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ELF1-mediated transactivation of METTL3/YTHDF2 promotes
nucleus pulposus cell senescence via m6A-dependent
destabilization of E2F3 mRNA in intervertebral disc
degeneration
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Intervertebral disc degeneration (IVDD) is a common pathology involving various degenerative diseases of the spine, with nucleus
pulposus cell (NPC) senescence playing an important role in its pathogenesis. Transcriptional and epigenetic processes have been
increasingly implicated in aging and longevity. E74-like factor 1 (ELF1) is a member of the erythroblast transformation specific
family of proteins, which induce gene transcription by binding to gene promoters or enhancer sequences. However, the role of
ELF1 in age-related diseases is unclear, with no reports of its involvement in NPC senescence or IVDD. ELF1 expression levels were
assessed in human NP samples from IVDD patients, IVDD animal models, and naturally aged NP samples. Adeno-associated virus 5
(AAV5) vector-mediated Elf1 overexpressing mice and Elf1 knockout (KO) mice were used to investigate its role in NPC senescence
and IVDD in vivo. The m6A methylase METTL3 and reading protein YTHDF2 were identified as downstream effectors of ELF1 using
proteomic sequencing, RNA sequencing, ChIP-seq, promoter prediction, and binding analyses. MepRIP-qPCR, RNA pulldown, and
double luciferase point mutation experiments revealed that METTL3 and YTHDF2 can recognize the m6A site on E2F3 mRNA, a key
cell cycle gene. Finally, virtual screening techniques and various experiments were used to identify small molecule targets for ELF1
inhibition. ELF1 was found to drive m6A modification changes during NPC aging. The small molecule mycophenolate mofetil (MMF)
could successfully target and inhibit ELF1 expression. In senescent NPCs, ELF1 can bind to the METTL3 and YTHDF2 gene promoter
regions. Overexpressing METTL3 increased the E2F3 mRNA m6A modification abundance, while YTHDF2 was recruited to recognize
this m6A site. This can accelerate the E2F3 mRNA degradation rate and ultimately lead to the onset of G1/S cell cycle arrest in NPC.
For the first time, the transcription factor ELF1 has been identified as a novel regulator of NPC senescence and IVDD, which involves
the ELF1-METTL3/YTHDF2-m6A-E2F3 axis. MMF, a small molecule designed to inhibit ELF1 and delay NPC senescence, was screened
for the first time. This can potentially lead to new epigenetic therapeutic strategies for drug discovery and development for the
clinical treatment of IVDD.
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INTRODUCTION
Lower back pain (LBP) is the most commonly observed health
problem in clinical settings, causing severe disability and
substantial social, economic, and medical costs worldwide
[1, 2]. Intervertebral disc degeneration (IVDD) is the pathophy-
siological process of natural degeneration and aging of the
intervertebral disc that is clinically associated with and a major
cause of LBP. The intervertebral disc (IVD) is a fibrocartilaginous
tissue consisting of a central, highly hydrated, gelatinous nucleus
pulposus (NP), surrounded by a laminated annulus fibrosus (AF).
The cartilaginous endplates (CEPs) define the upper and lower
boundaries of the NP and AF [3–5]. Increasing research has
suggested that the accumulation of senescent IVD cells,
particularly NP cells (NPCs), in aging and degenerating discs
may be a new hallmark and major etiological factor of IVDD [6, 7].

Furthermore, senescent NPCs secrete a variety of proinflamma-
tory cytokines and proteases that can influence the local
environment, leading to peripheral cellular senescence and
tissue dysfunction [8, 9]. Therefore, targeting NPC senescence is a
strategy with great clinical promise for effectively mitigating
IVDD progression.
Repairing the integrity of the epigenome may be crucial for

targeting drugs to reverse cellular aging, as recent studies have
shown that epigenetic dysregulation is a central hallmark and
driver of aging [10–12]. Some examples of epigenomic altera-
tions include transcription factor binding, histone labeling, DNA
methylation, N6-methyadenine (m6A) modifications, and non-
coding RNA changes [13]. Age-related changes in transcription
factors and the chromatin status are thought to be early drivers
of senescence and important hubs that link together many of
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the features of aging [14, 15]. Individual transcription factors
(pioneer factors) can mediate epigenetic changes while sup-
porting the recruitment and activity of epigenetic regulators,
thus exhibiting more persistent transcriptional regulatory
changes [16]. Research has identified several transcription
factors involved in human longevity and age-related diseases.

These include the senescence-associated transcription factors
p53 and MYC, both of which are key cell cycle regulators that are
involved in the aging process in complex ways [17]. However,
the pioneer transcription factors involved in the evolutionary
control of epigenetic changes during NPC senescence have not
yet been identified.
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m6A is one of the most abundant RNA modifications in
mammalian cells [18]. The m6A modification is a dynamic,
reversible process that is initiated by m6A methyltransferases
(‘writers’), released by m6A demethylases (‘erasers’), and recog-
nized by reader proteins. Collectively, these proteins are involved
in regulating RNA nuclear transport, splicing stability, translation,
and RNA metabolism [19, 20]. m6A can regulate cellular
senescence by modulating oxidative stress, telomere length,
DNA damage, and the senescence-associated secretory pheno-
type (SASP) [21]. Altered m6A modification patterns play an
important role in the progression of NPC senescence and IVDD, as
m6A modifications have recently been shown to be significantly
increased in tumor necrosis factor (TNF)-α-induced models of NPC
senescence and IVDD [22–24]. Understanding the dynamics of
m6A patterns during the natural aging of NP tissue will therefore
be critical in identifying the major transcription factors responsible
for such patterns.
E74 like factor 1 (ELF1) is a transcription factor belonging to the

erythroblast transformation specific (ETS) family [25]. In recent
years, studies have shown that ELF1 is involved in the develop-
ment of numerous diseases through the regulation of various
biological processes, such as cell proliferation, differentiation,
apoptosis, and the immune response [26]. ELF1 can function in a
wide range of organs and tissues, including nerve, brain, kidney,
cardiovascular, and gastrointestinal tract tissues [27–30]. Further-
more, previous work has demonstrated that upregulated ELF1 in
the lumbar dorsal root ganglion can bind to the NIS-lncRNA gene
promoter to promote nerve injury, neuropathic pain symptoms,
and hypersensitivity development [31]. However, no reports have
indicated if ELF1 is a key transcription factor driving NPC
senescence.
Expanding upon these previous research findings, the present

study reports for the first time the role of ELF1 in NPC senescence,
where this transcription factor can drive m6A modification
changes. We also screened for small molecule drugs, finding that
mycophenolate mofetil (MMF) can be used to inhibit ELF1
expression. Mechanistically, when ELF1 expression levels are
elevated, it can bind to the DNA sequences of the genes encoding
METTL3 (m6A methylation protein) and YTH structural domain
family protein 2 (YTHDF2; m6A reader protein) to induce their
transcription. Overexpression of METTL3 could increase the E2F3
m6A mRNA abundance, while recruiting the reader protein
YTHDF2 to recognize the E2F3 m6A site accelerated mRNA
degradation, leading to decreased E2F3 protein expression levels.
Additionally, this causes G1/S phase arrest in NPCs, accelerating
their senescence and ultimately leading to IVDD. Overall, our
findings provide new insights into the molecular pathogenesis of
NPC senescence in IVDD.

RESULTS
ELF1 expression levels are significantly elevated in
degenerating NP tissues and senescent NPCs
We first selected degenerating human NP tissue samples for
proteomics sequencing to investigate any key transcription
factors that can drive NPC senescence. These included three
samples with mild degeneration (MDD) and three with severe
degeneration (SDD). GO and KEGG enrichment analyses
showed that the differentially expressed proteins were mainly
enriched in the cell cycle, cell proliferation, and mRNA
metabolism (Fig. 1A, B). Bioinformatics analysis of single-cell
sequencing data (GSE165722) was also used to analyze eight
IVDD samples (MDD and SDD). In contrast to the MDD samples,
Apoptosis, Focal adhesion, and Cellular senescence, were the
main KEGG-enriched pathways in the NPC cluster of the SDD
samples (Supplementary Fig. 1A–D). GO enrichment analysis
revealed that the differentially expressed genes were mainly
enriched in translation factor activity and RNA binding
(Supplementary Fig. 1E). Additionally, the RNA-seq datasets
GSE34095 and GSE56081 were merged, with the KEGG and GO
enrichment analyses showing that the differentially expressed
genes were mainly enriched in Cell cycle arrest and the G1/S
transition mitotic cell cycle in the highly degenerated NP
specimens (Supplementary Fig. 1F, G). The above multi-omics
data demonstrate that both cell cycle arrest and cellular
senescence play important roles in the IVDD process. Finally,
we found that the transcription factor ELF1 is highly expressed
in degenerated NP tissues after intersecting the differentially
expressed genes from the proteomics sequencing, transcrip-
tome sequencing, and single-cell sequencing datasets (Fig. 1C).
Further volcano mapping revealed high ELF1 mRNA expression
levels in the highly degenerated specimens (Fig. 1D). In
addition, multi-organ single-cell sequencing data (https://twc-
stanford.shinyapps.io/maca/) [32] from mice of different ages
showed significantly upregulated Elf1 expression levels in aging
bones, brain, gonadal adipose tissue, kidneys, limb muscles
(tibialis anterior), liver, lung, mesenteric adipose tissue (MAT),
pancreas, skin, and small intestine (duodenum) (Supplementary
Fig. 2), suggesting that Elf1 has an important role in senescence
in mice. We also established a replicative senescence model
and H2O2 (200 µM) senescence model in rat NPCs (R_NPC)
(Supplementary Fig. 3A, B). KEGG and GO enrichment analyses
showed that the differentially expressed genes in the senes-
cence model were mainly enriched in the Cell Cycle, Cellular
senescence, and DNA replication (Supplementary Fig. 3C–F).
E2F family proteins, which are involved in the G1 (pre-DNA
synthesis) to S (DNA synthesis) cell cycle checkpoint, were
downregulated in the senescence model (Supplementary Fig. 3G).

