. This subsequently reduced the m6A
levels of kinesin family member 26B (KIF26B) mRNA and thereby upregulated its expression and inhibited its degradation, which together
contributed to CRC metastasis. Improved intratumor microbiota diversity in pancreatic cancer was modulated by the gut microbiota and
increased survival due to increased cytotoxic T cells and decreased MDSCs.
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tumoral MDSCs [177]. In pancreatic tumors, anaerobic bacteria
such as Bacteroides, Lactobacillus, and Peptoniphilus may shorten
survival time by decreasing the number of tumor-infiltrating
T cells [171].
Intratumoral microbiota has the potential to intervene in HCC

progression by influencing the function of immune cells such as
macrophages, T cells and MDSCs. In 2023, Li et al. [178]
analyzed 70 samples, including 29 paired tumor and nontumor
tissues from patients with HBV-HCC and 12 liver tissues from
patients with chronic hepatitis B (CHB). They established two
HCC subtypes based on different intra-tissue microbiota
phenotypes and heterogeneity features, namely bacteria- and
virus-dominant subtypes, which exhibited distinct clinical
manifestations. Patients with bacteria-dominant HCC had larger
and more invasive tumors, and worse survival, compared to
those with virus-dominant HCC. There was increased M2-type
macrophage infiltration in bacteria-dominant HCC compared to
virus-dominant tumor HCC. Some risk factors like HBV may
result in a unique microenvironment that favors the distinct
microbiota colonization, which increases the recruitment and
infiltration of CD8+ T cells, monocytic MDSCs (mMDSCs) and
polymorphonuclear MDSCs (pmnMDSCs) in HBV-HCC, and
finally accelerated the disease progression via inhibiting host
antitumor immunity [165].
The close association has been found between different

intratumoral microbiota and metabolites in HCC, although the
exact mechanism is unclear. In a study analyzing HCC tissues in
mice [179], the Kyoto Encyclopedia of Genes and Genomes
analysis found that the intratumoral microbial gene’s functions
were markedly enriched in the lysosome, glycosaminoglycan
degradation, favone and favonol biosynthesis and autophagy
yeast than in normal tissues. The Clusters of Orthologous Groups
of proteins (COG) functional analysis found that the intratumoral
microbial gene’s functions were markedly enriched in glycerol-3-
phosphate transport, Fe3+-siderophore transport, Sugar (pentu-
lose or hexulose) kinase and Fermentation-respiration switch
esterase (FrsA) than in normal tissues. In HCC tissue compared to
the normal, the most upregulated metabolites include docosa-
trienoic acid, FAHFA, L-palmitoylcarnitine, androsterone, citrulline,
adrenic acid, myristic acid and so on, the most downregulated
metabolites include lactobionic acid, feruloyl putrescine,
6-phosphogluconic acid, S-(methyl) glutathione, thromboxane
B1, cholic acid, stercobilin and so on. Furthermore, in the analysis
investigating the association between the top 20 diferrential
metabolites and the top 10 diferrential intratumoral bacteria, top
abundant intratumoral bacteria Allobacillus sp SKP4 8 and Ralstonia
sp UNC404CL21Col showed significant positive correlations with
most metabolites, including citrulline, cytidine 5′-monophosphate
(hydrate), indole-3-lactic acid, 2′-O-methylguanosine, cytidine5′-
monophosphate, L-(+)-Citrulline, cis-4-HydroxyD-proline, and
myristic Acid, while showed significant negative correlations with
a-Lactose and N-acetyl-Dglucosamine. However, the top abundant
normal-tissue bacteria Pseudomonas koreensis and Pseudomonas
psychrotolerans were in negative correlation with most metabo-
lites, and the trend was opposite to the Allobacillus sp SKP4 8 and
Ralstonia sp UNC404CL21Col. Some downregulated intratumoral
microbes might be protective microbes and were significantly
positively correlated with some metabolites also decreased in HCC
tissues, and they may be involved in the synthetic and metabolic
processes of some protective compound metabolites [180].

