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1

The immunoproteasome, an inflammation-induced proteasome variant, coordinates proteostasis and adaptive immunity by
replacing constitutive subunits (31, $2, B5) with inducible counterparts (31i, B2i, B5i). This specialization enhances antigen
processing for MHC class | presentation and oxidative protein clearance. Beyond immune regulation, it critically contributes to
cardiovascular, respiratory, neurodegenerative, autoimmune, retinal, and oncological pathologies through mechanisms involving
NF-kB activation, mitochondrial dysfunction, and inflammatory polarization. While B5i-specific inhibitors (e.g., ONX 0914) show
therapeutic potential in preclinical models by mitigating proteotoxicity and inflammation, the immunoproteasome’s dual roles—
cytoprotective or pathogenic—are context-dependent, necessitating precise targeting strategies. This review synthesizes recent
advances in immunoproteasome biology, disease mechanisms, and therapeutic prospects, while highlighting unresolved questions

on subunit specificity and microenvironmental regulation.

Cell Death Discovery (2025)11:406; https://doi.org/10.1038/5s41420-025-02698-0

FACTS

® Immunoproteasomes swap standard subunits for interferon-
induced ones, enhancing antigen presentation and oxidative
stress defense during inflammation.

® |Immunoproteasomes play dual roles in diseases, which
provide cytoprotective functions during myocardial ischemia
while driving inflammatory cascades in atherosclerosis and
neurodegenerative disorders.

® |Immunoproteasome-selective inhibitors curb cytokine storms
and proteotoxic stress while sparing constitutive proteasome
activity, offering promise for autoimmune and cardiovascular
diseases.

OPEN QUESTIONS

® What molecular mechanisms link immunoproteasome activity
to metabolic stress pathways and organ-specific autophagy
networks?

® What biomarkers can reliably measure the therapeutic efficacy
of immunoproteasome inhibition across diseases?

INTRODUCTION

Cellular protein homeostasis is fundamentally regulated by the
ubiquitin-proteasome system (UPS), a highly conserved machinery
responsible for the selective degradation of damaged or

misfolded proteins. Ubiquitination, a post-translational modifica-
tion mediated by a cascade of enzymes (E1, E2, and E3), directs
substrates to either proteasomal degradation via K48-linked
polyubiquitin chains or to autophagy-lysosomal pathways through
K63-linked chains. This process governs critical cellular processes,
including cell cycle progression [1], apoptosis [2, 3], stress
responses [4] and signal transduction [5]. Within this framework,
the immunoproteasome emerges as a dynamic and inflammation-
adapted variant of the constitutive proteasome [6, 71.

The immunoproteasome is distinguished by the replacement of
standard catalytic subunits (1, $2, B5) with inducible counterparts
(B1i/LMP2, B2i/MECL-1, B5i/LMP7), which are upregulated by pro-
inflammatory cytokines, such as interferon-gamma (IFN-y) and
tumor necrosis factor-alpha (TNF-a) [8]. This structural adaptation
enhances proteolytic efficiency, particularly in generating anti-
genic peptides for presentation on major histocompatibility
complex (MHCQ) class | molecules, thereby bridging innate and
adaptive immunity [9]. Beyond its canonical role in antigen
processing, the immunoproteasome acts as a critical stress sensor,
clearing oxidatively damaged proteins and maintaining proteos-
tasis under pathological conditions such as viral infections and
oxidative stress [10].

However, the immunoproteasome exhibits a dualistic nature:
while it safeguards cellular integrity under acute stress, its
dysregulation can exacerbate inflammatory cascades and tissue
damage. Emerging evidence underscores its pivotal involvement in
diverse pathologies, including cardiovascular diseases [11], respira-
tory disease [12], neurodegenerative disorders [13], retinal disease
[14], cancer progression [15], and autoimmune conditions [16].
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Fig. 1

Structure and composition of the proteasome and immunoproteasome. a Architecture of the 20S core particle (CP) and 19S

regulatory particle (RP). b The 20S CP comprises a-rings (substrate entry) and f-rings (catalytic sites). ¢ Subunit substitution defines
immunoproteasome (IP) specificity: IFN-y induces replacement of constitutive p1/p2/f5 subunits with inducible p1i (LMP2), p2i (MECL-1), and
B5i (LMP7). d The table summarizes the gene symbols and peptidase activities of the catalytic subunits in both the SP and IP.

Pharmacological targeting of immunoproteasome subunits,
such as [5i-specific inhibitors (e.g., ONX 0914), has shown
therapeutic promise in preclinical models by restoring proteostasis
and dampening maladaptive immune responses [17]. None-
theless, its context-dependent roles—protective versus detrimen-
tal—vary across tissues and disease stages, highlighting the need
for precise therapeutic strategies. This review synthesizes recent
advances in immunoproteasome biology, elucidates its multi-
faceted contributions to disease pathogenesis, and evaluates the
translational potential of subunit-specific interventions, while
addressing unresolved questions regarding microenvironmental
regulation and functional heterogeneity.