Fig. 1 ELF1 expression levels in human degenerating NP tissues and senescent NPCs. A According to the Pfirrmann grading scale, grades
I–III are mild degeneration (MDD) and grades IV–V are severe degeneration (SDD). Proteomics analysis of GO enrichment data of differentially
expressed proteins in SDD and MDD NP tissues. B KEGG enrichment analysis of differentially expressed proteins in SDD and MDD NP tissues.
C Venn diagram showing common gene intersections from the proteome sequencing, transcriptome sequencing, and single-cell group
sequencing datasets. D Volcano plot showing the ELF1 mRNA expression levels in the combined transcriptomic dataset from GSE34095 and
GSE56081. E Representative ELF1 immunohistochemistry staining images in human NP tissues of different Pfirrmann grades. F The protein
expression levels of ELF1, Collagen II, ADAMTS5, P16, and P21 were detected after treating human-derived NPCs (H_NPC) with 10 ng/mL IL-1β
for 48 h. G The mRNA expression levels of ELF1, CCNA2, CCNB1, CCNE2, CDK1, CDK2, CDK4, and COL2A1 were detected after treating H_NPC
with 10 ng/mL IL-1β for 48 h. H–M Immunofluorescence data for the P16, P21, and ELF1 protein expression patterns in the H_NPC replicative
senescence model; N= 3 biologically independent replicates. Scale bar=50 μm. N, O Representative SA-β-gal staining images and
quantification of the H_NPC replicative senescence model; N= 3 biologically independent replicates. Scale bar=100 μm. P Western blot
analysis of the protein expression levels of ELF1, MMP13, and P21 in the H_NPC replicative senescence model. Q Western blot analysis of the
protein expression levels of ELF1, MMP13, and P21 in human NP tissues of different Pfirrmann grades. R Western blot analysis was used to
detect the protein expression levels of Elf1, Mmp13, and p21 in the NP tissues of senescent mice at different months of age.
S Immunofluorescence detection of the Elf1 protein expression levels in the NP tissues of senescent mice at different months of age. T, U MRI,
H&E staining, and Safranin-O staining experiments were performed to validate the rat acupuncture IVDD model. V Immunofluorescence
detection of the Elf1 protein expression levels in degenerated rat intervertebral disc tissues. The data are presented as the mean ± SD. One-
way ANOVA was used for comparisons among multiple groups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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The Elf1 expression levels were significantly upregulated in both
R_NPC senescence models, consistent with the proteomic sequen-
cing results described above (Supplementary Fig. 3H). Immunohis-
tochemistry (IHC) staining results confirmed that the ELF1 protein

expression levels increased with IVDD severity (Fig. 1E). Our in vitro
model of IVDD using interleukin (IL)-1β (10 ng/mL) treatment in
human-derived NPCs (H_NPC) revealed significantly elevated ELF1
protein and mRNA expression levels (Fig. 1F, G). In addition, the
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H_NPC replicative senescence model showed a gradual increase in
P21 and P16 expression levels (Fig. 1H–K), with the ELF1 protein
expression levels being synchronously increased (Fig. 1L, M). SA-
β-gal assays confirmed that the H_NPC model showed a gradual
increase in senescent cells with the number of passages (Fig. 1N, O).
ELF1 protein expression levels were found to be significantly
increased in both the H_NPC replicative senescence model and
severely degenerated human NP tissues (Fig. 1P, Q). We further
validated the Elf1 expression levels in NP tissues from naturally
aged mice. Magnetic resonance imaging (MRI), hematoxylin and
eosin (H&E) staining, Safranin-O staining, and histological scoring
confirmed that NP tissue degeneration progressively worsened as
the mice aged (Supplementary Fig. 4A–F). The immunofluorescence
results showed that the p16 and p21 protein expression levels were
significantly increased in the senescent NP tissues, while the
collagen II and cyclin D1 protein expression levels were significantly
lower (Supplementary Fig. 4G–J). Western blot and immunofluor-
escence analyses confirmed that Elf1 protein expression is
significantly upregulated in senescent mouse NP tissues
(Fig. 1R, S). Immunofluorescence results further showed that Elf1
protein expression is also significantly upregulated in degenerated
rat IVD (Fig. 1T–V). Therefore, the transcription factor ELF1 was
found to be highly expressed in degenerating NP tissues following
validation of several in vitro and in vivo experiments.

Reducing ELF1 expression levels could significantly inhibit
NPC senescence
We then performed differential gene analyses of the ELF1+ and
ELF1- sub-groups among the NPC sub-populations in the single-
cell data (Fig. 2A). GO enrichment analysis of differential genes
mainly enriched in Cell cycle G1/S phase transition, Cellular
senescence, RNA stabilization, RNA N6-methyladenosine
methyltransferase complex (Supplementary Fig. 4K). KEGG
enrichment analysis of differential genes mainly enriched Cell
cycle, RNA degadation, Longevity regulating pathway (Supple-
mentary Fig. 4L). After confirming efficient ELF1 knockdown,
significantly reduced expression levels of P21, ADAMTS5, and
MMP13 were observed (Fig. 2B, C). The qPCR results showed that
knocking down ELF1 expression significantly reduced the
ADAMTS5 and P21 mRNA expression levels, while promoting
the mRNA expression levels of COL2A1, CCNA2, CCND1 CDK1,
and CDK4 (Fig. 2D). Flow cytometry assay data revealed that
reduced ELF1 expression levels could promote the H_NPC G1/S
phase transition (Fig. 2E, F). EDU experiments indicated that
ELF1 knockdown promoted DNA replication and cell prolifera-
tion in the H_NPC model (Fig. 2G, H), while immunofluorescence
results showed that it significantly reduced the IL-1β-induced
elevation of P21 protein expression levels (Fig. 2I, J). SA-β-gal
analysis confirmed that ELF1 knockdown also significantly
reduced IL-1β-induced H_NPC senescence (Fig. 2K, L).

Furthermore, the Elf1 protein expression levels gradually
increased in the R_NPC replicative senescence model (Supple-
mentary Fig. 5A, B). Reducing Elf1 expression delayed R_NPC
senescence by inhibiting IL-1β-induced senescent protein
upregulation and extracellular matrix degradation (Supplemen-
tary Fig. 5C–G). KEGG enrichment analyses by RNA-seq after Elf1
knockdown in the R_NPC model showed that the differentially
expressed genes were mainly enriched in the mitotic cell cycle
(Supplementary Fig. 5H, I). Next, we constructed Elf1 knockout
(KO) mice to validate the critical role of Elf1 in IVDD. In Elf1 KO
NP tissues, p21 and Mmp13 were expressed at significantly
lower levels, while collagen II expression patterns were
significantly higher (Fig. 2M). The qPCR results showed a
significant decrease in the mRNA expression levels of p16,
p21, and Adamts5, along with significantly increased mRNA
expression levels of the cell cycle genes Ccnd1, Ccne2, and
Cdk4, in the Elf1 KO NP tissues (Fig. 2N). The MRI results showed
a higher T2-weighted signal intensity in the intervertebral discs
of Elf1 KO mice compared with in those of their littermate wild-
type (WT) mice (Fig. 2O, R). H&E and Safranin-O staining showed
that lower Elf1 expression levels resulted in a significantly
increased number of NP tissues and delayed IVDD (Fig. 2P, Q, S).
The X-ray results indicated that the Elf1 KO increased the
intervertebral disc space and delayed the onset of IVDD
(Fig. 2T, U). Immunofluorescence assay data demonstrated sig-
nificantly reduced senescent protein p16 expression levels in the
Elf1 KO NP tissues (Fig. 2V). In summary, both in vivo and in vitro
experiments confirmed that reducing ELF1 expression could
significantly inhibit NPC cell senescence, thus delaying IVDD.

METTL3 is involved in the regulation of NPC senescence as a
downstream molecule of ELF1
We performed ChIP-seq analysis using an anti-ELF1 antibody in
H_NPC to identify ELF1 downstream target genes. The distance
distribution of peak to transcription start site (TSS) was analyzed
first, where “Upstream” means that the peak is upstream of the
TSS and “Downstream” means that the peak is downstream of
the TSS (Fig. 3A). The ChIP-seq results showed that the peak
coverage frequency of the TSS region was symmetrically
distributed in shape, suggesting that the ELF1 protein binds
centrally to the TSS region, thereby regulating the transcription
of neighboring genes (Fig. 3B). KEGG enrichment analysis
showed that the peak neighboring genes are mainly involved
in transcription, replication and repair, cell growth and death,
and aging (Fig. 3C). Examining the ELF1 ChIP-seq public
database suggested that ELF1 was primarily distributed on the
promoter element (Supplementary Fig. 6A–F). KEGG functional
enrichment analysis of the peak annotated genes revealed that
ELF1 is mainly involved in the mRNA surveillance pathway, Cell
cycle, and Cellular senescence (Supplementary Fig. 6G–L).

