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Development of a breast cancer invasion score to predict tumor
aggressiveness and prognosis via PI3K/AKT/mTOR pathway
analysis
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Invasiveness is a key indicator of tumor malignancy and is often linked to poor prognosis in breast cancer (BC). To explore the
diverse characteristics of invasive cells, single-cell RNA sequencing (scRNA-seq) data from three ductal carcinoma stages were
analyzed, classifying samples into invasion and non-invasion groups. Nine genes (MCTS1, PGK1, PCMT1, C8orf76, TMEM242, QPRT,
SLC16A2, AFG1L, and SPINK8) were identified as key discriminators between these groups. A breast cancer invasion score (BCIS)
model was developed using LASSO Cox regression, revealed that high BCIS correlated with poorer overall survival in TCGA-BRCA
patients and was validated across GSE20685 and METABRIC datasets (five-year and ten-year survival). Functional experiments
demonstrated that knockdown of PGK1 or PCMT1 inhibited tumor cell proliferation and reduced the phosphorylation levels of
mTORC, P70S6K, S6, and AKT, indicating suppression of the PI3K/AKT/mTOR pathways. High-BCIS tumors exhibited enrichment in
protein secretion and PI3K/AKT/mTOR pathways, associated with aggressiveness and therapy resistance. This study introduced the
BCIS score, distinguishing invasion from non-invasion cells, linked to PI3K/AKT/mTOR pathways, offering insights into BRCA
prognosis and tumor aggressiveness.
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INTRODUCTION
Breast cancer (BC) remains the leading cause of cancer-related
deaths among women [1]. Data collected by the World Health
Organization (WHO) and recent studies from 2021 and 2022
indicate that over 2.2 million women worldwide are diagnosed
with BC, with more than 500,000 deaths, accounting for
approximately 15–16% of cancer deaths and 25–30% of cancer
cases [2–4]. Ductal carcinoma is the most common subtype of BC
and has the potential to progress from in-situ carcinoma to
invasive carcinoma [5]. Ductal carcinoma in situ (DCIS) is defined
as the malignant proliferation of cells confined within the breast
ducts and is considered a precursor to invasive BC, although most
DCIS lesions are harmless [6–8]. However, if left untreated, about
half of DCIS cases may progress to invasive ductal carcinoma (IDC),
with DCIS cells penetrating the ductal basement membrane and
invading the surrounding stroma [7, 9]. Recent studies have
shown that DCIS coexisting with adjacent IDC exhibits very similar
gene expression and copy number profiles, indicating a common
origin for the progression [8]. IDC accompanied by lymph
metastasis often presents more complex treatment demands
and poorer clinical outcomes, representing a higher likelihood of

further spread to distant organs, thereby reducing patient survival
rates [10]. In-depth research into the molecular mechanisms
underlying the transition from non-invasive to invasive BC can
help understand the process of malignant transformation in BC
and provide clues for identifying new therapeutic targets.
However, traditional prognostic biomarkers have long been

ineffective in the early diagnosis of BC patients and cannot
provide clues for cancer deterioration [11, 12]. For DCIS, treatment
typically includes surgery and radiotherapy, but some DCIS cases
may not progress to IDC [13]. There is currently a lack of effective
biomarkers to identify low-risk patients, often leading to over-
treatment. Additionally, current treatment strategies are usually
based on clinical and pathological features. However, tumor
heterogeneity in ductal carcinoma patients is high, and different
patients may respond significantly differently to the same
treatment [14]. While existing biomarkers have enabled persona-
lized treatment to some extent, they remain inadequate in
addressing complex tumor heterogeneity, particularly in predict-
ing and managing treatment resistance. Furthermore, the prog-
nostic value of biomarkers may vary depending on individual
differences and tumor subtypes.
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Previous studies have found abnormal methylation of PAX6,
BRCA2, PAX5, WT1, CDH13, and MSH6 in more than 50% of DCIS
and adjacent IDC lesions, but the methylation of these genes
showed no significant difference between DCIS and IDC [15]. It has
not been possible to identify key biomarkers that specifically
indicate the progression from DCIS to IDC, and there is still a need
to explore other types of molecular or genetic changes to explain
this progression. Similarly, while the prognostic and predictive
significance of human epidermal growth factor receptor 2 (HER2)
in invasive BC has been well established, HER2 amplification is
more associated with the DCIS stage but is not a key factor in the
transition from DCIS to IDC [16]. These biomarkers have shown
potential in previous studies, but no single marker has been
widely accepted as the key predictor for the transition of ductal
carcinoma from localized to invasive, and then to metastatic
stages. Therefore, current research continues to explore combina-
tions of multiple molecular mechanisms and biomarkers to more
accurately predict this cancer progression. Through multi-
biomarker models and larger-scale studies, we can better under-
stand the progression mechanisms of ductal carcinoma and
develop more effective clinical prediction tools.
The PI3K-AKT-mTOR signaling pathway plays a crucial role in the

initiation and progression of tumorigenesis, including breast
cancer, by regulating essential cellular functions such as survival,
proliferation, metabolism, and angiogenesis. Dysregulation of this
pathway leads to enhanced tumor cell growth, evasion of cell
death, and increased metastatic potential. In breast cancer,
aberrant activation of the PI3K-AKT-mTOR axis has been linked
to resistance to therapies, poor prognosis, and the transition from
early-stage lesions like DCIS to invasive carcinoma, highlighting its
significance as both a driver of tumorigenesis and a potential
therapeutic target [17–19].
Single-cell RNA sequencing (scRNA-seq) reveals the state and

function of each cell by isolating individual cells, capturing their
transcriptome, and generating sequencing libraries at the single-
cell level [20]. This technology allows for an in-depth analysis of
the progression from DCIS to IDC and IDC_LM, by revealing cell
heterogeneity, analyzing the diversity of cell types, and
identifying the dynamic changes of key genes and pathways,
thus helping to understand the mechanisms of cancer metas-
tasis and promoting the development of personalized treatment.
In this study, we conducted a comprehensive analysis of scRNA-
seq data from ductal carcinoma to deeply understand the
molecular complexity of ductal carcinoma cells and to identify
unique marker genes associated with the three stages of ductal
carcinoma. Additionally, the study integrated multi-dataset
analysis to develop a breast cancer invasion score (BCIS) model,
which aims to be a powerful prognostic tool for ductal
carcinoma. We validated its accuracy based on an independent
cohort GSE20685 from the Gene Expression Omnibus (GEO)
database and five years and ten years survival data from the
TCGA-BRCA cohort. Moreover, we conducted an in-depth study
of the interaction between BCIS and the immunosuppressive
tumor microenvironment (TME) and performed a potential
functional analysis in the context of BRCA. Finally, through
experimental validation, we determined whether marker genes
play a key role in the progression of ductal carcinoma to
evaluate their feasibility as potential therapeutic targets or
prognostic markers.