COMPOSITION AND TYPE OF PROTEASOME

Proteasome

Cellular protein homeostasis is maintained through selective
proteolysis mediated by the proteasome, an ATP-dependent
molecular machine that degrades ubiquitin-tagged proteins [18].
In eukaryotic cells, the 26S proteasome, a 2.5MDa complex
comprising at least 32 distinct subunits, consists of two
functionally distinct subcomplexes: the 20S core particle (CP)
and the 19S regulatory particle (RP), which caps one or both ends
of the CP (Fig. 1a) [19-21]. Protein degradation occurs within the
narrow proteolytic chamber of the CP, which has a barrel-like
cylindrical structure composed of four stacked heptameric rings of
a and B subunits, with a stoichiometry of a,.;B:.73:.70,_7 (Fig. 1b)
[22]. The outer a-rings form a gated entryway through tightly
interwoven N-terminal tails, restricting access to the internal
proteolytic chamber within the B-rings, thus ensuring precise
degradation control. Among the seven (3 subunits, only 31, B2,
and 5 possess catalytic proteolytic activity, exhibiting caspase-
like, trypsin-like, and chymotrypsin-like activities (Fig. 1d),
respectively. These activities are critical for the specific degrada-
tion of substrates [23-25].
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The 19S RP, comprising 19 subunits, is organized into lid and
base subcomplexes. The lid contains nine non-ATPase subunits,
including the deubiquitinating enzyme Rpn11, which is critical for
efficient substrate processing by removing ubiquitin tags [26]. The
base includes a heterohexameric ring of six AAA+ ATPases,
Rpt1-Rpt6, which drive ATP-dependent substrate unfolding and
translocation through a narrow pore into the CP [27]. The ATPases’
carboxy termini interact with specific a-ring sites to open the gate
[28]. Additionally, the base incorporates non-ATPase subunits
Rpn1, Rpn2, and ubiquitin receptors Rpn10 and Rpn13, with Rpn1
mediating recruitment of ubiquitin shuttle receptors (Rad23, Ddi1,
Dsk2) and the non-essential deubiquitinase Ubp6 [29, 30]. The
coordinated interplay between the RP’s substrate recognition,
deubiquitination, and translocation functions and the CP’s gated
proteolysis ensures the proteasome’s precision and efficiency in
regulating protein turnover, a process essential for cellular
function and homeostasis [31-33].

Immunoproteasome

The immunoproteasome is a specialized type of proteasome,
constitutively expressed in hematopoietic cells and widely
distributed across immune tissues, where it plays a pivotal role
in immune responses [34]. It can also be induced in non-immune
cells by pro-inflammatory cytokines (such as IFN-y, IFN-a, IFN-f3)
and tumor necrosis factor (TNF), with IFN-y being the most potent
inducer [35, 36]. In response to inflammatory factor, the
immunoproteasome is induced through the activation of STAT1
and IRF1, leading to the replacement of the proteolytic subunits
1, B2, and B5 in the proteasome core particle (CP) with immune-
specific subunits 31i (LMP2), B2i (MECL-1), and B5i (LMP7) (Fig. 1¢c)
[37]. This specialized immunoproteasome exhibits higher
chymotrypsin-like and trypsin-like activities, enabling it to more
efficiently degrade various antigenic proteins [38, 39]. The
assembly of the immunoproteasome is notably rapid—approxi-
mately four times faster than that of the constitutive proteasome
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—due to the direct binding of B5i to the assembly chaperone
POMP (also known as UMP1), facilitating a swift response to
immune and inflammatory stimuli [38].

Beyond the 19S regulatory subunit, additional types of
regulatory subunits have been identified. Notably, the immuno-
proteasome’s principal regulatory subunit is PA28, comprising
three isoforms: PA28a, PA283, and PA28y [40]. The IFN-y-inducible
PA28ap heterodimer binds to the 20S CP, inducing conforma-
tional changes in the a subunits that open the gated channels,
thereby enhancing substrate entry and peptide release [41]. This
structural adaptation retains substrates in the 20S antechamber
prior to degradation, significantly augmenting the efficiency of
antigen presentation [42, 43]. The immunoproteasome’s catalytic
and regulatory components can assemble into three distinct
configurations: the 26S proteasome (195-20S-19S), which supports
ubiquitin-dependent and ATP-dependent proteolysis; the PA28-
capped proteasome (PA28-20S-PA28), which facilitates ATP-
independent antigen processing; and the hybrid proteasome
(PA28-20S-19S), which integrates both regulatory mechanisms to
optimize protein degradation for immune surveillance [44]. This
structural diversity underscores the immunoproteasome’s specia-
lized role in generating antigenic peptides, enhancing the
precision and adaptability of the adaptive immune response.

FUNCTION AND EXPRESSION OF IMMUNOPROTEASOME IN
IMMUNOCYTES

Homeostasis is a critical determinant of cellular lifespan. The
maintenance of cellular protein homeostasis is achieved through a
balance between protein stability and stress resistance, protein
repair, protein refolding, and the proteolysis of damaged proteins
[45]. The ubiquitin-proteasome system (UPS) is pivotal in this
process, orchestrating the selective degradation of proteins
tagged with ubiquitin, a highly conserved polypeptide [46-48].
Since its initial description decades ago, UPS has been widely
recognized for playing a crucial role in regulating nearly all
biological processes within the cell. It is not only essential for
maintaining the homeostasis of proteins and amino acids but also
involved in regulating multiple fundamental cellular processes,
including the cell cycle, DNA replication, transcription, signal
transduction, and stress responses [18, 20, 34]. These processes
involve an enzymatic cascade of E1, E2, and E3 enzymes that
conjugate ubiquitin to target proteins, forming polyubiquitin
chains with distinct topologies that dictate substrate fate [49, 50].
Chains linked via lysine 48 (K48) primarily signal proteasomal
degradation, whereas K63-linked chains direct damaged orga-
nelles, such as ribosomes, endoplasmic reticulum, or mitochon-
dria, to the autophagy-lysosome pathway [51, 52].

Under normal physiological conditions, the standard proteasome
maintains cellular homeostasis by efficiently degrading proteins.
However, in inflalmmatory states—such as those triggered by
interferon-gamma (IFN-y)-induced oxidative stress or infections
with viruses, fungi, or bacteria—this machinery is superseded by
the immunoproteasome, a specialized variant adapted to heigh-
tened cellular demands [8]. Research in mice demonstrates that,
following infection, standard proteasomes in affected organs are
swiftly replaced by newly synthesized immunoproteasomes, under-
scoring their critical role in such contexts [53-56]. The immuno-
proteasome excels at processing antigenic proteins, generating
peptides for presentation on major histocompatibility complex
(MHQ) class | molecules—a pivotal step in activating adaptive
immunity [57]. Therefore, under non-inflammatory conditions, the
standard proteasome efficiently handles protein degradation,
whereas the specialized function of the immunoproteasome is
more pronounced in inflammatory environments [45]. In cells
lacking key immunoproteasome subunits (such as LMP7), inflam-
matory conditions tend to lead to the accumulation of polyubiqui-
tinated and oxidized proteins, exacerbating cellular stress and tissue
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damage. This phenomenon indicates that the immunoproteasome
plays an irreplaceable role in responding to inflammation-induced
protein homeostasis stress [58].