Fig. 2 Reducing the expression of ELF1 inhibits the senescence of NPC and delays the IVDD. A Heatmap of differentially expressed genes in
ELF1+ cell subpopulations vs. ELF1- cell subpopulations. B The knockdown efficiency of ELF1 siRNA was detected by qPCR. C Western blot
detection of protein expression levels of ADAMTS5, MMP13 and P21 in H_NPC after knockdown of ELF1. D The mRNA expression levels of
extracellular matrix genes and cell cycle genes were detected by qPCR after H_NPC knockdown of ELF1. E, F Flow cytometry was used to
detect the cell cycle progression of H_NPC after knockdown of ELF1. G, H EDU assays the DNA replication capacity of H_NPC after knockdown
of ELF1. I, J Immunofluorescence was used to detect the protein expression level of P21 after the addition of ELF1 siRNA after 10 ng/ml IL-1β
treatment of H_NPC for 48 h; N= 3 biologically independent replicates; Scale bar = 50 μm. K, L Representative images of SA-β-gal staining and
quantification after 10 ng/ml IL-1β treatment of H_NPC for 48 h followed by the addition of ELF1 siRNA; N= 3 biologically independent
replicates. Scale bar = 100 μm. M Western blot for protein expression levels of p21, Mmp13 and Collagen II in NP tissue after Elf1 KO. N The
mRNA expression levels of extracellular matrix genes and cell cycle genes were detected by qPCR in NP tissues after Elf1 KO. O, R MRI
detection of T2-weighted signal intensity in the intervertebral discs of WT and Elf1 KO naturally aging mice of different months of age; N= 6;
P, Q, S H&E and Safranin-O staining of intervertebral discs from WT and Elf1 KO naturally aging mice at different months of age; N= 6; Scale
bar = 100 μm and 20 μm. T, U Representative x-ray film images of intervertebral disc heights in WT and Elf1 KO naturally aging mice at
different months of age; N= 6. V Immunofluorescence detection of the expression level of p16 in the NP tissues of intervertebral discs of WT
and Elf1 KO naturally aging mice at different months of age. Data presented as mean ± SD. One-way ANOVA was used for comparison among
multiple groups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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Methylated protease METLL3, which is involved in the m6A
modification, was found to be a key target of ELF1 transcriptional
regulation. This was achieved by intersecting the m6A regulator
with the human IVD RNA-seq differentially expressed genes and
ChIP-seq _nearest_genes (Fig. 3D). The RNA-seq results

suggested that METTL3 is highly expressed in severely degen-
erated human NP tissues (Fig. 3E). We further analyzed Me-RIP-
seq data (GSE169484) [24] to compare the m6A modifications in
transcripts from normal and senescent H_NPC. From m6A-seq
data, we identified 4,553 and 3,542 m6A peaks in 3,765 and
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2,999 m6A-modified transcripts from control and senescent
NPCs, respectively. Peak distribution analysis showed that the
m6A sites were enriched in both exons, the 3’ untranslated
region (3’ UTR), and coding sequence (CDS), with the highest
enrichment of m6A residues located near the stop codon
(Supplementary Fig. 7A–H). GO enrichment analysis showed that
the m6A-modified genes were mainly involved in cell cycle
arrest, mRNA stabilization, and RNA metabolic process (Supple-
mentary Fig. 7I). The above results further suggested that the
m6A modification plays an important role in H_NPC senescence.
Additionally, the m6A abundance and Mettl3 expression levels
were significantly elevated in naturally senescent NP tissues
(Fig. 3F, G). Mettl3 expression was also significantly elevated in
the rat acupuncture IVDD model (Fig. 3H). In human degenerat-
ing NP tissues, the METTL3 expression levels increased with
higher Pfirrmann grading (Fig. 3I). METTL3 expression patterns
also significantly increased following IL-1β treatment of H_NPC
(Fig. 3J). Our immunofluorescence results also showed that the
METTL3 protein expression levels gradually increased with
progressive H_NPC senescence (Fig. 3K, L). METTL3 knockdown
significantly reduced the expression levels of the extracellular
matrix proteins ADAMTS5, MMP13, and senescent protein P21
(Fig. 3M, N). Flow cytometry data indicated that knocking down
METTL3 expression could promote the G1/S phase transition
(Fig. 3O, P). EDU experiments further demonstrated that METTL3
knockdown could support H_NPC proliferation (Fig. 3Q, R). Using
qPCR, we found that METTL3 knockdown led to lower mRNA
expression levels of P16 and MMP13, but increased those of
COL2A1, CCNA2, CCND1, CCNE2, CDK1, and CDK4 (Fig. 3S).
Furthermore, as confirmed by SA-β-gal staining, METTL3 knock-
down significantly delayed IL-1β-induced H_NPC senescence
(Fig. 3T, U). In addition, in the rat NPC replicative senescence
model, immunofluorescence assays showed a significant upre-
gulation of Mettl3 protein expression (Supplementary Fig. 8A, B).
Knocking down Mettl3 reduced the expression levels of p16 and
p21, promoted the expression of cyclin d1, and inhibited the IL-
1β-induced increase of p16 protein expression (Supplementary
Fig. 8C–G). Gene set enrichment analysis (GSEA) of RNA-seq
data following Mettl3 knockdown in R_NPC indicated
differential gene involvement in the G1_to_S_cell cycle
pathway (Supplementary Fig. 8H–J). GO and KEGG enrichment
analyses further revealed differential gene involvement in RNA
biosynthesis and cellular senescence (Supplementary Fig. 8K, L),
with the upregulated differentially expressed genes also mainly
involved in RNA biosynthesis and cellular senescence
(Supplementary Fig. 8M, N). Moreover, Mettl3 knockdown
significantly delayed IL-1β-induced R_NPC senescence
(Supplementary Fig. 8O, P). Overall, the m6A methylated protein
METTL3, as a downstream target of ELF1, is involved in the NPC
senescence process.

ELF1 transcriptionally regulates METTL3 to promote IVDD
Following Elf1 KO, we observed significantly decreased Mettl3
expression levels in the mouse NP tissues (Fig. 4A). The qPCR
results showed that the mRNA levels of Mettl3, p16, and p21
were significantly downregulated, while those of Col2a1,
Ccnd1, and Cdk4 were significantly increased, in the Elf1 KO
mouse NP tissues (Fig. 4B). Western blot analysis showed
significantly decreased Mettl3 protein expression levels in the
NP tissues of Elf1 KO mice (Fig. 4C). Knocking down ELF1
expression in H_NPC significantly reduced the METTL3 and P21
protein expression levels (Fig. 4D), with qPCR data indicating
that METTL3 expression also decreased at the mRNA level
(Fig. 4E). In addition, a transcription factor database based on
single-cell sequencing data further identified METTL3 as a
potential latent target of ELF1 (Fig. 4F). Public ChIP-seq
datasets further identified the METTL3 promoter region as
having abundant ELF1 protein binding peaks (Fig. 4G). In
H_NPC, we identified the ELF1 binding site in the METTL3
promoter region and designed ChIP primers. We then used PCR
to further amplify the METTL3 promoter fragment using human
genomic DNA as a template. After immunoprecipitation with
an anti-ELF1 antibody, clear DNA amplification was observed
(Fig. 4H). ChIP-qPCR further demonstrated that ELF1 can bind
to the METTL3 promoter fragment (Fig. 4I). Finally, binding site
assays using a luciferase reporter gene revealed that ELF1
binds to a site in the METTL3 promoter, with mutations in this
site resulting in no promotion of METTL3 expression (Fig. 4J, K).
Elf1 and m6A were co-localized in mouse NP tissues, with Elf1
being highly expressed in synchrony with m6A in senescent NP
tissues. However, Elf1 KO significantly reduced the overall m6A
levels in NP tissues (Fig. 4L). These results further suggested
that Elf1 can drive changes in m6A abundance in NP tissues by
regulating Mettl3. In addition, we injected a lentivirus to
overexpress Mettl3 in the NP tissues of Elf1 KO mice for rescue
experiments. Immunofluorescence and western blot experi-
ments verified that Mettl3 can be efficiently overexpressed in
these tissues (Fig. 4M, N). Mouse IVDs displayed a lower T2-
weighted signal intensity on MRI after two months of sustained
Mettl3 overexpression in 10-month-old NP tissues (Fig. 4O, P,
S). H&E and Safranin-O staining showed that Elf1 KO
significantly delayed the reduction in the number of NP tissues
resulting from Mettl3 overexpression (Fig. 4Q, R, T). Immuno-
fluorescence assays demonstrated that overexpressing Mettl3
could accelerate NP tissue senescence by promoting p16
expression and inhibiting collagen II expression. In contrast,
Elf1 KO reversed the increased senescent protein expression
and decreased extracellular matrix protein expression caused
by Mettl3 overexpression (Fig. 4U). Taken together, ELF1 can
directly bind to the METTL3 promoter region to accelerate
IVDD.

