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Mitochondrial permeability transition (MPT)-driven necrosis and necroptosis are regulated variants of cell death that can drive
inflammation or even promote antigen-specific immune responses. In oncological settings, indolent inflammatory reactions have
been consistently associated with accelerated disease progression and resistance to treatment. Conversely, adaptive immune
responses specific for tumor-associated antigens are generally restraining tumor development and contribute to treatment
sensitivity. Here, we harnessed female C57BL/6J mice lacking key regulators of MPT-driven necrosis and necroptosis to investigate
whether whole-body defects in these pathways would influence mammary carcinogenesis as driven by subcutaneous slow-release
medroxyprogesterone acetate (MPA, M) pellets plus orally administered 7,12-dimethylbenz[alanthracene (DMBA, D), an in vivo
model that recapitulates multiple facets of the biology and immunology of human hormone receptor positive (HR*) breast cancer.
Our data demonstrate that female mice bearing a whole-body, homozygous deletion in peptidylprolyl isomerase F (Ppif), which
encodes a key regulator of MPT-driven necrosis commonly known as CYPD, but not female mice with systemic defects in
necroptosis as imposed by the whole body-deletion homozygous of receptor-interacting serine-threonine kinase 3 (Ripk3) or mixed
lineage kinase domain like pseudokinase (MIkl), are more susceptible to M/D-driven carcinogenesis than their wild-type
counterparts. These findings point to CYPD as to an oncosuppressive protein that restrains HR™ mammary carcinogenesis in mice, at

least potentially via MPT-driven necrosis.
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INTRODUCTION

Mammalian cells are equipped with a variety of mechanisms that
ensure their controlled demise in both physiological and
pathological settings [1-3]. Indeed, while for a long time apoptosis
was believed to be the sole cell death pathway to be genetically
controlled, it is now widely accepted that mammalian cells can
also undergo various regulated forms of necrosis [1-3]. These
include (but are not limited to): (1) mitochondrial permeability
transition (MPT)-driven necrosis, which is precipitated by pepti-
dylprolyl isomerase F (PPIF, also known as CYPD) [4], and (2)
necroptosis, which requires the kinase activity of receptor-
interacting serine-threonine kinase 3 (RIPK3) as well as the ability
of mixed lineage kinase domain like pseudokinase (MLKL) to form
pores in the plasma membrane [5, 6]. Importantly, both these cell
death subroutines can drive inflammation if not be overtly
immunogenic (i.e, elicit antigen-specific immune responses
associated with immunological memory) [7-9], at least in part
reflecting: (1) the ability of multiple mitochondrial components to
drive inflammation once released in the cytosol downstream of
MPT [10], and (2) the ability of RIPK3 to engage inflammasome
signaling and hence promote the maturation and release of
interleukin 1 beta (IL1B) and IL18 (Ref. 6). Thus, at least a priori,
pre-malignant cells undergoing MPT-driven necrosis or necropto-
sis as a consequence of adverse microenvironmental conditions
may elicit inflammatory processes or adaptive immune responses
that drive [11, 12] or restrain [8] tumor progression, respectively.

We harnessed female C57BL/6J mice bearing whole-body,
homozygous deletions in Ppif, Ripk3 or Mkl to test whether
systemic defects in MPT-driven necrosis or necroptosis influence
mammary carcinogenesis as elicited by the subcutaneous
implantation of slow-release medroxyprogesterone acetate
(MPA, M) pellets coupled with the oral administration of 7,12-
dimethylbenz[alanthracene (DMBA, D) [13-15]. We focused on
these specific genes not only because they are mechanistically
involved in MPT-driven necrosis (Ppif) [4] and necroptosis (Ripk3,
Mikl) [5, 6], but also because their whole-body deletion fails to
affect survival at birth and fertility in mice. Moreover, we
deliberately chose this mouse model of HR* mammary carcino-
genesis because of the unique immunobiological resemblance to
its human counterpart. Besides sharing transcriptional features
with human HR*HER2™ breast cancer [13], M/D-driven mammary
carcinomas established in immunocompetent female C57BL/6J
mice are indeed poorly infiltrated by immune cells at baseline, and
hence are poorly responsive to immune checkpoint inhibitors
specific for PD-1 [13], but exquisitely sensitive to CDK4/6 inhibitors
[14], similar to their human counterparts [16-18]. Moreover, M/D-
driven mammary carcinogenesis appears to be susceptible to risk
factors similarly increasing the propensity of postmenopausal
women to develop HR* breast cancer, such as obesity [13, 19].
Finally, M/D-driven mammary carcinomas not only fail to express
erb-b2 receptor tyrosine kinase 2 (ERBB2, best known as HER2),
but most often also preserve estrogen receptor 1 (ESR1) and
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progesterone receptor (PGR) expression throughout the onco-
genic process [13], hence exhibiting fundamental differences to
other mouse models of breast cancer expressing HRs such as
MMTV-PyMT mice. Indeed, the latter robustly express HER2 and
tend to lose HR expression by the time mice are randomized to
treatment or tumors are collected to generate cell lines [20-22], de
facto modeling another type (HER2") of breast cancer.