Beyond protein degradation, studies in mice with immunopro-
teasome subunit knockouts reveal its broader influence on
immune regulation. It shapes the composition and activation of
lymphocyte subpopulations, drives the maturation and differen-
tiation of B cells and Th17 cells, and modulates macrophage
polarization [59]. These effects correlate with altered transcrip-
tional profiles and cytokine expression in immune cells, emphasiz-
ing the immunoproteasome’s integral role in maintaining
homeostasis across both adaptive and innate immune systems
[60, 61]. These findings demonstrate that the immunoproteasome
plays an important role in maintaining homeostasis of both
adaptive and innate immune cells. The specific functions and
expressions of immunoproteasome and subunits in various
immune cells are listed in Table 1.

Innate immunocytes
Antigen processing and presentation. Innate immune cells,
including dendritic cells, macrophages, and natural killer cells,
form the body’'s frontline defense against pathogens, while
antigen-presenting cells (APCs) orchestrate cell-mediated adaptive
immunity through molecular recognition via major histocompat-
ibility complex (MHC) class | molecules. One of the key
mechanisms is that antigen-presenting cells present antigenic
peptides via MHC class | molecules, a process mediated by the
proteolytic complex of the immunoproteasome [62]. Structurally
and sequentially similar to the standard proteasome, the
immunoproteasome collaborates in producing peptides for MHC
class | presentation, with its distinct hydrolytic activity enhancing
the efficiency and diversity of antigen presentation, thereby
facilitating robust immune responses [63]. Due to its unique
structure and hydrolytic activity, the immunoproteasome signifi-
cantly enhances the presentation function of MHC class | antigenic
peptides during the induction process. The antigen processing
pathway for MHC class I-restricted epitopes from cytosolic
proteins begins with ubiquitin-mediated degradation by the
immunoproteasome’s 20S core, producing peptide fragments
that are subsequently refined by aminopeptidases and translo-
cated to the endoplasmic reticulum (ER) via TAP-1 and TAP-2
transporters. In the ER, ERAP1 or ERAP2 may further trim peptide
N-termini to optimize binding to MHC class | molecules.
Chaperones, including calnexin, calreticulin, and tapasin, facilitate
proper folding of the MHC class | a-chain and B2-microglobulin,
enhancing the peptide-binding groove’s receptivity. Tapasin then
promotes the association of the MHC class | complex with TAP-1/2,
enabling suitable peptides to occupy the groove, leading to the
dissociation of the heavy chain/peptide/2m complex from
chaperones and its transport to the plasma membrane (Fig. 2a).
Additionally, peptides from membrane-associated or secreted
proteins generated in the ER further diversify the MHC class |
peptide repertoire [64]. Various proteasome subtypes efficiently
initiate antigen processing, generating peptides of 8 or 9 residues
tailored to fit the peptide-binding groove of nascent MHC class |
molecules in the endoplasmic reticulum [65]. The MHC class |
groove preferentially accommodates peptides with hydrophobic
C-terminal anchor residues, primarily produced by the
chymotrypsin-like activity of the immunoproteasome’s (35/LMP7
subunit. A shift in LMP2's proteolytic activity toward
chymotrypsin-like function further enhances the production of
such peptides, increasing the diversity of sequences available for
MHC class | binding [66-68]. Although other cytosolic proteases
contribute to peptide generation, the immunoproteasome
remains the primary source of peptides with hydrophobic C-
termini, optimizing MHC class I-mediated immune responses.
Research demonstrates that in B5i-deficient mice, MHC class |
expression on cell membranes is markedly reduced, indicating