RESULTS
Cellular Atlas of Ductal Carcinoma
This study performed a comprehensive analysis of the scRNA-seq
dataset GSE195861 and constructed a cellular atlas based on it.
The dataset contains 20 tissue samples, including 1 from Normal
sample, 7 from patients diagnosed with DCIS, 6 from IDC patients,
and 6 from IDC_LM samples (Fig. S1A). Additionally, we obtained

one normal breast tissue sample from a DCIS patient who
underwent a mastectomy to exclude the mixing of normal cells in
DCIS and IDC samples. After quality control and data preproces-
sing, “n_pcs=50” was set for principal component analysis (PCA).
Construct a neighborhood graph to highlight the most variable
genes, and set n_neighbors to 15. Using the Leiden algorithm with
Scanpy [21], we identified 23 distinct cell clusters from a total of
30,571 cells (Fig. 1A). Furthermore, we annotated these 23 cell
clusters using pySCSA [22, 23] and canonical cell markers,
ultimately classifying them into nine primary cell subsets,
including epithelial cells, T cells, B cells, plasma cells, macro-
phages, monocytes, plasmacytoid dendritic cells, erythrocytes,
and fibroblast cells (Figs. 1B, C and S1B). As DCIS progresses to IDC
and subsequently to IDC_LM, the composition of the tumor
microenvironment undergoes significant changes. Notably, the
involvement of immune cells gradually increases, indicating that
the immune response becomes more active during the cancer
progression. Additionally, the expression of 27 canonical marker
genes in each cell subsets was described (Fig. S1C, D). These cell
subsets exhibited distinct characteristics through high expression
of KRT8, CD2, MS4A1, IGHG3, C1QA, CD163, GZMB, HBA2, and CALD1
(Figs. 1D, E and S1C). In summary, we describe the overall cellular
atlas of 20 samples as a basis for further analysis.

Characterization of different epithelial cell clusters
Epithelial cells are the primary origin cells of BC, and their
mutations and variations are crucial for the progression of BC from
DCIS to IDC. To study the heterogeneity of luminal epithelial cells
in depth, we re-clustered epithelial cells from 20 samples (Fig.
S2A). The UMAP plot of the epithelial cell lineage shows 22
clusters (Fig. 2A). Additionally, the distribution and aggregation of
cells at different stages indicate that Normal, DCIS, IDC, and
IDC_LM cells each have distinct clustering regions in the feature
space, reflecting the unique gene expression characteristics of
each cell type (Fig. S2B). Further differential analysis of the
epithelial cell lineage successfully divided it into nine different
epithelial cell subsets (Fig. 2B). These nine epithelial cell subgroups
are characterized by the differential expression of genes such as
RGS5, PTN, C1QB, APOD, LGALS9, IGLC2, DHRS2, BMPR1B, PAK1,
PLK2, DDX52, DUSP14, CPB1, TRH, COL2A1, S100A8, GLYATL2,
CALML5, KRT15, ALOX15B, CXCL13, DCD, IL32, PPP1R1A, COX7A1,
GJA1, and RTN1 (Fig. 2C). For example, the Basal subgroup is
notably marked by the significant expression of RGS5, PTN, and
C1QB. Additionally, we described the overall expression patterns
of nine significantly expressed differential genes in epithelial cell
subsets (Fig. 2D). Overall, most cell markers exhibit subgroup-
specific expression patterns, some differential genes also exhibit
specific expression characteristics at different stages of DCIS to
IDC_LM (Fig. S2C). Furthermore, the proportion of cells within each
epithelial cell subgroup suggests that different epithelial cell
subgroups may play distinct roles in cancer progression and
metastasis, with specific subgroups potentially being associated
with particular types and stages of cancer (Fig. 2E). Notably, in
Normal and DCIS cells, the Basal subgroup predominates.
However, in IDC and IDC_LM, the proportion of Basal cells
significantly decreases, suggesting that Basal cells may play a
reduced role in cancer progression and metastasis (Figs. 2F and
S2D). Conversely, the significant increase in the proportions of
LumC2 and LumC5 subgroups in IDC and IDC_LM indicates that
these subgroups may be associated with the invasiveness and
metastatic potential of the cancer.

Construction of prognostic model based on invasive and non-
invasive cell feature genes
After calculating the CNV scores for Basal and luminal epithelial
cells, we observed that all epithelial cells were categorized into
invasive and non-invasive groups. Non-invasive cells are more
widely dispersed, whereas invasive cells predominantly cluster in
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the IDC and IDC_LM regions (Fig. 3A). Furthermore, as the cancer
progresses from Normal to DCIS, IDC, and eventually IDC_LM, the
proportion of invasive epithelial cells steadily increases (Fig. 3B).
This suggests that genomic instability and cellular invasiveness are
critical drivers of BC progression and metastasis. Interestingly, the
marker genes MRPL43, EMC6, ASNA1, TCEA3, GSDMD, NAXE, SMIM7,
NDUFA8, SSNA1, and HINT2 were highly expressed in the Invasive

groups, while VIM, APOE, and MUCL1 were highly expressed in the
Non-Invasive groups (Fig. 3C and Figure S3A). Furthermore, the
aforementioned marker genes of the Invasive groups were highly
expressed in IDC and IDC_LM compared to DCIS samples. In
contrast, the marker genes of the Non-Invasive groups were highly
expressed in DCIS. This indicates that the Invasive groups are more
aggressive (Fig. S3B-S3C).