We found that female Ppif”~ mice, but not their Ripk3 ™~ or
Mikl~~ counterparts, develop M/D-driven mammary carcinomas
with a shorter delay than wild-type (WT) mice at both primary and
secondary disease sites, resulting in reduced overall survival
despite a comparable growth of established tumors. These
findings indicate that CYPD restrains the initial steps of HR*
mammary carcinogenesis in mice, at least potentially through its
fundamental role in the control of MPT-driven necrosis.

RESULTS

Ppif restrains primary M/D-driven mammary carcinogenesis
To elucidate the impact of systemic defects in MPT-driven necrosis
and necroptosis on HR* mammary carcinogenesis, we subjected
female WT, Ppif =, Ripk3™"~, and MIkI~'~ C57BL/6J mice of 6-9 weeks
of age to M/D-driven mammary carcinogenesis according to
established procedures [13, 23], and monitored them for tumor-free
survival (TFS), as well as for a number of other parameters defining
disease progression (Fig. 1A). In line with previous findings from us
and others [13, 24], female WT mice developed M/D-driven mammary
carcinomas expressing estrogen receptor 1 (ESR1, best known as ER)
and progesterone receptor (PGR, best known as PR), but not vimentin
(VIM)—de facto exhibiting a luminal phenotype—with complete
penetrance and a median latency of 89 days from the 1st DMBA
gavage (Fig. 1B, Q). Neither the Ripk3™~ nor the MIkl™~ genotype
significantly influenced tumor penetrance (data not shown), pheno-
type (Fig. 1B) or latency (median TFS: 104 days and 83 days,
respectively; p value: 0.9064 and 0.1875, respectively) in this setting
(Fig. 1C). Conversely, while Ppif "~ mice also developed M/D-driven
mammary tumors with complete penetrance (data not shown), these
lesions expressed limited ER levels (Fig. 1B) and emerged with
significantly accelerated kinetic as compared to their WT counterparts
(median TFS: 69 days; p value: 0.0213) (Fig. 1C). However, the growth
of first detectable (primary) M/D-driven carcinomas, as monitored
from tumor detection with a common caliper, did not differ between
Ppif”~ and WT mice (p value: 0. 678), while it was slightly (but
significantly) reduced in their Ripk3 ™~ and MIkI~"~ genotype (p value:
0.022 and <0.0001, respectively) (Fig. 1D).

These findings demonstrate that the whole-body homozygous
deletion of Ppif shortens the latency for M/D-driven mammary
carcinomas to become detectable in the absence of overt
alterations in tumor growth rate.

Lack of Ppif promotes secondary M/D-driven mammary
carcinogenesis

M/D-driven oncogenesis proceeds beyond the formation of
detectable primary tumors, resulting in the appearance of extra
(secondary) lesions that contribute to cumulative tumor burden
and hence to the definition of humane endpoint [15]. To
understand the impact of genetic alterations in key molecular
regulators of MPT-driven necrosis and necroptosis, we thus
assessed time to secondary oncogenesis (TT2), defined as the
number of days elapsing between the detection of the primary M/
D-driven tumor and any extra mammary lesions emerging
thereafter. Most often, WT mice had to be euthanatized because
of the uncontrolled growth of primary M/D-driven tumors before
developing a secondary neoplasm, hence failing to reach median
TT2 (Fig. 2A). Indeed, only 6/22 (~27.3%) mice in this group
developed at least one secondary tumor by the time euthanasia
was required owing to global disease burden (Fig. 2B). Ripk3~"~
and MIkI~’~ mice exhibited a median TT2 of 23 and 39 days,
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respectively, which was not significantly different compared to WT
mice (p value: 03847 and 0.9165, respectively) (Fig. 2A).
Accordingly, 4/8 (50%) Ripk3~'~ mice and 4/7 (~57.1%) Mikl~"~
mice developed at least one secondary lesion before global tumor
burden reached ethical endpoint, which failed to differ in a
statistically significant manner from WT mice (p value: 0.3841 and
0.1476, respectively) (Fig. 2B). Conversely, secondary M/D-driven
tumorigenesis exhibited a strong (although sub-significant) trend
towards acceleration in Ppif’/’ mice (median TT2: 7 days; p value:
0.0763), and these animals developed at least one secondary
tumor in 7/11 cases (~ 63.6%, p value: 0.0436) (Fig. 2A, B).