Fig. 3 METTL3 is involved in the regulation of NPC senescence as a downstream of ELF1. A Distribution of Peak and TSS distances. Vertical
coordinates are samples, different colors represent Peak in different intervals from TSS, horizontal coordinates are the proportion of Peak in
different intervals to the total Peak, Upstream means Peak is upstream of TSS, Downstream means Peak is downstream of TSS. B Peak binding
spectrum of TSS region. When the Peak coverage frequency of the TSS region is in the shape of a symmetrically distributed peak, it indicates
that the target protein is concentrated in the TSS region. C Peak Neighbouring gene KEGG taxonomic annotations. D Venn diagram shows the
intersection of m6A regulator with RNA-seq differential gene and Chip_seq_nearest_genes gene. E Volcano plot demonstrating the
expression level of METTL3 in RNA-seq. F, G Immunofluorescence detection of m6A modification and Mettl3 expression levels in medullary
tissues of naturally aging mice. H Immunofluorescence detection of Mettl3 expression levels in NP tissues in a rat model of acupuncture IVDD.
I Immunohistochemical detection of METTL3 expression in human NP tissue. J The expression levels of METTL3 and P21 were detected 48 h
after 10 ng/ml IL-1β treatment. K, L Immunofluorescence detection of METTL3 expression levels in the NPC replicative senescence model.
M The knockdown efficiency of METTL3 was detected by qPCR. N The knockdown efficiency of METTL3 was detected by Western Blot.
O, P Flow cytometry to detect the effect of knockdown of METTL3 on NPC cell cycle progression. Q, R EDU assays the effect of knockdown of
METTL3 on NPC DNA replication. S Effect of knockdown of METTL3 on mRNA expression of cell cycle genes detected by qPCR. T, U SA-β-gal
staining was used to detect the effect of knockdown of METTL3 on NPC senescence after 48 h of 10 ng/ml IL-1β treatment. Data presented as
mean ± SD. One-way ANOVA was used for comparison among multiple groups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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METTL3 accelerates NPC senescence by inhibiting expression
of the key cell cycle gene E2F3
Decreased expression levels of the genes encoding E2F family
proteins were found following RNA-seq analysis of the R_NPC
senescence model. The key cell cycle gene E2f3 was significantly

upregulated after Mettl3 knockdown (Fig. 5A). We also observed
a significant negative correlation between the expression levels
of METTL3 and E2F3 in the human NP tissue RNA-seq data
(Fig. 5B), with E2F3 expression levels decreasing with an
increasing IVDD grade (Fig. 5C). E2f3 protein expression levels
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were significantly decreased in NP tissues from both the rat
acupuncture IVDD model and mouse natural aging model
(Fig. 5D). E2F3 expression levels were also significantly
decreased in the IL-1β-induced in vitro IVDD model and
replicative aging model (Fig. 5E, F). In addition, in four METTL3
KO datasets, METTL3 knockdown was found to significantly
promote E2F3 mRNA expression (Fig. 5G). Our qPCR data
showed that knocking down METTL3 significantly promoted
the mRNA expression of E2F3 and CCND1 (Fig. 5H), with western
blot analysis confirming that this also significantly increased
E2F3 expression at the protein level (Fig. 5I). Furthermore, ELF1
knockdown inhibited METTL3 expression and promoted E2F3
expression (Fig. 5J), while E2F3 knockdown significantly
promoted the expression of ADAMTS5 and P21 and inhibited
the expression of Collagen II and Cyclin D1 (Fig. 5K, L). SA-β-gal
staining revealed that knocking down E2F3 significantly
increased the number of senescent cells, while significantly
inhibiting the H_NPC cell cycle G1/S transition (Fig. 5M–P). The
SA-β-gal staining data also confirmed that inhibiting ELF1
expression could significantly delay the NPC senescence, as
well as reverse the cell cycle G1/S arrest, resulting from E2F3
knockdown (Fig. 5Q–T). Furthermore, inhibiting METTL3 expres-
sion reversed the cell cycle G1/S arrest and delayed the NPC
senescence caused by E2F3 knockdown (Fig. 5U–X). Taken
together, ELF1 can promote METTL3 expression and inhibit E2F3
expression to accelerate H_NPC senescence.

METTL3 accelerates E2F3 mRNA degradation by increasing
the abundance of m6A modifications
Because we observed that E2f3 expression was significantly
elevated in the RNA-seq data of R_NPC with Mettl3 knockdown,
we next explored how Mettl3 can regulate E2f3 expression in
this model. We found multiple m6A sites on the E2f3 mRNA
using the SRAMP database (Fig. 6A, B). We further analyzed the
GSE145315 dataset and found that Mettl3 KO resulted in
significantly reduced m6A modifications in the E2f3 mRNA CDS,
intron, and 3’ UTR regions (Fig. 6C–E). We selected the m6A
modification site on E2f3 with high confidence for validation in
R_NPC (Fig. 6F–H). MepRIP-qPCR experiments showed that
Mettl3 knockdown significantly reduced the abundance of two
m6A sites on E2f3 mRNA (Fig. 6I, J), while enhancing its mRNA
stability (Fig. 6K). Western blot and qPCR results demonstrated
that overexpressing Mettl3 significantly reduced the E2f3
protein and mRNA expression levels (Fig. 6L, M). MepRIP-qPCR
data indicated that Mettl3 overexpression significantly
increased the abundance of two m6A sites on E2f3 mRNA
(Fig. 6N, O). Mettl3 knockdown followed by m6A site mutation
significantly increased the E2f3 mRNA expression levels

(Fig. 6P), with MepRIP-qPCR assays demonstrating that this
also significantly reduced the E2f3 mRNA m6A abundance
(Fig. 6Q). Dual luciferase assays resulted in significantly reduced
binding of Mettl3 to E2f3 after both E2f3 mRNA m6A sites were
mutated (Fig. 6R). Western blot analysis showed that over-
expressing Mettl3 significantly reduced the induction of E2f3
protein expression following Elf1 knockdown (Fig. 6S). Elf1
knockdown also slowed the E2f3 mRNA degradation rates,
whereas Mettl3 overexpression accelerated this degradation
(Fig. 6T). Immunofluorescence co-localization analysis revealed
a significant decrease in E2f3 expression with increased m6A
abundance in senescent NP tissues (Fig. 6U). E2f3 mRNA
stability was reduced after Mettl3 overexpression, but was
significantly enhanced after treatment with a specific m6A
methylation inhibitor (3-Deazaadenosine, DAA) (Fig. 6V). The
E2f3 mRNA and protein expression levels were significantly
upregulated after DAA treatment (Fig. 6W, X). Taken together,
Mettl3 can increase the abundance of the E2f3 m6A site and
thereby promote the degradation of E2f3 mRNA.

YTHDF2 accelerates NPC senescence by promoting E2F3
mRNA degradation through recognition of the m6A site
We found that the m6A reader gene Ythdf2 is involved in the
R_NPC senescence process (Fig. 7A). After analyzing CLIP-seq
data from the POSTAR3 database, we determined that YTHDF2
and METTL3 could co-bind to the E2F3 mRNA (Fig. 7B, C).
YTHDF2 mRNA and protein expression levels were significantly
upregulated in both the IL-1β-induced IVDD model and
replicative aging model (Fig. 7D–G). Additionally, YTHDF2
protein expression levels were significantly upregulated in
naturally aged mouse NP tissues and highly degenerated
human NP tissues (Fig. 7H, I). Western blot and qPCR data
confirmed successful knockdown of YTHDF2 (Fig. 7J, K). Flow
cytometry results showed that YTHDF2 knockdown significantly
promoted the G1/S phase transition of the cell cycle (Fig. 7L),
with further experiments indicating that it also significantly
delayed NPC senescence and reduced P16 expression levels
(Fig. 7M–O). A signal distribution map of RIP-Seq data
(GSE142827) helped us determine that YTHDF2 can bind to
the E2F3 gene (Fig. 7P–R). Western blot and qPCR results
showed that knocking down YTHDF2 significantly increased the
E2F3 mRNA and protein expression levels (Fig. 7S, T). In
addition, E2f3 mRNA stability was significantly improved
following Ythdf2 knockdown in the R_NPC model (Fig. 7U).
Bioinformatics analysis also indicated that YTHDF2 KO signifi-
cantly promoted E2F3 expression (Fig. 7V). Methylated single-
stranded RNA baits (ss-m6A oligo, consensus sequences
AG(m6A) CT and GG(m6A) CC) were used in an RNA pulldown