Modulating HCC metastasis
The intratumoral microbiota plays an important role in metastasis.
Intravenous antibiotics selectively inhibit the intratumoral (not
gut) bacteria, while oral antibiotics deplete both types of bacteria.
In a mouse breast cancer model, intravenous antibiotics decreased
metastasis while not affecting the primary lesion, while oral
antibiotics decreased both metastasis and primary lesion

formation, hinting at the key role of the intratumoral microbiota
in metastasis [181]. In HCC, the situation is more complicated. The
liver is exposed to gut microbiota metabolites and products
carried by the blood, as 70% of the whole liver blood supply is
from the gut [101]. In many mouse models, oral antibiotics had
liver-selective antitumor effects by restraining the gut microbiota
that specifically influenced intrahepatic tumors. These mouse
models included the spontaneous HCC transgenic model, the
subcutaneous implantation model (liver metastases were reduced
but not the primary foci), and the intrasplenic tumor injection
model (liver metastases were reduced, while lung metastases
were increased by tumor cell tail vein injection in a different
model). The liver-selective antitumor effects may partly be the
result of the gut microbiota using bile acids to control NKT cell
infiltration in the liver [101].
Additionally, tumor-derived exosomes can transfer miRNAs and

proteins and promote tumor metastasis through multiple
mechanisms, such as remodeling TME, promoting EMT and
inhibiting the antitumor immune response [182–184]. Tumor cells
infected by bacteria may secrete more exosomes, thus accelerat-
ing the metastasis of the tumor [185, 186].
There may also be a synergistic effect of gut flora and

intratumor flora in promoting tumor metastasis, because bacteria
of the same genus tend to act accordingly in tumor metastatic
progress whether in the gut or in tumor cells. Fusobacterium
nucleatum in gut inhibited the anti-tumor activity of human NK
cells and T cells [170], in tumour cells it increased the mobility of
these cells mobility, rendered them more resistant to stress in the
circulation, and finally promoted tumour metastasis [187].

Other anti-tumor effects
Intratumoral microbiota could protect tumor cells from fluid shear
stress during cell migration [188]. In the research of intratumoral
microbiota in a murine spontaneous breast cancer model,
intratumor bacteria colonized in circulating tumor cells were
found to defending the fluid shear stress by reorganizing actin
cytoskeleton resulted in metastasis process [181]. S. xylosus, L.
animalis, and S. cuniculi could increase the survival of breast
cancer cells in the lung from 3.4 to 6.4 fold [181], none of them
were reported in HCC to take a significant role in tumor cells. This
field is still relatively new and needs to be explored how specific
bacteria affect what specific tumour type metastates to specific
organs.
It is clear that intratumoral microbiota are not exclusively pro-

tumor, they can activate a bacterial antigen-specific response,
which can be used not only to amplify the immune response to
tumor antigens, thus increase the killing power of the tumor [188].
Briefly, bacteria could destroy tumor cells after targeting and
localizing them and then release tumor-associated antigen and
damage-associated molecular pattern to recruit or activate
immune cells [189]. For example, in melanoma, researchers found
that some microbial antigens were homologous to tumor antigens
and thus they share similar antigenic epitopes [190]. Subse-
quently, the tail length tape measure protein of the bacteriophage
Enterococcus hirae, and SVYRYYGL (SVY) epitope on the Bifido-
bacterium breve was similar to the tumor antigen and might cross-
react, promoting T-cell responses [191]. It is of great potential in
tumor therapy if we improve the tumor microenvironment by
inhibiting pro-tumor intratumoral microbiota and stimulating
tumor immune response by increasing some special intratumoral
bacterial epitopes.
In summary, this review discussed the role of gut microbiota in

the HCC progression, the relationship between gut microbiota and
intratumoral microbiota and their interaction in HCC. Both the gut
and intratumoral microbiota have a two-sided role in HCC
progression, and it is of great potential in tumor therapy if we
inhibit pro-tumor microbiota and stimulate tumor immune
response by increasing anti-tumor microbiota.
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DISCUSSION
The mechanisms by which gut dysbiosis leads to the progression
and metastasis of many tumors, including HCC, have been studied
for many years. The liver absorbs nutrients from the portal vein,
and the liver also receives metabolites from the gut microbiota via
the gut–liver axis [132]. The gut–liver axis is the main pathway
through which the gut microbiota influences the development of
liver disease [132]. The main components of this axis are (1) a
mucus layer containing commensal microorganisms, secreted IgA,
and antimicrobial peptides; (2) a layer of intestinal epithelial cells
with tight junctions between neighboring cells; and (3) a lamina
propria with a resident population of innate and adaptive immune
cells [192]. The gut microbiota influences HCC mainly by
modulating bile acid metabolism, affecting nutrient metabolism,
and altering levels of metabolic products.
Importantly, most of the gut microbiota are nonharmful. In a