SPRINGER NATURE



t al.
ue
Z.Zo

immuno-
in g
-milarly' is app the
ion. Si sion ring t
tatio pres rsco ation
resen s | eX| unde resent are
ntigen pres P contro rigen p e e
lar a ice, ild-type ient a II'mo ing ¢ S
cellu t m wild in efficie lass entin cha
intra kou to ine Cc -pres such e
impaired re knoc pared. al role l MH tigen psomes' protein
'mpteasom| ed com 'S C“t'CHC Clasf-zed a(rj\ i |ysohe NLR f MHC
\ e M iali T ro X
pro ly ha asom ike eci esse 1]. lato F-bo!
tely ote nli sp roc 0,7 qu he
ma opr tu on sp (70, rre f the ally
=] [69]. ed ex enou sed p ts as 1, a m'ds [z 'the im els
e resse exog cyto r) ac BXO11, 0 acic by A lev
~ exp ting hago ivato 1. F min tion CIIT.
© en p act [72]. 7 a ada ing
= res om ansacth n 92 egr lati lar
o g those o "Jgnscf'pf;igth Ceinted o mogul 74 extracellulr
- = A e trar ha itin-m here ig. en aso
— - ; anr ene ith a itin Is, ther (F res rote The
S o S g ily w biqu ells, sion ss-p h p 8].
S o o) class | fam or u une ¢ res cro bot 5-78]. Tl e
= - - Xp n 7 tivi
= § ;’; proteég CllTAef in |rrc‘:nz|a55 I f]ages cathrougal:hwaysn[is deffgtein
= = s d
= M\ = ) > no crea lls a ss .ndep s | P rrors he ri ma-
< < 9 g nd de itic ce C cla me-| clas: m e att inflam is
O ) & a dri MH aso HC ina fro inated ori hesis,
) o) = = Den on rote. for M |t|n9_ itina ions . nt ]
3 i3 5 igens dp e su iqu ctio in sy 82].
g3 > §‘ = 52 ant'gﬁgent iir::le sOchDR|P5)f :pidly g:n?e. 'n:ée prot:“ablhtyat[ion-
S g £ 7 € p ts re ea hanc avi matic
e = | = & E = dep pe duc Ps a rot en tide av. flam tide
© Z = 2= S a imary ro DRI he p ling, ep f in ept
& = = S © ri al p 1]. the [ na d p o he pe zes
£ 3 =T = 270 p osom 79-8 itu by N sign n an rance c gt timi
X o Qo = = c Ly rib sis [ ins by IF atio c|ea. rovin " ~ty op nous
o S P =8 I nthe ded ed form the imp abili 0genc
5 2= T2 9 im @ g 5= sy degra igger DRIP ies on ins, ir capab I ex tering
9l 2 c Sm o © © x5 nd n tr f lies rotel This vira bols r
> £ 5 ° a e sing re p ) d ies. Fo
T>’ a.? % E 3 3 é & & _ tion, g;t inctl;eafunctlor;amagegon [f58t]umor .a:tion|-ar:gncle§|.itates
- T g < 9 there e, | and sentat T cell activ fgabinlrne ion,
S gk 2 g = o < refore, RIPs pre tation * T cel nd only ressio
> © = g = The D igen en 8 . a ot Xpl igen
8 5 — L= Q c = ed ntig res . CD ions en e e ntig
S o= Zun - © o m induc for a ross-p oting infect asom s gen DCa €
BIIE »§ sl 2 52 ply ell c romoti st rote ulates airs ophag
S =0 w O TE & g B o sup itic ¢ by p ain nop reg imp acroph ing
a G| g s =8 g ndri here s ag immu dly ence am intain
S R 5% 7= de ns, t b0 the broa abs and a mai
€5 < s 553 g5 tige resp C), t Iso ion. Its tion le in
) o Z. A g E £ an ne lls (Dt but a ratio func ntro
s I Zc §2 < g= 33 immur ic cel ing matu e dys dunda (83]. ro-
c L (=] o= = S 9 T — driti cess and immun n-re stem nop
=5 - £5 2€ E ca2c den n pro ays, to im its no ne sy: immu key
28 g =3¢ 823 S 8"% =58 ntige athw ding ring i immu Thei ay, a he
895 S = w_%@«z_—,“é.— § 2 a ling p lea rscori the i . thw. 1T
i g2 = = g €5 J£ 2 Eci 23 £ igna tion, nde ithin thWay~ pat (84]. ins
NS E g5 55 § S -2 88¢E s enta e u s wi ing path a"”g-tIon rotei
SU S 29 =) s 2 > og $ESQ S 529 res notyp tion ignaling sign scrip Il'p -KB
o o = 2 9 =3 53T x. 29 2% g p he, func ign F-xkB tran pe NF
c c ocu_c’:sfv 2=z ke p C ry s N e ty 5]-_ f
g% g_g é e g'E 5 ':_:, ,g £ B < g g"‘% S< {')C_Speclﬁ ﬂammaﬁgtjés thtikine ginle an(ijn cells r[gdauonz?:)
m-S-c 9.950“3—8 25l 5 « fin u cy NF- ive deg ig.
8 c® 25 ._N.e;.'swuﬁ jon o reg ry 1, inactiv d (Fig d
9 - o 2E2 = 2 o IS tion itically atol -kB ins in te sm an
©5 o = © a la tic m NF ins dia la ion
S 5 2 c S € 2 © % & egu critice flam . ma -me top, tio he
°§'=§ &g £52 8% R hiodutivan rising lly re B i the Digurting to t
s §c %‘é 2 SETS tezzulator i(|)yr co?j typlf]i)prote?\jSF-KB més ubl?]5|ociit|en innatle
£ .,:mq,.a < - m B fam d c-Rel, mu ters N ers to tra 88l. accel-
: 288 & NF-k IB, an O hat soauer trigg KB te (87, ism IL-
3 S = RelB, lies t seq -kB NF ion han nd
[ O c IA, ion re ha f | : ess ec -aa
e n itor t o) sing pr m F-a
. 2 . k) R ivatio ibitol ion lea e ex iven sTN
8 EL c 2 activ inhi lation n, re I gen -driv cha
3 S o) > % 4 3 86]. nt d ce pr nopr cyto s are I
St o e 2 2 g v [ bseque d induc immu matory nses. hage tin a
S ERS 5 "% c 3 = > cleus an‘:_.IISr thls(-,finﬂamen respo Macroppfesenrdes I?
g% 2 = |= s o 5 nu cells, n hog ce. em, lay 89].
o3 Es 2.3 2 £ mmune cells, ! pat intenance syst hey p ity [8
- g L g5 2 2 erates pro early Sl 1. They play with
o)) ° 8 0o =0 = tes ing jion m opo iversity imm es,
£2 83y 8 ¢4 7 S era hanci nctio mat | dive nd issu be
= =8 emat a ir a t t an
5 € -0 .EcgEc 6, en nd fu he h tion at in mos e dignals
i 25 = § % c g T2 5 ! jon a in tr unc rep In-m tha Ign
- - 85 $£288 ! activatio celis in wide f tiSS”eprese“ffjnct'of?,itegrateorsd'naf
§ 53 -5&"6 e Ce las hi tasis, are ific s i co th,
@ © & & 25 S t p ex eos S cifi ge to row
c ol = = (o} d m age e ha S g r
5 2 og S%E Hssues, an t, ho ophag lent. macrop ol for the 1. Fo
E @& <.g Y tissues, ment, macr d tiss t ma | sen | for lls [99' o
1S S = = elop ident an siden enta rucia e ce tissu
= X ac dev resi ions Re ironm is ¢ tissu ialized f the
c w issue- nct ||ary envi ich ized cia e o _
. Tiss | fu uxi f hi ializ spe rfac ro
g doccribed ns arange Znses.' of speci highly-ratory Symmunc’,'zng
3 " descri WideI r resp stasis s are respi Is Of,I the e
i 2 = — m a ellula omeo hage nthe. h leve nding damag
5 E a a fro ive ¢ d h crop ide o hig defe- ue ges
o 12 = — = daptiv ing, an r ma tres- larly ial for : tiss ropha -
S Sl in = a delin ola tha rticu cia Iving ac pro
e @] i = < remo le, alve hages ss pa are cru resolv olar m crete ory
2 I8 2 7 = = = ample, acrop expre hich and , alve ay se mat
S g = = I o = ex ident m e cells ngs, Whogens r injury, and m f inflam
E o & o = e 2 resi - Thes the lu d pat ions o otype ment o
2 2 = = = o |Ungs €s n inhale infect 1 phen recruit
5 2 8 2 = tei"so?gamst-ng " dassica e the
) = -~ st uri Cla ini
g £ 3% = h9|—94]. Ded to akines to
g 2 =3 [9 ctivat cyto
S £ = re a tory
-E - [%) a ﬂamma
= in
-rgv ﬁ %) 9 S
= — a5
8 . g 3 g
‘a 2 (] =} ~ =
0 2 g o 2 z
e 3 ¥ o z
x -2 S
| g 5
. S =k s
- £ LA
K E 28
= =
]
=