Fig. 1 Analysis of the breast cancer single-cell atlas. A Uniform manifold approximation and projection (UMAP) visualization of 30,577 cells
categorized into 22 distinct clusters. B UMAP delineation of nine principal cell lineages (Epithelial cells, T cells, B cells, Plasma cells,
Macrophages, Monocytes, Plasmacytoid dendritic cells, Erythrocytes, and Fibroblast cells) derived from BC patient samples. C Bar plot showing
the distribution of cell types across Normal, DCIS, IDC, and IDC-LM stages. D Dot plot illustrating the expression of selected canonical marker
genes across each cell type. E Violin plot for expression of three canonical marker genes (KRT8, IGHG3, GZMB, CD2, C1QA, HBA2, CD79B, CD163,
CALD1) in each cell type.
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Fig. 2 Characterization of epithelial cell heterogeneity in BC. A UMAP visualization of epithelial cells categorized into 22 distinct clusters.
B UMAP plot of epithelial cells, colored by nine luminal subtypes. C Violin plot of differential gene expression across luminal subtypes in BC.
D Umap plot of the expression of nine canonical marker genes in epithelial cells. E The proportion of different stages of BC development in
different luminal subtypes. F The proportion of luminal subtypes in different BC development stages.
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We identified differentially expressed genes (DEGs) for each
cluster by comparing the Invasive and Non-Invasive groups. To
construct prognostic features from these DEGs, we conducted a
Least Absolute Shrinkage and Selection Operator (LASSO) Cox

proportional hazards regression analysis, using the TCGA-BRCA
cohort as the training set. Ultimately, nine of the most predictive
genes were selected for the BCIS prediction model (Fig. 3D). Risk
score = (0.164 * MCTS1 expression) + (0.164 * PGK1 expression) +

Fig. 3 Characterization of invasive potential and prognostic value of breast ductal carcinoma cell subtypes. A UMAP plot of invasion and
non-invasion cells, colored by two cell types. B Proportion of two cell types in different stages of ductal carcinoma development. C Violin map
of thirteen representative expressed genes in invasive and non-invasive cell types. D Kaplan-Meier curves of survival analysis compared the
overall survival of TCGA-BRCA patients between high-BCIS and low-BCIS groups. E Hazard ratios of nine signature genes in univariate cox
models that were significantly associated with overall survival. F The distribution of risk score (top), survival status (middle), and expression
(bottom) of the identified nine cell marker genes. Kaplan-Meier curves of survival analysis compared the overall survival of high-BCIS and low-
BCIS groups in (G) GSE20685, (H) 5 years of survival data from METABRIC, (I) 10 years of survival data from METABRIC.
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(0.155 * PCMT1 expression) + (0.060 * C8orf76 expression) +
(0.031 * TMEM242 expression) + (0.023 * QPRT expression) +
(0.007 * SLC16A2 expression) + (0.003 * AFG1L expression) +
(0.005 * SPINK8 expression) (Fig. 3E). We described the distribution
of risk score, survival status, and gene expression level (Fig. 3F),
finding that patients who died were mainly concentrated in the
high-BCIS. We analyzed the expression of nine prognostic genes
across different samples and found that MCTS1, PGK1, and PCMT1
were significantly higher in IDC and IDC_LM compared to DCIS
and Normal samples (Fig. S3D). Additionally, PGK1 and PCMT1
were more enriched in the high-BCIS group (Fig. 3F).
Further analysis was performed using the risk score of the

GSE20685 dataset, which divided patients into high-BCIS (n= 164)
and low-BCIS (n= 163). Kaplan-Meier (KM) analysis demonstrated
that the overall survival (OS) of the high-risk group was
significantly lower than that of the low-risk group (Fig. 3G,
HR= 1.83, p= 0.006).
To further evaluate the accuracy of this prognostic risk model,

patients in the TCGA-BRCA dataset were also divided into high-risk
(n= 989) and low-risk (n= 990) groups and conducted KM
analysis on five-year and ten-year survival data. The results
consistently showed that in both five-year (Fig. 3H, HR= 1.67,
p < 0.001) and ten-year (Fig. 3I, HR= 1.26, p= 0.002) survival data,
the high-risk group had significantly worse prognosis than the

low-risk group. These findings indicate that BCIS can serve as an
effective tool for predicting patient prognosis.
We conducted a protein-protein interaction (PPI) analysis for 9

prognostic genes. The results reveal that several of these genes
are interconnected, indicating potential interactions between their
protein products (Fig. S3E). Notably, these 9 genes are central
nodes in the network, suggesting they play a significant role in the
protein interaction landscape. Given that some of these genes,
MCTS1, PGK1, and PCMT1 were previously identified as being
highly expressed in the invasive groups, their prominent positions
in this interaction network further support their involvement in
cancer invasion. The interactions they participate in could be
crucial for promoting invasive characteristics, such as cellular
movement, survival in new environments, or evading immune
responses. Additionally, SPP1, CD24, LDHA, and ETFA are known to
promote tumor invasion and metastasis in various cancers.

Validation of the BCIS in different independent cohorts
To understand the biological functions and mechanisms related to
the risk scores, we performed Gene Set Enrichment Analysis (GSEA)
with the primary goal of identifying pathways influenced by genes
associated with the risk scores. Using the hallmark gene set
(h.all.v2023.2.Hs.symbols.gmt) as a reference, we observed signifi-
cant enrichment of hallmark protein secretion, hallmark bile acid

Fig. 4 Function analysis between high-BCIS and low-BCIS groups. A Functional enrichment of high-BCIS and low-BCIS groups in TCGA-
BRCA. B GSEA analysis of hallmark protein secretion signaling and hallmark PI3K/AKT/mTOR signaling pathway. GSVA activity analysis of (C)
protein secretion, (D) PI3K/AKT/mTOR signaling, and (E) MTORC1 signaling pathway.
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metabolism and hallmark PI3K/AKT/mTOR signaling in the high-
BCIS group (Fig. 4A). More detailed GSEA analysis showed that DEGs
associated with higher risk scores were mainly related to hallmark
protein secretion (Fig. 4B, NES= 3.05, FDR= 6.38e-20) and hallmark
PI3K/AKT/mTOR signaling (NES= 2.64, FDR= 2.74e-13).
Using Gene Set Variation Analysis (GSVA), we further assessed

the activity differences in biological pathways between different
risk score groups. The results showed higher GSVA activity for
protein secretion (Fig. 4C, p= 5.1e-14) and PI3K/AKT/mTOR
signaling (p= 2.2e-12) in the high-BCIS group (Fig. 4D). Notably,
the GSVA analysis also revealed significantly higher MTORC1
signaling GSVA activity in the high-BCIS group (Fig. 4E, p < 2.22e-
16), indicating that the MTORC1 signaling might also be
activated.