Fig. 4 ELF1-mediated transcriptional regulation of METTL3 accelerates IVDD. A Immunofluorescence detection of the Mettl3 protein
expression patterns in mouse NP tissues after Elf1 knockout (KO). B The mRNA expression levels of Mettl3 and cellular senescence-related
proteins in mouse NP tissues after Elf1 KO were detected by qPCR. C Western blot analysis of the protein expression levels of Mettl3, Mmp13,
and p21 in the NP tissues of mice after Elf1 KO. D Western blot analysis of the protein expression levels of Mettl3, Mmp13, and p21 following
ELF1 knockdown in H_NPC. E The Mettl3 mRNA expression levels were detected using qPCR following ELF1 knockdown in H_NPC. F The
single-cell sequencing transcription factor database was used to validate the transcription factors upstream of METTL3. G An ELF1 binding
peak in the METTL3 promoter region was detected using the open ChIP-seq database. H The METTL3 promoter sequences were determined
by examining the ELF1 immunoprecipitates using PCR. I ELF1 binding to the METTL3 promoter in H_NPC was confirmed by ChIP-PCR. J The
human METTL3 promoter region contains ELF1-like elements. K Luciferase activity, with expression driven by the METTL3 promoter, was more
pronounced following ELF1 overexpression. L Immunofluorescence detection of Elf1 expression and m6A modification levels and co-
localization in mouse NP tissues after Elf1 KO. M, N Immunofluorescence and western blot analyses were used to detect the Mettl3 protein
expression levels in mouse NP tissues injected with a Mettl3-overexpressing lentivirus. O Subgroups of Mettl3-overexpressing lentivirus
injected into the NP tissues of Elf1 KO mice. P, S MRI detection of the T2-weighted signal intensity in intervertebral discs after injecting the
Mettl3-overexpressing lentivirus into the NP tissues of wild-type (WT) and Elf1 KO mice. N= 6. Q, R, T H&E and Safranin-O staining of
intervertebral discs after injecting the Mettl3-overexpressing lentivirus into the NP tissues of WT and Elf1 KO mice; N= 6; Scale bars = 100 μm
and 20 μm. U Immunofluorescence detection of the protein expression levels of p16, Mettl3, and Collagen II in the NP tissues of WT and Elf1
KO mice injected with the Mettl3-overexpressing lentivirus. The data are presented as the mean ± SD. One-way ANOVA was used for
comparisons among multiple groups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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assay, with unmethylated control RNA (ss-A) used as control.
Interestingly, in the cell nuclear lysates, Ythdf2 was pulled down
by ss-M6A oligomers, but not by ss-A oligomers (Fig. 7W, X).
This suggests that, in the presence of m6A labeling, Ythdf2 can
bind to E2f3 mRNA.

ELF1 promotes NPC senescence through transcriptional
regulation of YTHDF2
Our transcription factor database of single-cell sequencing data
identified ELF1 as a potential transcription factor that can also
regulate YTHDF2 expression (Fig. 8A). Western blot and qPCR
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results showed significant downregulation of Ythdf2 protein and
mRNA expression levels in NP tissues following Elf1 KO (Fig. 8B, C).
YTHDF2 expression levels were significantly reduced by ELF1
knockdown in H_NPC (Fig. 8D). Immunofluorescence results
confirmed that Ythdf2 protein expression was significantly lower
in the NP tissues of Elf1 KO mice (Fig. 8E). Public ChIP-seq data
further identified the YTHDF2 gene promoter region as having
abundant ELF1 protein binding peaks (Fig. 8F). We then identified
the ELF1 binding site in the YTHDF2 promoter and observed clear
YTHDF2 DNA amplification after immunoprecipitation with an
anti-ELF1 antibody (Fig. 8G). ChIP-qPCR further demonstrated that
ELF1 can bind to the YTHDF2 promoter fragment (Fig. 8H). Binding
site determination using luciferase reporter assays revealed that
ELF1 binds to a site in the YTHDF2 promoter, with the absence of
this site resulting in the inability of ELF1 to promote YTHDF2
expression (Fig. 8I, J). Additionally, YTHDF2 was synergistically
upregulated with METTL3 and ELF1 in highly degenerated human
NP tissues (Fig. 8K). We next constructed a lentivirus to
overexpress Ythdf2 for further validation using in vivo experi-
ments. The qPCR data showed that injecting Ythdf2-expressing
lentiviruses into the discs of mice significantly promoted Ythdf2
expression, while suppressing E2f3 expression (Fig. 8L). Immuno-
fluorescence and western blot experiments showed that intra-
discal injection of the Ythdf2-overexpressing lentivirus could
significantly enhance Ythdf2 protein expression in NP tissues
(Fig. 8M, N). Sustained overexpression of Ythdf2 in NP tissues of
10-month-old mice significantly accelerated IVDD after two
months (Fig. 8O, P, S). H&E and Safranin-O staining suggested
that Elf1 KO significantly delayed the Ythdf2 overexpression-
induced IVDD (Fig. 8Q, R, T). Taken together, ELF1 can accelerate
NPC senescence by transcriptionally regulating YTHDF2 through
binding to the YTHDF2 gene promoter region.

The small molecule drug MMF targets and inhibits ELF1
expression to delay NPC senescence
We further investigated small molecule drugs or compounds that
can target ELF1 binding and inhibit NPC senescence. Firstly,
AlphaFold2 software was used to predict the ELF1 structure, then
assess its reliability (Fig. 9A, B). Docking prediction analyses
showed that the compound MMF (binding energy= -12.84 kJ/
mol) could effectively bind to ELF1 and was ranked as the first
compound (Fig. 9C). We obtained detailed maps of the interaction
between the ELF1 protein and MMF (Fig. 9D, E) and structural
conformation of MMF (Fig. 9F, G). MMF has an IC50 value of 55.40
nmol in H_NPC (Fig. 9H). Western blot results confirmed that the
ELF1, METTL3, and P21protein expression levels were significantly
inhibited with increasing MMF concentrations (Fig. 9I). In addition,
MMF significantly inhibited the IL-1β-induced upregulation of
METTL3 (Fig. 9J). Immunofluorescence results showed that MMF

treatment also reversed the IL-1β-induced increase in P16 and P21
expression levels and decrease in collagen II expression levels
(Fig. 9K–N). Furthermore, MMF significantly reduced the number
of senescent NPCs in the IL-1β senescence model, as well as in the
replicative senescence model (Fig. 9O, P). MMF (30mg/kg/day) or
control was given by gavage three times a week for 6 months to
naturally senescent 18-month-old mice (Fig. 9Q). A higher T2-
weighted signal intensity was seen in the IVDs of mice treated
with continuous oral MMF compared with naturally aged discs,
according to MRI and Pfirrmann grading analysis (Fig. 9R, T). H&E
and Safranin-O staining showed that MMF treatment significantly
increased the amount of NP tissues with decreased histological
scores compared with the naturally aging group (Fig. 9S, U). IHC
staining also demonstrated that MMF treatment significantly
reduced the Elf1, p21, and Mettl3 protein expression levels, as well
as the overall abundance of m6A modifications, in senescent NP
tissues (Fig. 9V). We further developed a model of D-galactose
(125 mg/kg/day)-induced NP tissue senescence with and without
MMF supplementation (Supplementary Fig. 9A). MRI and Pfirr-
mann grading results indicated that the D-galactose-induced discs
in mice had a significantly reduced T2-weighted signal intensity,
while the discs in MMF-administered mice had an increased T2-
weighted signal intensity (Supplementary Fig. 9B–D). H&E and
Safranin-O staining showed that MMF treatment could signifi-
cantly increase the number of NP tissues and delay IVDD
(Supplementary Fig. 9E, F). IHC staining demonstrated that MMF
treatment significantly reduced the Mettl3, p21, and p16 protein
expression levels, as well as the overall abundance of m6A
modifications, in senescent NP tissues (Supplementary Fig. 9G).
Next, we constructed a rat acupuncture IVDD model to further
validate the role of MMF. The MRI and Pfirrmann grading results
showed that injections of MMF had the same effects as injections
of an Elf1 small interfering RNA (siRNA) in the needle model of
IVDD, both of which increased the T2-weighted signal intensity of
the discs (Supplementary Fig. 10A–E). H&E and Safranin-O staining
demonstrated that both the MMF and Elf1 siRNA treatments
significantly delayed IVDD (Supplementary Fig. 10F–K). IHC
staining confirmed that the MMF and Elf1 siRNA treatments could
revert the expression of E2f3 and Collagen II in IVDD (Supple-
mentary Fig. 10L, M). In summary, these data suggest that MMF
can target Elf1 and suppress its expression, thereby delaying NPC
senescence and attenuating IVDD.

Overexpressing Elf1 in vivo accelerates NPC senescence to
promote IVDD
To further validate the role of Elf1 in IVDD, we constructed an
adeno-associated virus (AAV5) overexpressing Elf1. Immunofluor-
escence results showed a gradual increase in Elf1 protein
expression levels with higher Elf1 AAV5 viral loads (Fig. 10A).