1406
5)11:
(202

. covery
Il Death Dis

Ce

RE

ATU

ERN

ING

SPR



Fig. 2

Z. Zou et al.

@ MHC class | pathway Cytosolic protein

Immunoproteasome
4«

e
o ® @ Antigen uptake
°
o @

@ NF-kB pathway
@ Antigen processing

TLR T
through proteasome l

(e © Peptide-MHC © Expression on : (IKKy)
s ) association APC membrane IKK|3

DD

/

4

‘ 7
. S

asmi Antigen-presentingcell CD8 T cell P
_____ win Y\ @A~ oo NF-kB complex

N

T €GP

Degraded kB

@ Antigen processing
through endosome

/ ,\OAntigen uptake

% Extracellular

i v
@ Peptide-MHC protein
association @ p65/c-Rel

NF-kB complex

Activation of immune
response genes

Activation of
pro-inflammatory genes

\
®
&

iINOS, CXCL10, M1 macrophages

IL-12, TNF-a...
(@

B e 8® )

IL-10, TGF-B,

n MO mgcrophages Aol

j * [, ®
STAT3, P n STAT3 | P ~—p

HI
STAT3, P U STAT3I| P

%\\\ Activation of M2 macrophages

Ug anti-inflammatory genes

™

a
=
(—

Immunoproteasome-mediated regulation of cellular immune responses. a MHC class | antigen presentation: IP processes cytosolic
antigens into peptides transported via TAP to the ER for MHC | loading, activating CD8"* T cells. p5i/LMP7 ensures hydrophobic anchor residues
critical for MHC | binding. b The immunoproteasome degrades CIITA via FBXO11-mediated targeting, suppressing MHC class Il expression.
¢ NF-xB activation: IP degrades kB, releasing NF-kB (p65/p50) to induce pro-inflammatory cytokines. p5i promotes sustained NF-kB signaling
in cardiovascular and autoimmune pathologies. d Macrophage polarization: IFN-y-induced $5i enhances STAT1 activation, favoring pro-

inflammatory M1 over anti-inflammatory M2 phenotypes, a mechanism implicated in atherosclerosis and fibrosis.

Cell Death Discovery (2025)11:406

SPRINGER NATURE



Z. Zou et al.

cells [95]. After the acute inflammatory outbreak, alveolar
macrophages can clear cell debris and apoptotic inflammatory
cells through a process known as efferocytosis and, in response to
IL-4/-13 or IL-10 signals, polarize to an alternatively activated M2
macrophage phenotype [96]. Alveolar macrophages enter an anti-
inflammatory state characterized by metabolic changes, activation
of anti-inflammatory signaling factors, expression of M2 marker
genes, and the production of anti-inflammatory and pro-growth
cytokines [97-99]. The absence of the immunoproteasome
subunit LMP7 leads to enhanced STAT3 signaling and weakened
STAT1 signaling, thereby promoting the polarization of macro-
phages toward the M2 (anti-inflammatory) phenotype. Conversely,
intact immunoproteasome function supports STAT1 activity,
favoring the M1 (pro-inflammatory) phenotype, indicating that
the immunoproteasome influences macrophage polarization by
regulating the STAT1/STAT3 balance (Fig. 2d) [100].

For neutrophils, related studies are limited, but as innate
immune cells, they may influence antigen presentation and
inflammatory responses through the immunoproteasome. Studies
show that neutrophils can express MHC class Il molecules under
certain conditions, potentially involving the function of the
immunoproteasome [101]. For NK cells, the immunoproteasome
primarily regulates their function indirectly by affecting MHC class
| expression on target cells. Studies indicate that cells with
immunoproteasome deficiencies are more likely to become
targets of NK cells during infection, suggesting a role in protecting
cells from NK cell-mediated killing [102].

Adaptive immunocyte

In contrast to professional and non-professional antigen-present-
ing cells that necessitate immunoproteasome expression for
effective antigen processing, T cells and B cells exhibit constitutive
immunoproteasome expression [103].

As mentioned above, the immunoproteasome generates
peptide fragments with hydrophobic C-termini by degrading
intracellular proteins, which are then loaded onto MHC class |
molecules and presented on the cell surface for recognition and
activation by CD8 T cells. This is a critical immune surveillance
mechanism against virally infected cells and tumor cells. Mean-
while, mice with a knockout of the immune subunit 35i exhibit
significant changes in MHC class | antigen presentation, affecting
the response of CD8 T cells to viral infections [104]. The
immunoproteasome subunit LMP7 has been shown to modulate
adaptive immune cells: LMP7 deficiency or catalytic inhibition
compromises the differentiation capacity of naive CD4" T helper
(Th) cells toward Th1/Th17 lineages, while simultaneously
promoting regulatory T cell differentiation through modified
cellular signaling pathways [59]. Foxp3 is the core transcription
factor of Tregs, and its expression and stability are influenced by
multiple regulatory factors [105]. Eos, a member of the Ikaros
family, is known to interact with Foxp3 and, under certain
conditions (e.g. inflammatory environments), suppress Foxp3
activity or affect downstream gene expression in Tregs; while Eos
is redundant in the suppressive function of Tregs, it limits pro-
inflammatory responses in conventional T cells by inhibiting IL-2
and CDA40L expression [106]. The immunoproteasome may
maintain Treg stability and suppressive function by degrading
Eos (a potential inhibitor of Foxp3).