Functional enrichment analysis of the BCIS related genes
To gain a deeper understanding of the characteristics and roles of
the risk score groups, we compared the differences between low-
risk and high-risk groups based on multiple immune and tumor
characteristic indices, including Stromal score, Immune score,
ESTIMATE score, MDSC score, Exclusion score, TIDE score,
Dysfunction score (Figs. 5A, S4A and S4B). The results showed
that patients in the high-risk group had significantly higher scores
in MDSC (Fig. 5B, p= 1.7e-11), Exclusion (p= 0.00047), and TIDE
(p= 0.00047). These gene characteristic indices directly indicate
that immune evasion is achieved through T-cell exclusion and
dysfunction, suggesting a poorer prognosis and a less favorable
response to immunotherapy.

Immune and tumor characteristics differ by the BCIS
TCR analysis has become an important biomarker for assessing
antitumor immune activity. High TCR shannon diversity index is the
foundation for an adaptive immune system to effectively defend
against various pathogens and tumors, while high TCR richness
indicates a broad repertoire of T-cell receptors in an individual,
enabling the recognition and response to a wider range of antigens,
which is crucial for effective immune surveillance and defense. We
evaluated TCR diversity using the TCR repertoire database and
compared the differences between high-risk and low-risk groups. In
this study, we found that the high-risk group had significantly lower
TCR Shannon diversity index (p= 0.0019) and TCR richness
(p= 0.0014) compared to the low-risk group (Fig. 5C), suggesting that
the low-risk group might respond more effectively to immunotherapy.

Prediction of immunotherapy benefits in BRCA patients
Additionally, this study conducted immune cell infiltration analysis
using CIBERSORT and TIMER2.0. Overall, the high-risk group
generally exhibited reduced immune cell infiltration. Notably, the
infiltration of T cell CD8+ , B cell memory, and myeloid dendritic
cell activated, which have direct tumor-killing effects, was
significantly reduced in the high-risk group (Fig. 6A, B). Meanwhile,
the pro-tumor macrophage M2 was significantly increased in the
high-risk group (p < 0.0001). These results suggest that the
immune environment in the high-risk group is more inclined to
suppress anti-tumor immune responses, promote tumor growth,
and facilitate immune evasion. This may lead to poorer prognosis
and lower response to immunotherapy in high-risk group patients.

Fig. 5 Tumor microenvironment analysis between high-BCIS and low-BCIS groups. TIDE analysis in high-BCIS and low-BCIS groups,
including (A) Stromal score, Immune score, ESTIMATE score and Tumor purity (B) MDSC, Exclusion, TIDE score and Dysfunction. C The role of
BCIS in predicting immunotherapeutic benefit. TCR Shannon and TCR Richness between high-BCIS and low-BCIS groups.
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Drug sensitivity analysis
By conducting predictive analyses of drug sensitivity in different
risk groups, we can better understand how patients respond to
various medications. The study results indicate that the low-risk
group has significantly higher sensitivity to the following drugs
compared to the high-risk group: Tamoxifen (p= 2.4e-09),
Vinblastine (p= 1.8e-14), Methotrexate (p= 3.6e-06), Sorafenib
(p= 7.4e-05), Imatinib (p < 2.22e-16), Temsirolimus (p= 1.1e-08),
Pazopanib (p= 1.6e-05), and Tipifarnib (Fig. 7A–C, p= 7.9e-07).
Although there is a difference in sensitivity to Crizotinib between
the high-risk and low-risk groups (p= 0.0033), this difference is
relatively small, suggesting that both groups respond similarly to
this drug.
On the other hand, high-risk patients show greater sensitivity to

Cetuximab (p= 4.2e-06), Dabrafenib (p= 3e-09), and Erlotinib
(p < 2.22e-16) (Fig. S5A–S5C). Dabrafenib is a BRAF inhibitor

commonly used to treat BRAF V600E mutant melanoma, while
Erlotinib is an EGFR inhibitor primarily used to treat non-small cell
lung cancer with EGFR mutations. The high sensitivity to EGFR and
BRAF pathways in the high-risk group may reflect these patients’
tumors’ heavy reliance on these signals. This suggests that using
EGFR and BRAF inhibitors in high-risk patients may be more
effective and help develop more personalized treatment
strategies.

PGK1 and PCMT1 in regulating PI3K/AKT/mTORC pathway
activity
This study aims to elucidate the role of PGK1 and PCMT1 in
regulating the PI3K/AKT/mTORC signaling pathway in BC cells.
First, the expression levels of PGK1 and PCMT1 in various BC cell
lines were analyzed (Fig. 8A). Additionally, shRNA-mediated
knockdown was performed in MCF7 and MDA-MB-231 cell lines

Fig. 6 Immune cell infiltration analysis between high-BCIS and low-BCIS groups. A Comparison of total immune cell infiltration levels in
different immune cell types between high-risk and low-risk groups. B Detailed infiltration levels of specific immune cell subsets. Statistical
significance: *P < 0.05, **P < 0.01, ***P < 0.001, ns: not significant.
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to assess the impact of these genes on key cellular processes and
pathway activities (Fig. 8B). Three shRNAs were designed to target
PGK1 and PCMT1 in MCF7 and MDA-MB-231 cell lines, and the
results showed that sh-PGK1-1, sh-PGK1-2, and sh-PGK1-3 sig-
nificantly suppressed PGK1 expression, while sh-PCMT1-1, sh-
PCMT1-2, and sh-PCMT1-3 significantly suppressed PCMT1 expres-
sion. The shRNA-mediated knockdown experiments effectively
inhibited the expression of PGK1 and PCMT1, providing a basis for
further understanding the specific roles of these two genes in BC
cells. This process not only validated the effectiveness of gene
knockdown but also provided evidence for evaluating the
potential impact of PGK1 and PCMT1 on tumor cell growth and
survival, thereby advancing research on their potential as
therapeutic targets in BC.