Fig. 5 METTL3 inhibits expression of the key cell cycle gene E2F3 to accelerate NPC senescence. A Volcano map demonstrating that the
E2f3 expression levels are significantly upregulated following Mettl3 knockdown. B Correlation analysis of the expression levels of METTL3
and E2F3 in RNA-seq data from human NP tissues. C Immunohistochemistry detection of E2F3 protein expression levels in human NP tissues.
D Immunofluorescence detection of the E2f3 protein expression levels in NP tissues from the rat IVDD and mouse natural aging models.
E Western blot analysis was used to detect the E2F3 protein expression levels after 10 ng/mL IL-1β treatment for 48 h. F Western blot analysis
of the E2F3 protein expression levels in the H_NPC replicative senescence model. G The E2F3 expression levels were examined in the METTL3
KO database. H The E2F3 mRNA expression levels were detected by qPCR following METTL3 knockdown in H_NPC. I The E2F3 protein
expression levels were detected by western blot analysis following METTL3 knockdown. J Western blot analysis was used to detect the effects
of ELF1 knockdown on the E2F3 protein expression levels after 10 ng/mL IL-1β treatment for 48 h. K The E2F3 knockdown efficiency was
detected by qPCR. L Western blot analysis was used to detect the protein expression levels of Collagen II, ADAMTS5, Cyclin D1, and P21
following E2F3 knockdown. M, N SA-β-gal staining was used to detect the effects of E2F3 knockdown on H_NPC senescence. O, P Flow
cytometry was performed to detect the effects of E2F3 knockdown on H_NPC cell cycle progression. Q, R SA-β-gal staining was used to detect
the effects of simultaneous E2F3/ELF1 knockdown on H_NPC senescence. S, T Flow cytometry was used to detect the effects of simultaneous
E2F3/ELF1 knockdown on H_NPC cell cycle progression. U, V Flow cytometry was used to detect the effects of simultaneous E2F3/METTL3
knockdown on the medullary cell cycle. W, X SA-β-gal staining was used to detect the effects of simultaneous E2F3/METTL3 knockdown on
H_NPC senescence. The data are presented as the mean ± SD. One-way ANOVA was used for comparisons among multiple groups. *P < 0.05;
**P < 0.01; ***P < 0.001; ****P < 0.0001.
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Western blot and qPCR results suggested that overexpressing Elf1
in mouse NP tissues could significantly increase the Mettl3 and
Ythdf2 expression levels (Fig. 10B, C). MRI and Pfirrmann grading
analyses showed a lower T2-weighted signal intensity in mouse
IVDs after continuous addition of Elf1 AAV5 (Fig. 10D, G, H). H&E

and Safranin-O staining confirmed that overexpressing
Elf1 significantly reduced the amount of NP tissues and increased
the histological scores (Fig. 10E, F, I), with IHC staining showing
that the Mettl3 and Ythdf2 protein expression levels became
gradually enhanced with higher expression of Elf1 in the NP
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tissues (Fig. 10J). Moreover, overexpressing Elf1 significantly
increased the m6A abundance in NP tissues and inhibited E2f3
protein expression (Fig. 10K). In addition, western blot analysis
showed that overexpression of Elf1 in M_NPC promoted the
protein expression levels of Adamts5, Mmp13, and p21, while
decreasing those of collagen II and Cyclin d1 (Fig. 10L). Elf1
overexpression also promoted Mettl3 expression and inhibited
E2f3 expression, but these patterns were reversed with MMF
treatment (Fig. 10M). The immunofluorescence data confirmed
that the addition of MMF significantly reduced the elevation of
Mettl3, p21, and p16 expression levels resulting from Elf1
overexpression (Supplementary Fig. 11A, C). Additionally, knock-
ing down Mettl3 following Elf1 overexpression increased the
expression levels of E2f3 and decreased those of senescent
proteins (Supplementary Fig. 11B, D). SA-β-gal experiments
confirmed that Elf1 overexpression-induced NPC senescence was
delayed by treatment with MMF or a Mettl3 siRNA (Supplementary
Fig. 11E–H). Flow cytometry experiments further suggested that
both MMF and siMettl3 treatment could delay the G1/S phase cell
cycle arrest caused by Elf1 overexpression (Supplementary
Fig. 11I–L). Furthermore, qPCR results confirmed that the Mettl3
and Ythdf2 mRNA expression levels were significantly decreased
in M_NPC after Elf1 KO, whereas the E2f3 mRNA expression levels
were significantly increased (Supplementary Fig. 12A). Western
blot analysis indicated that the Elf1 KO-induced increase in E3f3
protein expression was significantly reversed by overexpression of
Mettl3 and Ythdf2 (Supplementary Fig. 12B, C). SA-β-gal work
showed that Elf1 KO can slow the senescence caused by high
expression levels of Mettl3 and Ythdf2 (Supplementary
Fig. 12D–G). Overexpressing Mettl3 and Ythdf2 in M_NPC could
promote the G1/S phase arrest, whereas Elf1 KO accelerated the
G1/S phase cell cycle transition (Supplementary Fig. 12H–K).
Immunofluorescence confirmed that MMF inhibited the high
expression patterns of the senescent proteins p21 and p16 caused
by Ythdf2 overexpression (Supplementary Fig. 12L–O). Taken
together, MMF treatment can delay NPC senescence by targeted
inhibition of the Elf1-Mettl3/Ythdf2-E2f3 axis.

DISCUSSION
Recently, senescent NPCs accumulation caused by aging and
other injurious factors has been identified as a significant marker
for the onset and progression of IVDD [9, 33, 34]. Elucidating the
underlying mechanisms of NPC aging to assist with developing
new therapeutic strategies has become a current research hotspot
and critical issue to be addressed. Therefore, the current
diagnostic and therapeutic methods of IVDD should be shifted
to precision therapy using specific molecular biological

mechanisms, aiming to inhibit NPC senescence from the root
cause to thereby slow IVDD progression.
The modern scientific study of aging focuses on answering

several interrelated questions: Why do organisms age? How do
cells become senescent? How, and to what extent, can the aging
process be slowed down, stopped, or even reversed? Therefore,
it is important to have a better understanding of what initiates
NPC senescence. Several recent studies have shown that
perturbations in transcriptional networks and chromatin states
involved in the control of cell fate, metabolism, and stress
response pathways are an early driver and one of the possible
underlying causes of senescence [35, 36]. Transcription factor-
driven epigenomic changes are critical for aging. The genetic
regulation of a single transcription factor, which is conserved
throughout evolution, may be sufficient to affect the health and
lifespan of an organism [14, 15, 37]. During disc development, a
number of transcription factors, such as Mkx, Pax1/9, Shh,
Foxa1/2, T-Brachyury, and Sox5/6/9, orchestrate the differentia-
tion of the NP and AF [38]. Therefore, identifying the specific
transcription factors that regulate IVD development is key to
unravelling the gene expression networks that can serve as
targets or tools for regenerative medicine strategies for IVD-
related diseases. However, the transcription factors that drive
NPC senescence and promote IVDD development are poorly
understood. In this study, using a multi-omics approach, we
found for the first time that the transcription factor ELF1 drives
NPC senescence and accelerates IVDD pathogenesis. ELF1
expression levels progressively increased with higher Pfirrmann
grading in human degenerating NP tissues. ELF1 expression
patterns were also significantly higher in our rat acupuncture
IVDD model, as well as in naturally aged degenerating NP
tissues. Additionally, we used an Elf1 KO animal model and NPC
senescence model to confirm that reducing these ELF1
expression levels could significantly delay NPC senescence and
inhibit IVDD. In addition, we constructed an Elf1 AAV5 to
overexpress Elf1 in mouse IVDs, which significantly accelerated
the NP tissue senescence and IVDD onset. Our findings
demonstrate that the degenerative changes in both nucleus
pulposus (NP) and annulus fibrosus (AF) tissues exhibit
progressive deterioration with aging in mice. Notably, we
observed a substantial upregulation of Elf1 expression in aged
NP and AF tissues, indicating that Elf1 not only plays a critical
role within the NP but may also be actively involved in the
pathogenesis of AF degeneration. Importantly, our comparative
analysis revealed that Elf1 knockout (KO) significantly attenuates
the degenerative progression of AF tissue when compared to
aged mouse disc tissues, suggesting a potential therapeutic
target for intervertebral disc degeneration.

Fig. 7 YTHDF2 accelerates NPC senescence by promoting E2F3 mRNA degradation by recognising the m6A site. A Venn diagram shows
the intersection of differential genes and m6A reader genes in R_NPC H2O2 aging model. B, C Proteins that can bind to E2F3 mRNA were
analyzed using CLIP-seq data from the POSTAR3 database. D, E The mRNA and protein expression levels of YTHDF2 after the addition of
10 ng/ml IL-1β to H_NPC were detected by qPCR and Western blot. F, G qPCR and immunofluorescence were used to detect mRNA and
protein expression levels of YTHDF2 in the H_NPC replicative senescence model. H Immunofluorescence detection of Ythdf2 protein
expression levels in NP tissue of naturally aging mice. I Immunohistochemical detection of YTHDF2 protein expression levels in human
degenerating NP tissue. J, KWestern blot and qPCR were used to detect the knockdown efficiency of YTHDF2 in H_NPC. L Flow cytometry was
performed to detect the effect of knockdown of YTHDF2 on the cell cycle of H_NPC; M SA-β-gal staining to detect the effect of knockdown of
YTHDF2 on H_NPC senescence. N SA-β-gal staining was used to detect the effect of knockdown of YTHDF2 on H_NPC senescence after
addition of 10 ng/ml IL-1β. O Immunofluorescence was used to detect the effect of knockdown of YTHDF2 on P16 protein after addition of
10 ng/ml IL-1β. P Signal distribution map of YTHDF2 binding to the E2F3 gene: x-axis is the position of the gene, y-axis is the signal mean
RPKM. Q Metagene plot: the gene is divided into three segments, 5’UTR, CDS and 3’UTR, and the distribution of peaks in each segment is
counted. R The E2f3 peak from the RIP-seq data is plotted. S Western blot to detect the protein expression level of E2F3 after knockdown of
YTHDF2 at H_NPC. T qPCR was performed to detect the mRNA expression level of E2F3 after knockdown of YTHDF2 at H_NPC. U qPCR
detection of the degradation rate of E2f3 mRNA after knockdown of Ythdf2. V E2F3 expression was detected using the YTHDF2 KO database
GSE37258.W, X Experimental scheme for RNA pulldown assay; Biotin-labelled single-stranded RNA ss-m6A and biotin-labelled ss-A were used.
The western blot shows that the Ythdf2 protein has been pulled down. Data presented as mean ± SD. One-way ANOVA was used for
comparison among multiple groups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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Our study further explored the specific molecular mechanisms
by which high ELF1 expression can promote NPC senescence.
We analyzed a single-cell database to identify differentially
expressed genes enriched in cellular senescence and m6A-
containing RNA binding in the ELF1+ and ELF1- subpopulations