Of note, secondary M/D-driven tumors failed to exhibit
differences in growth pattern when Ripk3 ™/~ mice were compared
to their WT counterparts in this respect (p value: 0.4020) (Fig. 2C).
Conversely, while secondary M/D-driven carcinomas evolving in
MIKkI” mice grew less rapidly compared to the same tumors
progressing in WT mice (p value: <0.0001), the contrary was true
for secondary M/D-driven tumors developing in Ppif /= mice
(p value: 0.0003) (Fig. 2Q). Finally, Ripk3’/’ mice and MIkI~’~ mice
did not differ from WT mice with respect to the number of
secondary M/D-driven tumors per mouse (p value: 0.3230 and
0.1169, respectively), even when this parameter was normalized
for mouse survival (p value: 0.5101 and 0.3945, respectively) (Fig.
2D, E). On the contrary, Ppif”~ mice subjected to M/D-driven
carcinogenesis accumulated—in average—an increased amount
of secondary lesions per mouse as compared to WT mice, not only
as an absolute measurement (p value: 0.0175), but also upon
accounting for differential survival (p value: 0.0176) (Fig. 2D, E).

Collectively, these data demonstrate that the whole-body
deletion of Ppif accelerates HR* carcinogenesis as driven in
C57BL/6J mice by MPA and DMBA not only at primary, but also at
secondary, disease sites.

Ppif inhibits natural disease progression in M/D-driven
mammary carcinomas

Despite the early appearance of primary and secondary M/D-
driven tumors as well as the accelerated tumor growth at
secondary disease sites as documented in female Ppif ’~ mice
(Figs. 1B and 2A-C), these animals exhibited a median time to
death (TTD), defined as the number of days elapsing between the
detection of the first malignant lesion and ethical endpoint as
dictated by cumulative tumor burden, of 17 days, which was not
significantly different from that of WT mice (median TTD: 11 days,
p value: 0.2593) (Fig. 3A), potentially owing to a slight (although
sub-significant) deceleration in primary tumor growth (Fig. 1C). In
line with this notion, the Ripk3™'~ and even more so the Mikl~/~
genotype were associated with an extension in TTD (median TTD:
25 and 30 days, respectively; p value: 0.0084 and 0.0035,
respectively) (Fig. 3A), largely reflecting the reduced speed of
tumor progression at primary disease sites (Fig. 1B) in the context
of limited alterations in TT2 and secondary tumor growth
(Fig. 2A-C). Consistent with this notion, while the growth of all
detectable M/D-driven tumors failed to differ between WT and
Ppif"/_ mice (p value: 0.1914), both the Ripk3_/_ and the MIkI~/~
genotype (p value: 0.0086 and <0.0001, respectively) were
associated with significant reduction in global disease progression
(Fig. 3B).

Of note, the relative contribution of primary disease to global
tumor burden as a determinant of ethical endpoint was not
affected by the whole-body deletion of Ripk3 (p value: 0.1780) or
Miki (p value: 0.2056) (Fig. 3C). Conversely, the Ppif ”~ genotype
tended to be associated (although in a sub-significant manner)
with a decreased relative contribution of primary over secondary
tumors to global disease burden at ethical endpoint (p value:
0.0809) (Fig. 3C). Moreover, while both the Ripk3™”~ and the
MIkI~"~ genotype failed to influence the overall survival (OS) of
female mice subjected to M/D-driven carcinogenesis (median OS:
125 and 119 days, respectively; p value: 0.2679 and 0.7347,
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Fig. 1 Ppif restrains primary M/D-driven mammary carcinogenesis. Wild-type (WT) Ppif /=, Ripk3~"~ or Mikl~/~ female C57BL/6) mice were
subjected M/D-driven carcinogenesis, then assessed for tumor-free survival (TFS), time to secondary disease (TT2), time to death (TTD) and
overall survival (OS), as well as routinely monitored for tumor growth at primary and secondary disease sites (A). Representative images of M/
D carcinomas collected from WT, Ppif =, Ripk3~'~ or Miki~’~ mice at euthanasia and co-immunostained for ER/VIM or PR/VIM and Hoechst
33258 for nuclear counterstaining (B), as well as TFS (C) and tumor growth at primary disease site (D) are reported. In (C) median TFS,
Mantel-Haenszel hazard ratio (HR) with 95% confidence interval (Cl), group size (n) and p values (Log-rank, compared to WT mice) are
indicated. In (D) both individual and average tumor growth are illustrated, with group size (n) and p values (2-way ANOVA, compared to WT

mice) reported.