To further investigate the biological roles of PGK1 and PCMT1 in
BC, cell proliferation assays and colony formation analyses were
conducted to evaluate the effects of PGK1 and PCMT1 knockdown
on BC cell proliferation. The results of the cell proliferation assays
indicated that the knockdown of PGK1 and PCMT1 significantly
inhibited cell proliferation in the MCF7 and MDA-MB-231 cell lines.
Compared to the control group, the cell proliferation rate was
significantly reduced on fourth day following the knockdown of
PGK1 and PCMT1, suggesting that PGK1 and PCMT1 play a
promotive role in the proliferation of BC cell lines (Fig. 8C, D).
The colony formation assay also demonstrated a diminished
cloning efficiency in cells with PGK1 (P < 0.0001) and PCMT1
(P < 0.0001) knockdown, underscoring the importance of these
genes in supporting the survival and proliferative capacity of BC

Fig. 7 Predicted drug sensitivity analysis between high-BCIS and low-BCIS. A Sensitivity comparison of Tamoxifen, Vinblastine, and
Methotrexate between high-BCIS and low-BCIS. B Sensitivity differences to Sorafenib, Crizotinib, and Imatinib between high-BCIS and low-
BCIS. C Predicted sensitivity to Temsirolimus, Pazopanib, and Tipifarnib across high-BCIS and low-BCIS.
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cells (Fig. 8E). The findings provide critical scientific evidence for
the potential feasibility of targeting PGK1 and PCMT1 as
therapeutic strategies in BC, aiding in the development of novel
treatments that could enhance the precision and effectiveness of
BC therapy.
Additionally, we focused on the relative expression levels of key

genes involved in the PI3K/AKT/mTORC signaling pathway
following the knockdown of PGK1 and PCMT1. The results showed
that shRNA-mediated knockdown of PGK1 and PCMT1 led to a
significant reduction in the expression of multiple genes, including

mTORC, RPS6, RPS6K, GSK3B, TSC1, TSC2, SEC61A1, SAR1A, VPS4A,
XBP1, ATF6, VEGFA, EIF4EBP1, PIK3CA, AKT1, and PNMT in the MCF7
and MDA-MB-231 cell lines (Fig. 9A–D). Notably, the knockdown of
PGK1 and PCMT1 had a consistent and significant impact on the
expression of these genes, indicating that PGK1 and PCMT1 play a
crucial role in maintaining the activity of PI3K/AKT/mTORC
signaling pathway, which are essential for cell growth, survival,
and proliferation. Finally, Western blot analysis using three
different shRNAs to knock down PGK1 and PCMT1 led to reduction
in the phosphorylation levels of key signaling proteins in both cell

Fig. 8 Impact of PGK1 and PCMT1 knockdown on PI3K/AKT/mTORC signaling in BC cell lines. A mRNA expression of PGK1 and PCMT1 in
MCF7 and MDA-MB-231 cells. B Knockdown efficiency of PGK1 and PCMT1 genes in MCF7 and MDA-MB-231 using shRNAs. C Proliferation
curves of MDA-MB-231 cells after PGK1 and PCMT1 gene knockdown. D Proliferation curves of MCF7 cells after PGK1 and PCMT1 gene
knockdown. E Colony formation in MCF7 and MDA-MB-231 cells with PGK1 and PCMT1 knockdown. Statistical significance: *P < 0.05, **P < 0.01,
***P < 0.001.
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Fig. 9 PGK1 and PCMT1 knockdown modulates PI3K/AKT/mTORC pathway activity in BC cell lines (MDA-MB-231 and MCF7). Relative
mRNA expression levels of key genes involved in the PI3K/AKT/mTORC signaling pathway with PGK1 (A) and PCMT1 (B) knockdown in MDA-
MB-231 cells. Relative mRNA expression levels of the same set of genes with PGK1 (C) and PCMT1 (D) knockdown in MCF7 cells. Statistical
significance: *P < 0.05, **P < 0.01, ***P < 0.001, ns: not significant.
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lines, including p-mTORC, p-P70S6K, p-S6 and p-AKT (Fig. 10A, B).
Specifically, in the MDA-MB-231 BC cell line, the inhibitory effect
on p-S6 protein was weaker when PCMT1 was knocked down.
Similarly, the expression level of p-mTORC did not show significant
changes after PCMT1 knockdown. This suggests that PCMT1 may
have a weaker role in the PI3K/AKT/mTORC signaling pathway or
may regulate it indirectly through other pathways rather than
directly.
This study reveals the critical role of PGK1 and PCMT1 in

maintaining the PI3K/AKT/mTORC signaling pathway. It demon-
strates the supportive role of PGK1 and PCMT1 in cell proliferation
and survival, indicating their potential as therapeutic targets for
BC. This finding contributes to a better understanding of the
molecular mechanisms of BC and provides new directions for the
development of precision therapeutic strategies.

DISCUSSION
This study analyzed intratumoral heterogeneity and molecular
characteristics at single-cell resolution during the progression
from DCIS to IDC_LM. By establishing risk score models with
multiple markers and conducting larger-scale studies, we can
better understand the progression mechanisms of DCIS and
develop more effective clinical prediction tools.
Cellular heterogeneity is higher in the IDC and IDC_LM stages,

reflecting the increasingly complex tumor microenvironment and
the corresponding increase in cellular heterogeneity as the tumor
progresses, especially during lymphatic metastasis.
However, we can still observe that the expression of KRT8 in

epithelial cells remains relatively stable during the transition from
DCIS to IDC_LM. KRT8 is mainly expressed in epithelial cells,

indicating that epithelial cells play a key role in the development
and progression of ductal carcinoma [24]. On the other hand, CD2
is more likely to play a key role in the progression of ductal
carcinoma, particularly in the metastasis of cancer from IDC to
lymph nodes. Previous studies have shown that CD2 on T cells is
associated with directed migration, interacting with other
molecules to help T cells respond to chemokine signals, thereby
migrating to specific tissues or sites of inflammation [25]. CD163 is
often considered a marker of M2 macrophages, usually associated
with anti-inflammatory and tissue repair responses [25]. It is
expressed in samples from the DCIS and IDC stages but is not
prominently present in the IDC_LM stage. In contrast, MS4A1, a
marker for B cells, indicates a significant presence and possible
functional activity of B cells in the IDC_LM. It is hypothesized that
M2 macrophages may play an important role in the tumor
microenvironment during the DCIS and IDC stages, while B cells
may begin to play a more crucial role in tumor progression during
the IDC_LM stage. This shift may reflect the different microenvir-
onmental needs and immune evasion strategies of the tumor at
different stages.
Epithelial cells are the primary cells of origin for BC [26]. During

the DCIS stage, the malignancy remains confined to the epithelial
cells within the breast ducts, although these cells already exhibit
malignant characteristics. As the disease progresses, some
epithelial cells undergo epithelial-mesenchymal transition (EMT),
gaining invasiveness, breaching the basement membrane, and
transitioning into IDC [27]. This process marks the progression of
cancer from a localized lesion to an invasive disease [28]. As DCIS
progresses to IDC, the gene expression profile of epithelial cells
undergoes significant changes. These changes not only reflect the
functional state of the cells but may also serve as biomarkers or