balanced state or under external conditions, the gut microbiota,
and various biomolecules in the internal environment often
interact with each other and exert synergistic anti-tumor effects.
For example, PPARs are a family of transcription factors that
govern essential metabolic activities. One of the members, PPARδ,
plays a critical role in the antitumor effect of butyrate and
berberine. Berberine increased BAX, cleaved caspase 3, and
decreased BCL2 expression to suppress HCC development
dependent on PPARδ. On the other hand, berberine activated
the PPARδ transcriptional function to facilitate the binding of
PPARδ to the promoters of apoptotic genes such as caspase 3,
BAX, and BCL2. Moreover, berberine restored the dysregulated gut
microbiota induced by the liver tumor burden, rescuing the level
of the gut microbial metabolite butyric acid. Butyric acid in return
enhanced the efficacy of berberine by reducing PPARδ degrada-
tion via inhibiting the ubiquitin–proteasome system [153]. As the
important link in the middle, the balance of the gut microbiota is
crucial to disease progression, and disruption of the balanced gut
microbiota can strongly destroy the overall anti-tumor effect, and
even produce a tumor-promoting microenvironment.
Metabolites, such as SCFAs, are double-edged in HCC as well.

For example, in NAFLD-HCC, the gut microbiota induced high
levels of SCFAs such as butyrate, which was correlated with
increased IL-10+ Tregs but decreased CD8+ cells [28], seemingly
not consistent with its anti-HCC effect. In another example, acetate
induced by various factors exerted different effects on HCC, which
has been mentioned above [148, 149]. The paradox of the tumor-
promoting or tumor-suppressing functions of SCFAs suggests that
to accurately elucidate the functions of microbial metabolites, it is
important not to lose sight of the environments in which the
metabolites function, as well as the different types and
concentrations of the metabolites. For example, when concentra-
tions of SCFAs are within their normal physiologic ranges, they
significantly inhibit the development of colon cancer. Increasing
the dose of SCFAs beyond the tolerance threshold promotes
tumor progression, and the same mechanism and principle may
exist in HCC, waiting to be explored and investigated [193, 194].
Although little is known about the crosstalk between the gut

microbiota and the intratumoral microbiota, several studies have
reported on the biological functions of the gut microbiota, via
effects on the intratumoral microbiota, in various cancers.
In a Lewis lung cancer mouse model [162], gut-derived A.

muciniphila (which was discussed above, exhibiting several anti-
HCC effects) migrated into the blood circulation and colonized
local lung cancer tissue. A. muciniphila then inhibited tumorigen-
esis partly by modulating the tumoral symbiotic microbiota. A
higher level of gut A. muciniphila (due to gavage) increased the
abundance of intratumoral Akkermansia, Lactobacillus, Bifidobac-
terium, Staphylococcus, and Bacteroides, and these symbiotic
bacteria likely played an inhibitory role in glutamine (Gln) and
adenosine metabolism, thus helping to block local tumor
progression in the lungs. Alterations in the lung intratumoral

microbiota can influence lung cancer progression via many routes.
The lung cancer microbiota may activate lung-resident γδ T cells
to increase inflammation associated with lung adenocarcinoma. In
detail, the microbes may stimulate MyD88-dependent myeloid
cells to produce IL-1β and IL-23, activating Vγ6+ Vδ1+ γδT cells to
produce factors such as IL-17, leading to inflammation and tumor
cell proliferation [195]. Some intratumoral microbes in squamous
cell carcinoma caused epithelial TP53 mutations [196]. Thus, the
gut microbiota significantly alters the intratumoral microbiota in
lung cancer, and the intratumoral microbiota influences lung
cancer progression Through a variety of means including
glutamine (Gln) and adenosine metabolism, γδ T cells, interleukin
and TP53. Furthermore, the roles of the intratumoral microbiota
are more complicated than “pro-tumor” v.s. “anti-tumor”. In the
Lewis lung cancer mouse model, Staphylococcus and Lactobacillus,
which may block local tumor progression at the primary tumor
site [162], were reported to colonize tumor cells that migrated
from the primary site to metastatic foci and thereby significantly
increased the number of metastatic foci in a spontaneous breast
tumor model, and they did not influence the primary site [181].
As for colorectal cancer (CRC), there were significant differences