respectively), the whole-body deletion of Ppif significantly
shortened it (median OS: 90 days; p value: 0.0330), with WT
animals exhibiting a median OS of 100 days (Fig. 3D).

Taken together, these data indicate that CYPD restrains the
natural progression of HR* mammary carcinogenesis in female
C57BL/6J mice by interfering with early stages of tumorigenesis.

DISCUSSION

In summary, our data indicate that CYPD—a fundamental
regulator of MPT-driven necrosis [25, 26]—mediates oncosup-
pressive effects in an immunocompetent mouse model of HR*
mammary oncogenesis driven by the systemic administration of a
chemical carcinogen, i.e, DMBA, in the context of
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supraphysiological PR signaling, as elicited by slow-release MPA
pellets [13-15]. As introduced above, this is a uniquely transla-
tional model of HR*HER2™ oncogenesis, as it recapitulates a
number of biological, immunological and therapeutic aspects of
its human counterpart [13-15], hence standing out as a
preferential platform for immuno-oncology studies of this specific
variant of breast cancer [27, 28]. Moreover, our findings are fully in
line with the well-recognized oncosuppressive role of regulated
cell death (RCD) in many of its variants [29-31], largely (but
perhaps not exclusively) reflecting the evolutionary advantage
provided to a multicellular organism by signal transduction
cascades that coordinate the demise of individual cells bearing
excessive macromolecular damage (hence being unable to
perform their physiological functions or even at increased risk of

SPRINGER NATURE
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Fig.2 Lack of Ppif promotes secondary M/D-driven mammary carcinogenesis. Wild-type (WT) Ppif /=, Ripk3 ™/~ or MiIki~/~ female C57BL/6)
mice were subjected M/D-driven carcinogenesis and analyzed as illustrated in Fig. 1A. Time to secondary disease (TT2) (A), percentage of mice
developing secondary lesions (B), secondary tumor growth (C), number of secondary tumors per mouse (D) and number of secondary tumors
per mouse normalized to time to death (TTD) (E) are reported. In (A), median TT2, Mantel-Haenszel hazard ratio (HR) with 95% confidence
interval (Cl), group size (n) and p values (Log-rank) are indicated. Mice succumbing to primary disease without developing a secondary tumor
were censored from the analysis. In (B), group size (n) and p values (Fisher's exact test, compared to WT mice) are indicated. In (C) both
individual and average tumor growth are illustrated, with group size (n) and p values (2-way ANOVA, compared to WT mice) reported. In
(D and E) results are reported as means = SEM and individual data points, p values (Kruskal-Wallis, compared to WT mice) are indicated. NR not

reached.

malignant transformation) in the context of adequate immunolo-
gical responses [32, 33].

CYPD has been shown to mediate various functions that may or
may not involve MPT regulation but definitely do not culminate
with MPT-driven necrosis, including a paradoxical cytoprotective
function in senescent cells, as well as a metabolic activity in
hematopoietic precursors [34-36]. Thus, it remains possible that
the ability of CYPD to suppress HR" mammary carcinogenesis in
female C57BL/6J mice may be unrelated to RCD via MPT-driven
necrosis, but may instead involve complex systemic effects
originating in compartments other than (pre-)malignant niches.
This is particularly challenging to formally establish with additional
genetic approaches [37], as most (if not all) proteins that
reportedly form or interact with—hence regulating—the supra-
molecular complex responsible for MPT, which is commonly
known the permeability transition pore complex: (1) exhibit
considerable genetic and/or functional redundancy, considerably
complicating the implementation of successful knockout strate-
gies in vivo; [38, 39] (2) are critical components of the molecular
machinery that ensure mitochondrial ATP synthesis, de facto being
strictly required for survival; [40-42] and (3) at least in some cases,
have been conclusively shown to be dispensable for MPT
[25, 43, 44]. Along similar lines, currently available pharmacologi-
cal inhibitors of the MPT exhibit limited specificity [37]. As a
standalone example, the pharmacological CYPD inhibitor

SPRINGER NATURE

cyclosporin A (CsA) has major CYPD-independent immunosup-
pressive effects by inhibiting peptidylprolyl isomerase A (best
known as CYPA) in T cells [45, 46].