Fig. 10 Western blot analysis of PI3K/AKT/mTORC signaling pathway marker genes in PGK1 and PCMT1 knockdown BC cell lines.
A Western blot analysis of protein expression after PGK1 knockdown in MDA-MB-231 and MCF7 cells. B Western blot analysis of protein
expression after PCMT1 knockdown in MDA-MB-231 and MCF7 cells.
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therapeutic targets for disease progression. We regrouped
epithelial cells in the samples and categorized them into nine
subtypes based on the heterogeneity of gene expression within
the cells. Interestingly, the composition of these subtypes changes
significantly across different stages of DCIS and IDC. The
differential genes of these subtypes could potentially serve as
stage-specific biomarkers, allowing for more accurate identifica-
tion of cancer progression stages and providing new therapeutic
targets for developing stage-specific cancer therapies.
In the DCIS stage, the LumC1, LumC3, LumC4, and

LumC6 subtypes occupy a significant proportion. Within the tumor
microenvironment, LGALS9 can both promote tumor growth
through immune suppression and, under certain conditions, inhibit
tumor growth [29]. LGALS9/Tim-3 is emerging as a novel cancer
immunotherapy target. Additionally, recent studies have shown that
KRT15 is closely associated with tumorigenesis, with overexpression
observed in squamous cell carcinoma samples [30] and a strong
correlation with poor prognosis in colorectal cancer [31]. In another
study, low KRT15 expression was significantly associated with poor
prognosis in BRCA patients [32]. ALOX15B has previously shown
predictive value as a disulfide protease apoptosis-related prognostic
feature in BC [33]. CXCL13, as a B-cell chemokine, has been shown to
influence cancer cell proliferation, migration, and invasiveness in the
tumor microenvironment [34, 35].
LumC2 is more closely associated with the invasiveness and

metastasis of BC. PAK1 has been shown to be hyperactive in
various cancers and is directly linked to tumor invasion and
metastasis [36–38]. Additionally, BMPR1B plays a critical role in BC
progression by regulating the function of underlying proteins,
serving as a diagnostic biomarker, and modulating the TGF-β and
BMP signaling pathways [39]. LumC7 is dominant in the IDC stage
but significantly reduced in the IDC_LM stage. Its differential
genes, DCD, IL32, and PPP1R1A, may support tumor invasion and
metastasis during the IDC stage. IL32 expression has been
associated with cancer pathways, cytokine-receptor interactions,
and NOD-like receptor signaling pathways [40]. In previous
studies, IL32 has been identified as a potential biomarker for
immune infiltration and poor prognosis, offering new therapeutic
targets for cancer treatment [40]. However, during metastasis,
changes in the tumor microenvironment and selective pressures
lead to the reduced expression of these genes and the
replacement of cell subtypes.
CNV scoring is used to assess genomic instability in tumors,

which is generally associated with higher tumor invasiveness and
poorer prognosis. In this study, we classified epithelial cells into
invasion and non-invasion groups based on CNV scores and found
that the proportion of the invasion group increases as cancer
progresses. Differentially expressed genes include MRPL43, EMC6,
ASNA1, TCEA3, GSDMD, NAXE, SMIM7, NDUFA8, SSNA1, and HINT2.
Previous studies have shown that the upregulation of MRPL43
increases the proliferation, invasion, and migration of colorectal
cancer cell lines while reducing apoptosis [41]. Endoplasmic
reticulum membrane protein complex subunit 6 (EMC6) plays an
important role in both physiological and pathological states of
cells [42, 43]. The upregulation of EMC6 is associated with the
proliferation, invasion, and migration of lung adenocarcinoma
[43]. NDUFA8 is highly expressed in cervical cancer tissues, and
these levels are associated with reduced survival rates [44].
In this study, the BCIS prognostic model demonstrated high

predictive power for patient prognosis in both the training and
validation cohorts. To further explore the BCIS groups, GO
pathway and GSEA assessments were conducted. We found that
the high-BCIS group exhibited higher activity in the protein
secretion signaling pathway, the PI3K/AKT/mTOR signaling path-
way, and the MTORC1 signaling pathway. Pathways or gene sets
with high GSVA activity may serve as potential biomarkers for
predicting disease progression, patient prognosis, or response to
specific treatments.

Tumor evasion mechanisms that block the host’s immune
response to tumor tissues are one of the characteristics identified
in the Myeloid-Derived Suppressor Cell (MDSC) subpopulation,
which induces tumor angiogenesis and immune evasion through
T-cell suppression [45]. In this study, a higher MDSC score
reflected a stronger immunosuppressive state. Additionally,
patients with higher TIDE scores have a higher likelihood of
immune evasion against antitumor immunity, and thus a lower
response rate to ICB therapy [46]. The TIDE score has been shown
to be more accurate than PD-L1 expression levels and TMB in
predicting survival outcomes for cancer patients receiving ICB
drugs [46–49]. Further research into the T-cell receptor (TCR)
repertoire could provide additional insights into tumor immunity
and potentially offer new biomarkers for predicting the efficacy of
immunotherapy [50]. Overall, these observations suggest that
patients classified in the high-NKGS group may face more
aggressive tumor behavior and, due to the deeply immunosup-
pressive microenvironment, may encounter challenges in benefit-
ing from immunotherapy.
The High-BCIS group exhibits higher levels of infiltration in

some inhibitory or immune-evading cell types, which may be
associated with a poorer prognosis. Correlations between the
levels of immune cell infiltration of tumors and clinical outcomes
have been investigated in many cancers [51]. The pattern of
immune cell infiltration has become the only significant criterion,
besides TNM staging, for predicting disease-free survival (DFS) and
overall survival (OS) [52, 53].
The significance of studying drug sensitivity lies in under-