of human NP tissues. Recent studies have demonstrated that
epigenetic regulatory mechanisms, including DNA methylation,
histone modification, non-coding RNAs, and RNA methylation,
are closely associated with the pathogenesis of NPC aging and
age-related IVDD [39, 40]. One of the most common RNA
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modifications in mammals is m6A, which involves the interplay
of m6A methyltransferases (“writers”), m6A demethylases
(“erasers”), and reader proteins, to control RNA nuclear trans-
port, splicing, stability, translation, and metabolism [18, 20].
Numerous reports have implicated m6A modifications in
oxidative stress, DNA damage, cellular senescence, autophagy,
neurodegenerative disease, diabetes, cardiovascular disease,
and other age-related processes [21, 41]. Recently, several
studies have investigated the biological functions of m6A
modifications in NPC ageing and IVDD, and abundant m6A
modifications were found in TNF-α-induced NPC senescence, a
puncture-induced IDD animal model and a natural NP senes-
cence model [42]. The study by Chen et al. has revealed the
dynamic changes of N6-methyladenosine (m6A) modification in
nucleus pulposus (NP) tissues during natural aging and its
potential role in intervertebral disc degeneration (IVDD). MeRIP-
Seq was utilized to analyze the m6A transcriptome in NP tissues
at three different time points (2, 10, and 20 months). In the
2-month (2 M) group, 31,986 m6A peaks were identified in
15,166 genes; in the 10-month (10 M) group, 32,007 peaks in
15,079 genes; and in the 20-month (20 M) group, 19,322 peaks in
13,448 genes. More interestingly, it was found that a total of 931
genes showed a trend towards persistent m6A methylation
during the senescence of the NPC [23, 43]. Moreover, in a study
by Cao et al., a mouse IVDD standing model was constructed,
and MeRIP-seq analysis of NP tissues revealed 8,173 genes in the
experimental group and 8,796 genes in the control group. There
were 7,321 overlapping genes between the two groups, with
852 unique genes in the experimental group and 1,475 unique
genes in the control group. Additionally, 17,846 distinct peaks
were detected in the 8,173 genes of the experimental group,
while 19,742 distinct peaks were identified in the 8,796 genes of
the control group. The study also found 933 significantly
upregulated m6A peaks and 386 significantly downregulated
m6A peaks [22]. This suggests that persistent changes in m6A
peaks may play a key role in the development of IVDD, and that
genes with persistent methylation trends are primarily asso-
ciated with RNA biosynthesis and cellular senescence. Therefore,
a deeper understanding of the drivers of m6A dynamics during
NPC aging will help identify intrinsic causative factors and
further provide new therapeutic targets for IVDD. In this study,
our multi-omics analysis revealed significantly upregulated
expression levels of the methylase METTL3 in degenerating
human NP tissues, as well as in senescent NPCs, which is
consistent with the results of studies that used a standing
mouse model and natural aging model [22, 23]. Here, our ChIP-
seq data using an anti-ELF1 antibody in human NPCs revealed
that the peak neighboring genes were enriched in aging. ChIP-

qPCR and dual luciferase experiments in H_NPC confirmed that
ELF1 can directly bind to the METTL3 promoter to transcription-
ally regulate its expression, which was confirmed when
significantly reduced METTL3 mRNA and protein expression
levels were observed following ELF1 knockdown. Significantly
lower Mettl3 expression levels and m6A modifications were
found in the Elf1 KO mice IVDs. Knocking down METLL3 could
significantly delay NPC senescence. In addition, overexpressing
Mettl3 in mouse IVDs significantly accelerated NPC aging,
reversing the delay in this process from Elf1 KO. In summary,
ELF1 can accelerate IVDD by increasing the abundance of m6A
modifications through the transcriptionally activation of METLL3
to promote NPC senescence. To our knowledge, this is the first
study to demonstrate that ELF1 can drive more abundant m6A
modifications in NPC senescence.
A common feature of senescent cells is intrinsic, irreversible cell

cycle arrest, which may be an alarm response to noxious stimuli or
abnormal proliferation [44]. Cell cycle arrest limits the proliferation
of damaged cells, with E2F family proteins being key downstream
transcription factors that regulate the cell cycle, as well as DNA
repair, apoptosis, and senescence. Overactivation of the E2F family
is associated with increased the oxidative stress, imbalanced
cellular metabolism, and reduced cellular function that are
hallmarks of the aging process. Furthermore, regulating E2F
family transcription factor activity can increase the ability of cells
to counteract DNA damage, suggesting that aging may be
delayed by regulating these proteins [45–47]. In the present study,
we found that E2F family transcription factors were down-
regulated in senescent NPCs, with E2f3 expression levels
significantly increasing after Mettl3 knockdown. This suggests
that E2f3 is involved in NPC senescence as a downstream
methylation target of Mettl3. The E2F3 methylation levels in
human embryonic lung fibroblasts were shown to be higher in
prematurely aged cells compared with young cells [48], suggest-
ing that E2F3 mRNA m6A modifications may be an important
factor in cellular senescence. Additionally, other work has
demonstrated a significant decrease in E2F3 expression levels
during NPC senescence [24], but the involvement of m6A
modifications in these expression patterns has not been reported.
In this study, we found for the first time that high expression levels
of the methylase METTL3 could increase the abundance of E2F3
mRNA m6A modifications, leading to decreased E2F3 mRNA and
protein expression levels that thereby accelerate NPC senescence.
Although m6A writers and erasers affect the RNA methylation

patterns, m6A binding proteins ultimately determine the biologi-
cal outcomes of these modifications [49, 50]. In this study, we
found that the mRNA degradation rate increased significantly with
a higher abundance of m6A-modified E2F3 mRNA in NPC.

Fig. 8 ELF1-mediated transcriptional regulation of YTHDF2 promotes NPC senescence. A The transcription factor database (http://
www.grndb.com/) for single-cell sequencing was used to predict the potential transcription factors regulating YTHDF2 expression.
B, C Western blot and qPCR analyses were performed to detect the Ythdf2 protein and mRNA expression levels in NP tissues after Elf1
knockout (KO). D The YTHDF2 protein expression levels were detected using western blot analysis following ELF1 knockdown in H_NPC. E The
Ythdf2 protein expression patterns were detected in NP tissues of Elf1 KO mice using immunofluorescence. F An ELF1 binding peak was
detected in the YTHDF2 promoter region using the open ChIP-seq database. G The YTHDF2 promoter sequence was detected by PCR analysis
of ELF1 immunoprecipitates. H ELF1 binding to the YTHDF2 promoter in H_NPC was confirmed by ChIP-PCR. I ELF1-like elements in the
promoter region of the human YTHDF2 gene. J Luciferase activity, driven by the YTHDF2 promoter, was more pronounced following ELF1
overexpression. In contrast, in the absence of ELF1, the luciferase activity was decreased; The luciferase activity was unchanged with the
mutant YTHDF2 reporter following ELF1 overexpression. K The protein expression levels of ELF1, METTL3, and YTHDF2 were detected in
human NP tissues using western blot analysis. L, M The Ythdf2 mRNA and protein expression levels were examined using qPCR and
immunofluorescence following injection of the Ythdf2-overexpressing lentivirus into mouse NP tissues. N Western blot analysis was used to
examine the Ythdf2 protein expression levels in mouse NP tissues. O Grouping of the Ythdf2-overexpressing lentiviruses injected into the NP
tissues of Elf KO mice. P, S MRI was used to detect the T2-weighted signal intensity of the intervertebral discs after injection of the Ythdf2-
overexpressing lentivirus into the NP tissues of wild-type (WT) and Elf1 KO mice; N= 6. Q, R, T H&E and Safranin-O staining of intervertebral
discs after injection of the Ythdf2-overexpressing lentivirus into the NP tissues of WT and Elf1 KO mice; N= 6; Scale bars = 100 μm and 20 μm.
The data are presented as the mean ± SD. One-way ANOVA was used for comparisons among multiple groups. *P < 0.05; **P < 0.01;
***P < 0.001; ****P < 0.0001.
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Therefore, it is necessary to search for m6A readers that can
recognize the m6A site of E2F3 mRNA and accelerate its
degradation. The YTH structural domain family protein 1 (YTHDF1)
has been shown to initiate RNA translation by interacting with
translation initiation factors and ribosomes, whereas