Moreover, T cells derived from mice with immunoproteasome
subunit deficiencies demonstrate compromised proliferative
capacity and reduced survival upon transfer into virally infected
wild-type recipients. These findings cannot be explained by
antigen presentation-mediated graft rejection, instead revealing
that the immunoproteasome intrinsically regulates T cell clonal
expansion and survival during immune activation [107, 108]. Mice
lacking LMP2 exhibit diminished B cell populations along with
reduced circulating CD4* and CD8* T cell counts [60]. MECL-1
knockout mice demonstrate altered T cell repertoires [109], while
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combined deficiency of MECL-1 and LMP7 results in T cell
hyperproliferation [110]. Additionally, chemical inhibition (as
opposed to genetic deletion) of LMP7 compromises ERK signaling
sustainability and triggers moderate proteotoxic stress, exerting
distinct effects on T and B lymphocyte functionality and viability,
by significantly reducing the antigen processing and MHC-II
presentation capacity of B cells, leading to impaired CD4* T cell
activation, decreased secretion of cytokines (e.g., IL-4 and IL-21),
and thereby suppressing antibody class switching (e.g., IgG1 and
IgE) [103].

IMMUNOPROTEASOMES AND DISEASES

The immunoproteasome plays a pivotal role in a wide array of
diseases, exhibiting context-dependent functions that range from
protective to pathogenic. Its involvement spans cardiovascular
diseases, respiratory diseases, neurodegenerative disorders, retinal
diseases, tumor, and autoimmune disorders (Fig. 3). The specific
role of immunoproteasome and subunits in various diseases is
listed in Table 2.

Cardiovascular diseases

Heart failure. Heart failure is a complex clinical syndrome
characterized by impaired cardiac pumping ability, which is
insufficient to meet the metabolic demands of the body'’s tissues
and organs. The etiology of heart failure is multifactorial, with
common causes including hypertension, coronary artery disease,
diabetes, obesity, and cardiomyopathy [111]. Heart failure is
associated with numerous signaling pathways and molecules,
including the regulation of metabolism and protein synthesis by
PI3K/AKT/mTOR and AMPK; calcium signaling pathways, such as
CaMKIl and PLC-IP3, which promote pathological hypertrophy;
NO/cGMP/PKG signaling, which inhibits pathological processes;
RAAS and catecholamines inducing remodeling through Gq and
-adrenergic receptors; ROS and NF-kB exacerbating oxidative
stress and inflammation; and PTEN on chromosome 10, among
others [112]. The immunoproteasome plays an important reg-
ulatory role, especially in the development of heart failure induced
by myocardial hypertrophy. Studies have shown that the
immunoproteasome regulates the ATG5-mediated autophagy
process via (5i and exacerbates myocardial hypertrophy and
heart failure through signaling pathways such as AKT, ERK, and
inflammatory factors [11]. Autophagy inhibits myocardial hyper-
trophy by hydrolyzing IGF1R and gp130, leading to a reduction in
the phosphorylation levels of AKT, mTOR, JAK2, STAT3, and ERK1/2
[113]. Additionally, the knockout of 35i or treatment with the pB5i-
specific inhibitor PR-957 has been shown to ameliorate cardiac
hypertrophy in the DOCA-salt hypertensive mouse model through
activation of PTEN [114].

On the other hand, the renin-angiotensin-aldosterone system
(RAAS) is another key factor influencing the development of
myocardial hypertrophy. Ang Il promotes hypertrophy by enhancing
myocardial remodeling, whereas AT1R-associated protein (ATRAP)
binds to the AT1 receptor (AT1R) to prevent the overactivation of
RAAS. The immunoproteasome degrades ATRAP, thereby promoting
AT1R activation, and activates the MAPK and STAT3 pathways,
ultimately leading to myocardial hypertrophy [115].

In myocardial remodeling research, the immunoproteasome
subunit low molecular weight protein (LMP-2) has been shown to
play a critical role in myocardial adaptive remodeling. In adult rat
ventricular cardiomyocytes (ARVC), LMP-2 expression is significantly
upregulated during the early stages of adaptation to two-
dimensional culture conditions or pressure overload (such as
hypertension) and integrates into the proteasome to enhance
protein degradation ability. This process relies on the activation of
the p38 MAPK signaling pathway; inhibition of LMP-2 expression or
this pathway significantly weakens cardiomyocyte survival and
adaptive capacity [116].
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Fig. 3 Diseases associated with immunoproteasome dysregulation. The immunoproteasome contributes to pathogenesis across multiple
systems through subunit-specific mechanisms: cardiovascular diseases, respiratory diseases, neurodegenerative disorders, autoimmune

diseases, retinal diseases and tumors.

Atrial fibrillation. Recent studies have broadened the under-
standing of the immunoproteasome’s pathological role in atrial
fibrillation (AF). In an Angiotensin Il (Ang Il)-induced AF model, the
activity of the immunoproteasome is significantly increased, as
evidenced by the upregulation of catalytic subunits 35i (PSMB8)
and [2i (PSMB10). B5i enhances AT1 receptor activity by
promoting ATRAP (Ang Il type 1 receptor-associated protein)
degradation, activating NF-kB and TGF-B/Smad signaling path-
ways, which in turn aggravates atrial fibrosis and inflammation
[117,118].

Additionally, the natural compound gallic acid (GA) inhibits
immunoproteasome activity, prevents PTEN degradation, and
suppresses downstream AKT1 signaling, significantly improving
Ang ll-induced AF and atrial remodeling [119]. Similarly, melatonin
acts as an inhibitor of the immunoproteasome, stabilizing ATRAP
levels and alleviating Ang Il-induced AF along with associated
pathological changes such as fibrosis, inflammation, and oxidative
stress [118]. These studies collectively indicate that the immuno-
proteasome plays a central regulatory role in atrial electrical
remodeling, structural remodeling, and inflammation.

In another study, the knockout of the immunoproteasome

Cell Death Discovery (2025)11:406

subunit B2i (PSMB10) effectively reduces the occurrence and
duration of Ang ll-induced AF, and mitigates atrial fibrosis and
inflammation. Mechanistically, the absence of PSMB10 reduces
PTEN degradation, inhibits AKT1 signaling activation, and blocks
the TGF-B/Smad pathway and NF-kB-mediated inflammatory
cascade [120].