standing the differences in responses to specific drugs among
patients in different risk groups, thereby providing a basis for
personalized treatment. The half-maximal inhibitory concentration
(IC50) is a commonly used indicator of drug sensitivity. It
represents the concentration of a drug required to inhibit 50%
of cell proliferation or biological activity in vitro [54]. A lower IC50
value indicates that the drug has a stronger inhibitory effect on
cells, which is an ideal drug characteristic. Overall, the High-BCIS
group shows significantly enhanced sensitivity to Tamoxifen and
Vinblastine, while Methotrexate and Sorafenib may require more
precise dose adjustments to achieve optimal therapeutic effects.
By measuring the IC50 value of drugs, we can determine which
patients are more sensitive to a particular drug, thereby
optimizing treatment plans, reducing unnecessary side effects,
and improving therapeutic outcomes.
Finally, BC, as a complex and heterogeneous disease, continues

to be a significant health burden, with the PI3K/AKT/mTORC
signaling pathway frequently implicated in its progression [55, 56].
This pathway is central to the regulation of cellular processes such
as growth, proliferation, and survival, and its dysregulation is often
observed in BC, contributing to aggressive disease characteristics
and poor patient outcomes [57]. In the context of BC, PGK1 and
PCMT1 have emerged as genes of interest. PGK1, a pivotal enzyme
in glycolysis, has been associated with cancer metabolism, where
it may support the high energy demands of rapidly dividing
cancer cells [58]. Its elevated expression levels in various cancers,
including BC, suggest a role in promoting tumor growth and
metastasis. Previous studies and databases have reported that
PCMT1 expression is positively correlated with poor prognosis in
several human cancers, including BC, bladder cancer, and
endometrial cancer [59, 60]. PCMT1 can interact and negatively
regulate the tumor suppressor protein p53 (reduced protein level
and activity) by carboxyl methylation of p53 at isoaspartate
residues 29 and 30, which in turn represses apoptosis and growth
arrest and contributes to cancer progression [61].
our study provides evidence that PGK1 and PCMT1 play a role in

modulating the PI3K/AKT/mTORC signaling pathway in BC cells.
The findings suggest that these genes may be integral to the
malignant phenotype of BC and could be explored as targets for
therapeutic intervention. Future research should focus on
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elucidating the molecular mechanisms by which PGK1 and PCMT1
interact with the PI3K/AKT/mTORC pathway and on evaluating the
efficacy of targeted therapies in preclinical models of BC.
Overall, this study describes and validates 9 genes signature

rooted in invasion-related cell genes, laying the foundation for
personalized treatment strategies for BRCA patients. It was also
found that high expression of PGK1 and PCMT1 is associated with
upregulation of the PI3K/AKT/mTORC signaling pathway, leading
to more aggressive tumor progression and, consequently, poorer
prognosis. This study significantly advances the precision and
applicability of biomarker discovery in BC. However, some
limitations remain. The heterogeneity of BC patient samples
means that individual differences may limit the generalizability of
the risk score model, potentially affecting its predictive power in
different populations or under varying experimental conditions.
Additionally, although the function of biomarker genes can be
confirmed during the experimental validation phase, in vitro
results do not always fully reflect the complex biological
environment in vivo. Moreover, the limited number of cell lines
used in experimental validation may not comprehensively capture
the diversity of BC. While the INAVO120 and CAPItello-291 studies
focus on ER+ , HER2- advanced breast cancer patients, our
findings, although potentially valuable in prognosis prediction and
experimentally validated, still require future clinical trials for
validation [62–64].

METHODS AND MATERIALS
Cell culture
MCF7 or MDA-MB-231 cells were purchased from the Cell Bank of Chinese
Academy of Sciences, Shanghai, China. Cells were cultured in Dulbecco’s
Modified Eagle Medium (Gibco) supplemented with 10% FBS (Gibco) and
1% penicillin-streptomycin (Gibco) at 37 °C in a 5% CO2 humidified
atmosphere.

Cell proliferation assay
Cell proliferation was assessed using the Cell Counting Kit-8 (CCK8) assay.
Transfected cells (sh-K, sh-T, and sh-NC) were seeded in 96-well plates at a
density of 2 × 104 cells per well and incubated for 24 h to allow
attachment.

Colony formation assay
Transfected MCF7 and MDA-MB-231 cells were seeded at 1500 or 500 cells
per well in 6-well plates. The medium was changed every 3–4 days. After
14 days, colonies were fixed with 4% paraformaldehyde for 15min and
stained with 0.1% crystal violet for 30min. Colonies consisting of at least 50
cells were counted manually. Each experiment was performed in triplicate.
The cells were tested every two weeks for mycoplasma contamination.
pLKO-shRNA was a gift from D. Anastasiou (Addgene, plasmid 42516), and
scramble shRNA followed the sequences used in the experiments (Mission
RNAi, Sigma), The primer sequences of mouse were as following in
supplemental material.

Western blotting
Cell were homogenized in lysis buffer (25mM Tris-HCl pH 8.0, 150mM
NaCl, 1 mM CaCl2, 1% Triton X-100) with protease inhibitors (1:100, Bimake,
B14001). The proteins concentration was determined. The proteins was
separated using SDS-PAGE and then transferred to PVDF membranes
(Millipore). The protein bands was blocked with 5% milk, incubated with
antibodies and visualized by ECL (Proteintech). The following antibodies
were used for western blotting: P-mTORC (CST, 5536 T), mTORC (CST,
2983 T), P-P70S6K (CST, 9234S), P70S6K (PTG, 66638-1-Ig), P-S6 (CST,
4858 s), S6 (CST, 2317 s), P-AKT (PTG,10176-2-AP), AKT (PTG,80455-1-RR),
β-actin (PTG, HRP-66009), Vinculin (PTG, 66305-1-Ig).

RNA isolation and quantitative PCR
Total RNA of 10mg tissue was extracted using TRIzol (Invitrogen). RNA was
purified by ethanol precipitation and reverse transcribed into cDNA using
PrimeScriptTM RT Reagent Kit (Takara, RR047A). qPCR was performed on
Fluorescence quantitative PCR instrument (ABI-7900-384) using TB Green

Premix Ex TaqTMII (Takara, RR820A). Results are expressed as ΔΔCt values
normalized to β-actin and graphed as relative transcript levels compared
with controls. The primer sequences of mouse were as following in
supplemental material. Primer sequences were list in Supplementary Table
1.