in the intratumoral microbiota between tissues with and without
KRAS mutation or microsatellite instability (two key factors
underlying CRC progression and prognosis). This indicates the
close associations of intratumoral microbial heterogeneity with
genetic alteration and CRC development [197]. When CRC cells
began to metastasize, the intratumoral microbiota increased
metastasis by destroying the gut–vascular barrier and building a
bacterial premetastatic niche in the liver [198]. The mechanism
involves increased genotoxic pks+ E. coli-encoded colibactin-
synthesizing enzyme levels that promote CRC metastasis [199].
This may be driven by Bacteroides fragilis, as colibactin lead to
increased IL-17 and DNA damage in colonic tissue and worsens
prognosis [200]. E. coli in CRC disrupted the gut–vascular barrier
reached the liver via the blood and then facilitated liver metastasis
[201].
Improved intratumor microbiota diversity in pancreatic cancer

was modulated by the gut microbiota and increased survival due
to increased cytotoxic T cells and decreased MDSCs [163].
Increased Pseudoxanthomonas, Streptomyces, Saccharopolyspora,
and Bacillus clausii in pancreatic tumor tissue predicted better
survival [163], while anaerobic bacteria (such as Bacteroides,
Lactobacillus, and Peptoniphilus) were significantly positively
associated with shorter survival time [171]. Regarding the
potential mechanism in pancreatic cancer, increases in the genera
Acinetobacter, Pseudomonas, and Sphingopyxis, were positively
correlated with DNA replication and oncogenic factors including
K-ras signaling, EMT, and MAPK signaling, while being negatively
correlated with bile acid metabolism, pancreatic beta cells, and
pancreatic secretion [202].
These studies may provide us with ideas to explore how gut

microbiota interacts with intratumor microbiota and together
affects tumor progression. This can help us understand more
deeply the correlation between intratumoral microbiota and
gut microbiota, as well as help us to further explore the
possible mechanisms of the intratumoral microbiota modulat-
ing other types of tumors like HCC. Many of the possible
mechanisms that how intratumoral microbiota improve HCC
progression that we summarized in the previous section are
based on these studies.
Intratumoral microbiota also has two sides on tumors, some of

the intratumoral microbiota can inhibit tumor progression as well.
Some microbial antigens were homologous to tumor antigens
[190], thus can stimulate anti-tumor immune reactions [191]. It is
of great potential in tumor therapy if we improve the tumor
microenvironment by inhibiting pro-tumor intratumoral micro-
biota and stimulating tumor immune response by increasing some
special intratumoral bacterial epitopes.
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Both the gut and intratumoral microbiota have a two-sided role
in HCC progression, fully understanding and mastering the
complex biological roles of these microbiota will provide a
theoretical foundation for the potential clinical application of
gut and intratumoral microbiota in the treatment of HCC.
The gut microbiota plays a significant role not only in the

initiation and progression of HCC but also exerts a substantial
influence on its treatment through these biological mechan-
isms. For example, the treatment options for HCC patients
including liver surgical resection, percutaneous ablation, liver
transplantation, radiation, as well as trans-arterial and systemic
therapies, the clinical decision making based on the patient’s
tumor stage, liver function, and performance status. Above
these therapies, nowadays trials aim to address the efficacy of
immunotherapy plus targeted therapy or not as adjuvant or
neo-adjuvant treatment, with initial promising results from
phase 2 trials [203–205] and phase 3 trials [206]. To the
advanced unresectable HCC, immunotherapy and targeted
therapy are supposed to be the main treatment [207, 208].
The role of gut microbiota and its metabolites in modulating
local and systemic immune responses, thereby impacting the
cancer-immune axis and influencing the efficacy of immu-
notherapy for HCC, is emerging as a topic of significant interest
in the field [209, 210]. Based on these facts, the significant
therapeutic role of the gut microbiota in HCC warrants further
in-depth investigation and exploration.
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