Myocardial ischemia. The immunoproteasome and its subunits
play a crucial role in cardiac protection against myocardial
ischemia/reperfusion (I/R) injury through the regulation of various
molecular mechanisms.

Ursolic acid improves mitochondrial biogenesis and dynamic
balance by upregulating the expression and activity of immuno-
proteasome subunits and activating the PP2A-AMPK-PGC1la
signaling pathway [121]. This regulation further alleviates oxida-
tive stress and myocardial cell apoptosis induced by I/R injury.
Similarly, the B2i subunit regulates the Parkin-Mfn1/2-mediated
mitochondrial fusion process, inhibiting excessive mitochondrial
fission and ultimately protecting myocardial function [122].
Notably, the small molecule TCH-165 enhances immunoprotea-
some activity, promotes the degradation of mitochondrial fission
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protein Drp1, and upregulates the expression of fusion proteins
Mfn1/2, further optimizing mitochondrial dynamics [123]. These
studies collectively emphasize the central role of the immuno-
proteasome in regulating mitochondrial function, with specific
mechanisms closely linked to the dynamics of mitochondrial
fission and fusion.

In addition to mitochondrial regulation, the immunoprotea-
some protects the myocardium from I/R injury by modulating key
signaling pathways of oxidative stress. MK-886 enhances the
activity of the 5i subunit, promotes the degradation of Keap1,
and activates the NRF2-dependent antioxidant response, thereby
effectively mitigating I/R-associated oxidative stress and apoptosis
[124]. Moreover, recent research has revealed the critical role of
the LMP2 (B1i) subunit in ischemic preconditioning (IPC) by
mediating PTEN protein degradation and activating the down-
stream Akt signaling pathway, thereby enhancing myocardial
protection [125]. These findings indicate that the function of the
immunoproteasome in signal transduction and cell protection is
closely linked to the specificity of its subunits.

Additionally, sSRAGE upregulates the activity of the B1i and (5i
subunits by inducing IFN-y expression, thereby inhibiting p53
protein accumulation and I/R-induced apoptosis[126]. Corre-
spondingly, Chen and colleagues demonstrated that immunopro-
teasome subunit expression influences not only cardioprotection
but also the inflammatory and repair mechanisms in other tissues
(e.g., brain tissue) [127]. Collectively, these findings highlight the
cooperative role of the immunoproteasome in protecting multiple
organs.

In summary, the immunoproteasome and its subunits play
multifaceted, multi-level roles in the regulation of myocardial I/R
injury by modulating mitochondrial dynamics, oxidative stress,
and key signaling pathways (such as PP2A-AMPK, Keap1-NRF2,
and PTEN-AKkt).

Ref

[167-169]
[170, 171]
[186-188]
[189, 190]
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Myocarditis. In the pathogenesis of myositis, the immunoprotea-
some exerts diverse functions by both augmenting antigen
presentation and viral clearance, and by helping to sustain protein
homeostasis. However, the immunoproteasome is also involved in
exacerbating the inflammatory response, leading to secondary
cellular damage [69]. Multiple mouse models of myocarditis have
demonstrated elevated levels of B1i, $5i, and B2i expression, along
with increased proteolytic activity and an upregulated antigen
processing system [128]. O Research by Opitz et al. indicates that
mice lacking the B5i (LMP7) subunit exhibit more severe
myocardial damage and inflammation following Coxsackievirus
B3 (CVB3) infection. This aggravated pathology is associated with
disrupted protein homeostasis and oxidative stress, and the
immunoproteasome protects the myocardium from inflammatory
cytotoxicity by removing polyubiquitinated damaged proteins
[129]. Similarly, the immunoproteasome-specific inhibitor ONX
0914 can effectively alleviate CVB3-induced myocarditis by
reducing myocardial monocyte/macrophage infiltration and
suppressing excessive production of proinflammatory cytokines
and chemokines, thereby decreasing inflammation and improving
cardiac function [130].

In autoimmune myocarditis models, the immunoproteasome
has also been demonstrated to be a crucial regulator of
pathological processes. Bockstahler et al. demonstrated that either
knocking out the three catalytic subunits of the immunoprotea-
some (LMP2, LMP7, MECL1) or administering ONX 0914 can
significantly reduce CD4™ T cell-mediated inflammatory responses
and fibrosis in experimental autoimmune myocarditis. Moreover,
such intervention shifts the equilibrium between effector and
regulatory T cells, upregulating inhibitory molecules like PD-1,
which in turn mitigates myocardial injury and enhances cardiac
performance [131].

Additional research reveals that the modulation of systemic
inflammatory responses by the immunoproteasome might impact
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the course of myocarditis. ONX 0914 mitigates acute viral
myocarditis by inhibiting a systemic inflammatory storm, indicat-
ing that systemic immune regulation is the main mechanism by
which this drug exerts its protective action [132]. In summary, the
immunoproteasome plays multiple roles in both the pathogenesis
and treatment of myocarditis by regulating inflammatory
responses, maintaining protein homeostasis, and preventing
cytotoxic damage to cardiomyocytes, thereby providing a
theoretical basis for the development of immunoproteasome-
targeted therapeutic strategies.

Atherosclerosis. Similarly, the immunoproteasome plays an
important role in cardiovascular inflammatory responses. Evidence
suggests that the immunoproteasome is intimately associated
with the advancement of inflammation in atherosclerotic lesions,
the formation of foam cells, and plaque instability.

The long non-coding RNA PSMB8-AS1 induces the expression of
PSMB9 (LMP2), markedly increasing ICAM1 and VCAM1 levels in
endothelial cells, which strengthens monocyte adhesion to the
endothelium and intensifies vascular inflammation and athero-
sclerosis [133]. In addition, LMP7 ((5i) suppresses MERTK-
dependent clearance of apoptotic cells, resulting in enlarged
necrotic cores and intensified inflammation in atherosclerotic
lesions, thereby indicating a pro-inflammatory role for LMP7 in
lesion progression [86].