Collection of single-cell RNA sequencing and GEO datasets
This study performed a comprehensive analysis of the scRNA-seq dataset
GSE195861 and constructed a cellular atlas based on it [14]. The dataset
contains 20 tissue samples, including 7 from patients diagnosed with DCIS,
6 from IDC patients, and 6 from IDC_LM samples. Additionally, we obtained
one normal breast tissue sample from a DCIS patient who underwent a
mastectomy to exclude the mixing of normal cells in DCIS and IDC
samples. The raw read counts and associated clinical details such as age,
gender, stage, overall survival (OS), and vital status for BRCA patients were
accessed from the UCSC Xena website (https://xenabrowser.net/
datapages/). To further validate the OS status of the proposed gene set,
we refer to data and clinical details of GSE20685 from the NCBI GEO
database (n= 327), as well as five years and ten years survival data from
the METABRIC dataset.

Single cell analysis and cell clustering
An extensive analysis of the single-cell dataset matrix was conducted using
Scanpy (version 1.9.1). First, dimensionality reduction was performed
through Principal Component Analysis (PCA), with “ov.pp.pca” set to
“n_pcs=50” to capture the primary variations in the data. Next, based on
the standardized and PCA-processed data, the neighborhood relationships
between cells were calculated, with “n_neighbors=15” to construct a
neighborhood graph, laying the foundation for subsequent clustering
analysis. Then, the Leiden clustering method was applied to identify cell
clusters, with “resolution=0.2” to ensure an appropriate resolution of the
clusters. Finally, the clustering results were visualized using “sc.pl.umap”
presenting the cell clusters in UMAP form. Additionally, the CellTypist tool
was used to annotate cell types based on known marker genes, providing
a basis for further biological interpretation.

Construction and validation of the prognostic signature
Using univariate Cox regression analysis, we screened for marker genes
that are significantly associated with overall survival (OS) in TCGA-BRCA
patients between the invasion and non-invasion cell groups, establishing
an initial prognostic model. We set P < 0.05 as the threshold for selecting
prognostic genes. Next, we employed the least absolute shrinkage and
selection operator (LASSO) Cox proportional hazards regression model
using the “glmnet” R package to further refine these initially screened
genes and identify those with the greatest impact on prognosis [65].
Subsequently, we constructed a final risk score model by linearly
combining the mRNA expression levels of the selected genes with their
corresponding risk coefficients. Through this model, we identified nine key
candidate prognosis-related genes and classified patients into high-BCIS
and low-BCIS groups based on the median risk score. Finally, we evaluated
the predictive capability and clinical utility of the BCIS model by
constructing receiver operating characteristic (ROC) curves.

Survival analysis
The high-risk group is significantly associated with poorer overall survival
(OS). To validate this, we utilized the ‘survival’ and ‘survminer’ R packages
to analyze the expression of genes related to the BCIS and their prognostic
relevance in the TCGA-BRCA dataset using Kaplan-Meier (KM) curves.
Furthermore, we conducted survival analysis on the five years and ten
years survival data from METABRIC, as well as the GSE20685 dataset, to
confirm the predictive capability of the BCIS model.

Differential expressed gene analysis
The expression levels of individual genes within each cluster were
compared to the remaining cells using the “sc.tl.rank_genes_groups”
module and the Wilcoxon rank-sum test. A gene was defined as
upregulated or downregulated based on a significance threshold of
P < 0.05, with cutoff criteria of log (fold change) ≥ 2 or ≤ -2, respectively.

Gene set enrichment analysis (GSEA)
Gene Set Enrichment Analysis (GSEA) was conducted using the
hallmark gene sets (h.all.v2023.2.Hs.symbols.gmt) from MSigDB (http://
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software.broadinstitute.org/gsea/msigdb/) to identify significantly enriched
pathways.

Gene set variation analysis (GSVA)
Gene Set Variation Analysis (GSVA) was carried out to discern the activity of
enriched pathways between the high-BCIS and low-BCIS groups. The
enrichment scores for each gene set in the TCGA-BRCA samples were
determined using the ssGSEA algorithm via the “fgsea” R package.

Multi-dimensional evaluation of comprehensive tumor
microenvironment and drug sensitivity
In this study, we utilized the ESTIMATE and Tumor Immune Dysfunction
and Exclusion (TIDE) algorithm in R to assess the infiltration levels of
immune and stromal cells in the tumor microenvironment, the purity of
tumor samples, and the potential for immune evasion and treatment
response prediction [46]. TCR analysis, as a key method, was employed to
study and evaluate the diversity, specificity, and immune response of
T cells, with a detailed analysis of TCR diversity and richness based
on previous research [66]. Additionally, TIMER2.0 and CIBERSORT were
used to estimate the proportions of different immune cell types within
tumor samples, thereby revealing the infiltration levels of these
cells. Finally, based on drug sensitivity prediction datasets ‘PANCANCER_-
IC_Tue_Aug_9_15_28_57_2016’ and ‘cgp2016ExprRma’, as well as the
database ‘drugData2016’ used for extracting and filtering drug data related
to specific tissue types, we employed the pRRophetic package to predict
drug sensitivity. The integration of these tools provided significant support
for our in-depth understanding of the tumor microenvironment and its
potential response to treatment.

Statistics analysis
Differences of statistical significance were evaluated using a two-tailed
Student’s t-test on the R platform. Multivariate analysis employing the Cox
proportional hazards model was executed using the R packages (“survival”,
“survminer”, and “forestplot”) to pinpoint independent factors linked to OS
in both TCGA-BRCA, GEO and METABRIC cohorts. The P value was
corrected using the false discovery rate (FDR), with values or FDR < 0.05
deemed significant. An adjusted P < 0.05 served as the threshold criterion.
In addition, data are presented as mean ± SEM. Statistical significance

was analysed using the unpaired two-tailed Student’s t-test at least 3
independent experiments using GraphPad Prism (GraphPad Software,
USA). P-value < 0.05 was considered statistically significant. *P < 0.05;
**P < 0.01; ***P < 0.001.
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