Intriguingly, CYPD has also been shown to contribute to normal T
cell and natural killer (NK) cell functions, at least in preclinical models
of infection [47, 48], raising the possibility that accelerated MPA/
DMBA-driven mammary carcinogenesis as observed in Ppif 7/~
C57BL/6J mice may result from defects in natural immunosurveil-
lance [49]. We have previously demonstrated that MPA/DMBA-
driven mammary tumors develop with an accelerated kinetic in
Rag2~"~l12rg™"~ mice (which lack T cells, B cells and NK cells), as well
as in mice receiving an antibody specific for NKG2D (which depletes
NK cells and a subpopulation of CD8" T cells), but not in Rag2 ™"~
mice (which lack T and B cells) or in mice receiving CD4- and CD8-
targeting antibodies (which are depleted of T cells), globally pointing
to NK cells as to central mediators of natural immunosurveillance in
this model [13, 50]. Subjecting C57BL/6) mice to total body
irradiation-induced myeloablation and reconstituting them with
Ppif '~ hematopoietic stem cells (and vice versa) will provide
additional insights into the role of CYPD expression in radiosensitive
vs radioresistant cells in  MPA/DMBA-driven  mammary
carcinogenesis.

Despite this and other open avenues, our findings indicate that
CYPD retards HR* mammary carcinogenesis in immunocompetent
C57BL/6J mice. Of note, CYPD has previously been shown to

Cell Death Discovery (2025)11:273
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Fig. 3 Ppif inhibits natural disease progression in M/D-driven mammary carcinomas. Wild-type (WT) Ppif /=, Ripk3™"~ or MIkI”’~ female
C57BL/6J mice were subjected M/D-driven carcinogenesis and analyzed as illustrated in Fig. 1A. Time to death (TTD) (A), cumulative tumor
growth (B), relative contribution of primary tumors (T1) to overall disease burden at euthanasia (C) and overall survival (OS) (D) are illustrated.
In (A and D) median values, Mantel-Haenszel hazard ratio (HR) with 95% confidence interval (Cl), group size (n), and p values (Log-rank) are
indicated. Mice succumbing to causes other than euthanasia owing to global disease burden were censored from the analysis. In (B) both
individual and average tumor growth are illustrated, with group size (n) and p values (2-way ANOVA, compared to WT mice) reported. In (C)
results are reported as means + SEM and individual data points, p values (Kruskal-Wallis, compared to WT mice) are indicated.

promote (rather than inhibit) hepatocellular carcinogenesis in
mice with non-alcoholic steatohepatitis [51] as well HR*HER2*
mammary carcinogenesis as driven by the MMTV-PyMT construct
[52]. Additional work is hence required to understand whether our
data reflect unique immunobiological features of HR* breast
cancer over other breast cancer subtypes and extramammary
neoplasms.

MATERIALS AND METHODS

Ethics approval and consent to participate

Animal studies were performed as per guidelines from the Guide for the
Care and Use of Laboratory Animals [53] and under a protocol approved by
the Institutional Animal Care and Use Committee of Weill Cornell Medical
College (n° 2020-0022). No human subjects were included in this study,

Mice and oncogenesis

Endogenous mammary carcinogenesis was initiated as previously
described [13, 23]. Shortly, a 50 mg slow-release (90 days) medroxypro-
gesterone acetate (MPA, M) pellet (#NP-161, Innovative Research of
America) was implanted subcutaneously in the interscapular area of
6-9 weeks old female C57BL/6J mice (Mus musculus, from Jackson). One
week later, mice received 1 mg 7,12-dimethylbenz[alanthracene (DMBA, D)
in 200 pL corn oil (#C8267, Millipore Sigma) by oral gavage, a procedure
that was repeated on weeks 2, 3, 5, 6, and 7 after implantation of the MPA
pellet [13, 23]. Mice were routinely checked for the appearance of
mammary lesions, which were monitored for growth with a common
caliper. Mice were euthanatized when the cumulative surface of all
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neoplastic lesions (computed as the area of an ellipse: A= longest
diameter X shortest diameter X m/4) reached 180-200 mm? (ethical
endpoint that was employed as surrogate marker for survival), or in the
context of evident toxicity or distress (e.g.,, hunching, anorexia, tumor
ulceration).