YTHDF2 selectively binds m6A-modified transcripts and acceler-
ates their degradation [51, 52]. The (TG)n microsatellite poly-
morphism in the fourth intron of the YTHDF2 gene is associated
with human longevity [53]. In the present study, we found that
YTHDF2 expression levels were significantly increased in
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senescent NPCs and highly degenerated human NP tissues, with
YTHDF2 knockdown resulting in higher E2F3 mRNA stability. In
addition, ChIP-qPCR and dual luciferase experiments in H_NPC
confirmed that ELF1 can directly bind to the YTHDF2 promoter to
transcriptionally regulate its expression, which was further
confirmed when ELF1 knockdown led to significantly reduced
YTHDF2 mRNA and protein expression levels. Elf1 KO mice IVDs
displayed significantly reduced Ythdf2 expression levels and m6A
modifications. Overexpressing Ythdf2 in mouse IVDs significantly
accelerated NPC senescence, reversing the delay in this process
that occurred from Elf1 KO. Thus, our study shows for the first time
that increased ELF1 expression patterns in NPC can simulta-
neously promote the expression levels of the methylase METTL3
and reading protein YTHDF2, thereby affecting the m6A
modification abundance in NPCs to drive their senescence.
Conservative and surgical strategies are the current treatment

modalities for IVDD. Unfortunately, a significant number of
patients do not respond to conventional therapies and continue
to suffer from chronic pain and disability [54]. Recently, small
molecules, defined as low molecular weight organic compounds
less than 900 daltons, have been shown to have anti-inflamma-
tory, anti-apoptotic, antioxidant, and anabolic properties. They
may therefore potentially help prevent further disc degeneration
and promote disc cell regeneration [55], leading to small molecule
therapy becoming a traditional treatment for discogenic pain and
an alternative to surgery. We aimed to identify small molecule
compounds that can directly target and inhibit ELF1 for the early
prevention and mitigation of IVDD. We predicted the structure of
ELF1 using AlphaFold2 software and found that MMF displayed
the highest potential for binding to ELF1. MMF is prepared as
mycophenolic acid (MPA) 2-morpholinoethylester, with oral MMF
having an availability of 94.1%. After absorption, esterases in the
plasma, liver, and kidneys rapidly convert MMF to the active
metabolite MPA [56]. Studies have shown that MPA can prolong
the replicative lifespan of yeast [57, 58]. MMF has also been
defined as an ‘anti-aging’ drug, as it has been shown to ameliorate
oxidative stress, as well as inhibit macrophage and lymphocyte
infiltration and cytokine production by these cells [59–61]. In
addition, after acute spinal cord injury in young rats, MMF
displayed anti-apoptotic, anti-lipid peroxidation, and neuropro-
tective effects [62]. In the present study, we have demonstrated
for the first time that MMF can significantly inhibit ELF1 expression
and reduce the m6A modification abundance, thereby delaying
NPC senescence and attenuating IVDD progression. These findings
suggest that MMF may be an effective therapeutic strategy for
IVDD by inhibiting ELF1 expression and delaying NPC senescence.

CONCLUSION
This study was designed from multiple perspectives, including
cell biology, bioinformatics, genomics, histopathology, and gene
knockout animal models. It proposed the mechanisms and
targets for inhibiting nucleus pulposus (NP) cell senescence and
elucidated the molecular mechanism by which the ELF1-
METTL3/YTHDF2-m6A-E2F3 signaling axis promotes NP cell
senescence. Additionally, using artificial intelligence-based
virtual screening technology, the small-molecule active com-
pound mycophenolate mofetil (MMF) was identified to target
and modulate ELF1 expression, thereby inhibiting this signaling
axis. These findings provide a solid theoretical and experimental
foundation for clinically delaying intervertebral disc degenera-
tion (IVDD), demonstrating significant translational potential in
clinical applications. The limitations and shortcomings of this
study mainly include the following three aspects: 1. The grade I/
II intervertebral disc tissues collected in this study were primarily
obtained from patients with idiopathic scoliosis and lumbar
spine fractures. Due to the difficulty in acquiring normal human
nucleus pulposus tissue samples, the sample size available for
research is relatively limited. Considering the differences in
genetic backgrounds among individuals and the varying
sampling locations within the intervertebral disc (such as the
junctional area between the annulus fibrosus and nucleus
pulposus), there may be some degree of biological hetero-
geneity among the samples. 2. The number of nucleus pulposus
tissue specimens subjected to proteomic sequencing in this
study was relatively small, and further expansion of the sample
size is necessary for validation. The RNA transcriptomics and
single-cell transcriptomics analyses were primarily based on
bioinformatics analysis, and there is a lack of single-cell self-
measured data from IVDD nucleus pulposus tissues in our
department. Further multidimensional validation should be
conducted by combining the expression levels of ELF1 in
nucleus pulposus tissues with other clinical indicators of IVDD
patients to enhance the clinical diagnostic value. 3. This study
utilized ELF1 whole-gene knockout mice for molecular biology
experiments. In future research, conditional gene knockout of
ELF1 (using the Cre-loxP system) should be established, and the
impact on IVDD should be observed after specifically knocking
out ELF1 in the nucleus pulposus tissue.

MATERIALS AND METHODS
See the Supplementary Material for more information on the materials and
methods used in this study.

Fig. 9 The small-molecule drug mycophenolate mofetil (MMF) targets and interferes with ELF1 expression to inhibit NPC senescence.
A Proteins used for virtual screening of boxes (proteins are surface representations; AI predicted binding pockets are shown in green).
B Protein Rasch plot; the number of amino acids located outside the 0.002 curve is small, accounting for 34%, suggesting that this structure
can be used for subsequent calculations. C Docking scores for the ELF1 protein. The second to fifth columns of the table represent
the Compound Index, Affinity (kcal/mol), Compound Name, and CAS number, respectively. D TOP1 interaction diagram of ELF1. Solid blue
line: hydrogen bonding; dashed gray line: hydrophobic interaction. E Detailed view of the 2-dimenstional interaction of ELF1 with top 1 small
molecules. F, G Top 1 small molecule structure, with the binding conformation of ELF1 to the small molecules. H MMF IC50 value in H_NPC.
I Western blot analysis was used to detect the protein expression levels of ELF1, METTL3, and P21 following MMF treatment in H_NPC.
J Western blot analysis was used to detect the protein expression levels of METTL3, MMP13, and E2F3 following MMF treatment in the 10 ng/
mL IL-1β model. K–N Immunofluorescence was used to detect the protein expression patterns of ELF1, P21, P16, and Collagen II after the
addition of MMF with 48 h of 10 ng/mL IL-1β treatment. O SA-β-gal staining was used to detect the number of senescent NP cells after
the addition of MMF with 48 h of 10 ng/mL IL-1β treatment. P SA-β-gal staining was used to detect the amount of H_NPC senescence after the
addition of MMF in the replicative senescence model. Q Flowchart of the experiment. Juvenile (2 months old, males, N= 6) or naturally aged
(18 months old, males, N= 12) C57BL/6 J mice were given a carrier (carboxymethylcellulose sodium (CMC-Na) or MMF (30mg/kg/day)) orally.
The lumbar vertebrae were collected for histological examination after 6 months of continuous experiments with MRI followed by execution.
R, T MRI detection of the T2-weighted signal intensity of the intervertebral discs in MMF-treated mice; N= 6. S, U H&E and Safranin-O staining
of mouse intervertebral discs after MMF treatment; N= 6; Scale bars = 100 μm and 20 μm. V Immunofluorescence was used to examine the
protein expression patterns of Elf1, p21, and Mettl3, as well as the m6A modifications, in the NP tissues of MMF-treated mice. The data are
presented as the mean ± SD. One-way ANOVA was used for comparisons among multiple groups. *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001.
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Fig. 10 Overexpressing Elf1 in vivo accelerates NPC senescence to promote IVDD. A Immunofluorescence detection of Elf1 protein
expression patterns in NP tissues after injection of different doses of Elf1 AAV5. B, C Western blot and qPCR analyses were used to detect the
protein and mRNA expression levels of Elf1, Mettl3, and Ythdf2 in NP tissues after Elf1 overexpression. D, G, HMRI detection of the T2-weighted
signal intensity and Pfirrmann grading of intervertebral discs in mice after injection of Elf1 AAV5; N= 6. E, F, I H&E and Safranin-O staining and
histological scoring of mouse intervertebral discs after injection of Elf1 AAV5; N= 6; Scale bars = 100 μm and 20 μm. J, K Immunofluorescence
detection of the protein expression patterns of Elf1, p21, and Mettl3 and the m6A abundance in the NP tissues of mice treated with an injection
of Elf1 AAV5. L Western blot analysis was used to detect the protein expression levels of Collagen II, Adamts5, Mmp13, Cyclin D1, and p21 in
M_NPC after Elf1 overexpression. M Western blot analysis was used to detect the protein expression levels of Mettl3 and E2f3 after MMF
treatment in Elf1-overexpressing M_NPC. N Molecular mechanisms of ELF1-mediated regulation of NPC senescence. The data are presented as
the mean ± SD. One-way ANOVA was used for comparisons among multiple groups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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