Immunofluorescence microscopy

M/D-driven tumors collected at euthanasia (see above) were fixed in 4%
paraformaldehyde in PBS, embedded in paraffin and cut into 5 pm-thick
sections as per conventional procedures [13]. Upon adsorption onto
charged microscope slides (#1358, Globe Scientific), sections were
deparaffinized and re-hydrated by 3x incubations of 10 min each in
xylenes (#534056, Millipore Sigma), followed by 2x incubations of 5 min
each in 100%, 90%, 80%, and 70% ethanol. Sections were boiled for 30 min
in Antigen Retrieval Buffer (1x Tris-EDTA Buffer, pH 9.0) (#ab93684, from
Abcam), rinsed 4x with TBS, and incubated in 3% BSA in TBS-Tween for
30min at RT to block non-specific binding site. Slides were incubated
overnight at 4 °C with the following primary antibodies: anti-ERalpha (1:20;
#MA1-80216, Thermo Fisher Scientific), anti-PR (1:20, #MA1-410; Thermo
Fisher Scientific), and anti-VIM (1:200; #GTX100619, GeneTex). Slides were
next rinsed 3x with TBS-Tween, followed by incubation with Goat anti-
Rabbit 1gG (H + L) Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 488
(1:500, #A-11008, Thermo Fisher Scientific) and Donkey anti-Mouse IgG
(H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 555
(1:500; #A31570, Thermo Fisher Scientific) for 30-60 min at RT. Slides were
rinsed 3x with TBS-Tween, incubated with Vector® TrueVIEW® Autofluor-
escence Quenching Kit (#5P-8400, Vector Laboratories, Inc.) for 5 min at RT,
and washed 1x in PBS. Finally, slides were incubated in 5 ug mL~" Hoechst
33258 (#H3569, Thermo Fisher) for 10 min at RT, mounted with ProLong™
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Glass Antifade Mountant (#P36984, Thermo Fisher), and imaged on a Leica
DMi8 inverted fluorescence microscope operated by Leica Application
Suite X, version 3.7.4.23463 (Leica Microsystems).

Data processing and statistical analysis

The following parameters were measured or scored: (1) TFS, defined as the
number of days between the 1st DMBA administration and the detection
of the first malignant lesion; (2) time to secondary disease (TT2), defined as
the number of days between the detection of the first malignant lesions
and the detection of any other malignant lesion; (3) time to death (TTD),
defined as the number of days between the detection of the first
malignant lesions and ethical endpoint (see above); (4) overall survival
(0S), defined as the number of days between the 1st DMBA administration
and ethical endpoint (see above); (5) number of secondary tumors at
euthanasia; (6) normalized number of secondary tumors at euthanasia,
defined as the number of secondary tumors at euthanasia divided by TTD;
(7) % of primary tumor burden (T1) at euthanasia, defined as follows: T1
(%) = 100 x surface area of the primary tumor/surface area of all tumors;
(8) primary tumor growth; (9) secondary tumor growth; (10) cumulative
tumor growth. Prism v. 10.2.3 (GraphPad) and Excel 2021 (Microsoft) were
used for data processing, plotting, and statistical analysis. lllustrator 2025
(Adobe) was used for figure preparation.

One-way ANOVA plus Geisser-Greenhouse correction and Fisher's LSD
were applied to assess statistical significance in comparisons involving
numerical data (which were normally distributed and exhibited compar-
able variance). Incidence of secondary oncogenesis was assessed for
statistical significance by Fisher's exact test. Growth curves were assessed
for statistical significance by two-way ANOVA plus Geisser-Greenhouse
correction. TFS, TT2, TTD, and OS curves were assessed for statistical
significance by Log-rank (Mantel-Cox) and Mantel-Haenszel tests. When-
ever relevant, number of mice per group, hazard ratio (HR) plus 95%
confidence interval (Cl) and p values are reported.

Groups of 10 mice per genotype were planned as per our previous
experience with oncogenesis in this model [13, 23]. Whenever possible,
larger groups were used to improve statistical power. As pre-established
criteria, mice requiring euthanasia for oncogenesis-unrelated causes prior
to tumor development were completely excluded from this study.
Moreover, mice succumbing to endpoint-unrelated causes were censored
from statistical assessments on TT2, TTD, and OS curves. As per the nature
of this study (purely prophylactic), no randomization was implemented,
and all experimental assessments were performed in an unblinded
manner.

DATA AVAILABILITY
All data supporting these findings are available from the corresponding authors upon
reasonable request.
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