It has been demonstrated that the genetic deletion or
pharmacological inhibition of the immunoproteasome can mark-
edly alleviate the severity of atherosclerotic lesions. For instance,
while B5i generally plays a pro-inflammatory role in inflammatory
diseases, its deletion has a relatively minor effect on protein
homeostasis in some models, suggesting its role may vary across
different inflammatory contexts [134]. In contrast, the deletion of
LMP10 (B2i) in the ApoE-deficient model markedly reduced M1
macrophage infiltration in arterial lesions, while enhancing the
proportion of M2 anti-inflammatory macrophages, thereby
suppressing atherosclerotic lesions [135]. Research indicates that
the immunoproteasome inhibitor ONX-0914 effectively sup-
presses early plaque formation and inflammatory responses by
reducing the activation of pro-inflammatory macrophages and
T cells, while improving indicators related to metabolic syndrome,
such as blood lipids and glucose levels [136].

Additionally, it has been shown that PSMB9 upregulates the
transcription factor ZEB1, which in turn promotes the expression
of ICAM1 and VCAM1, thereby intensifying vascular inflammation
and atherosclerotic lesions [137]. This finding provides new
insights for targeting PSMB9 in treatment, suggesting that
inhibiting PSMB9 may become a potential strategy for treating
cardiovascular diseases.

Others. The immunoproteasome is associated with various
cardiovascular diseases, with its subunits acting as risk or protective
factors in several contexts. During myocardial ischemia-reperfusion
(I/R) injury, the immunoproteasome exerts protective effects by
modulating oxidative stress and apoptosis pathways. Studies have
found that inhibition of the immunoproteasome exacerbates
myocardial cell damage after reperfusion, while the LMP7 subunit
reduces |/R-associated oxidative stress and apoptosis by activating
the Keap1-NRF2 antioxidant pathway [127].

Immunoproteasome dysfunction is also a critical factor in the
pathogenesis of diabetic cardiomyopathy (DCM). Overexpression of
the LMP7 subunit in diabetic hearts exacerbates endothelial-to-
mesenchymal transition (EndMT) in myocardial cells, leading to
increased myocardial fibrosis. Pharmacological inhibition of LMP7
activity significantly alleviates myocardial fibrosis and restores heart
function [138]. Likewise, bioinformatics analysis has further
established PSMB8 (B5i) as a key immune molecular marker of
DCM, closely associated with metabolic disturbances and inflam-
matory conditions in diabetic hearts [139]. Moreover, in a
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doxorubicin (Dox) induced cardiotoxicity model, downregulation
of immunoproteasome subunits increases myocardial cell apopto-
sis, while upregulation of B1i, B2i, and B5i expression significantly
reduces cardiotoxicity and protects heart function [140].

In inflammatory vascular diseases like atherosclerosis, the
immunoproteasome modulates macrophage pyroptosis and
inflammatory pathways. LMP7 induces macrophage pyroptosis by
activating the NF-kB pathway, thereby promoting the formation of
atherosclerosis [141]. In abdominal aortic aneurysm (AAA), inhibi-
tion of the immunoproteasome significantly reduces the infiltration
of inflammatory cells and associated tissue damage [141, 142].

However, current research on the immunoproteasome has certain
limitations. For example, although its function has been validated in
various cardiovascular diseases, the specific mechanisms of its action
in different pathological states are not fully understood, particularly
its dual role in dynamic inflammatory environments [139, 143].
Future research needs to further clarify the functional differences of
the immunoproteasome in specific diseases and different tissue
microenvironments in order to better develop targeted therapeutic
strategies against the immunoproteasome.

Respiratory diseases

Recent studies have pointed out that mechanisms involving
changes in proteostasis, such as the unfolded protein response,
endoplasmic reticulum stress, and inhibition of the ubiquitin-
proteasome system, are key in the pathogenesis of COPD
[144, 145]. This dysfunctional protein processing ultimately leads
to the accumulation of nonfunctional and potentially cytotoxic
proteins, with misfolded proteins contributing to alveolar cell
apoptosis, inflammation, and the typical autophagy seen in COPD.
The circulating immunoproteasome response to these antigens is
activated, inducing changes in the adaptive immune population,
such as increased T cell differentiation through MHC-I-TCR
interactions, expansion of Th17 cells, (autoreactive) B cells, and
downregulation of regulatory T cells, leading to inflammation,
lung tissue damage, and autoimmune phenomena in COPD
patients [146].

Additionally, mitochondrial DNA stress responses upregulate
the immunoproteasome and MHC | antigen presentation pathway
via the cGAS/STING/type | interferon pathway, leading to
spontaneous activation of CD8" T cells. In patients with idiopathic
pulmonary fibrosis, chronic activation of adaptive immune
responses induced by abnormal lung epithelial cells via the
cGAS/STING pathway is closely associated with the activation of
CD8" T cells in the affected lung tissue [16].

Neurodegenerative disorders

Neurodegenerative diseases such as Alzheimer's disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), and amyo-
trophic lateral sclerosis (ALS) are characterized by the accumula-
tion of abnormal proteins and the activation of
neuroinflammation. The immunoproteasome, as a specialized
proteasome isoform, plays a key role in regulating inflammatory
responses and proteostasis.

The core pathology of AD includes the deposition of amyloid 3
(AB), tau protein aggregation, and the activation of neuroin-
flammation [147]. Studies have shown that the immunoprotea-
some plays an important role in the progression of AD pathology.
Reactive astrocytes and microglial cells exhibit increased immu-
noproteasome activity around the AP plaque regions. Upregula-
tion of the immunoproteasome is closely associated with the
release of inflammatory factors, suggesting its regulatory role in
AD-related neuroinflammation [148]. Further studies have shown
that LMP7 deficiency significantly alters the cytokine secretion
pattern in microglial cells and improves cognitive function in AD
mice [149]. Moreover, LMP2 inhibitors such as DB-310 show
significant cognitive improvement in AD models, highlighting the
potential of LMP2 as a therapeutic target for AD [150].
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The pathological feature of PD is the abnormal aggregation of
a-synuclein (a-syn), forming Lewy bodies [151]. Overexpression of
a-syn inhibits the expression of POMP regulated by the nuclear
factor NRF2, leading to defects in immunoproteasome assembly,
exacerbating a-syn aggregation and neurodegeneration [152].
Further studies confirm that the immunoproteasome helps
maintain proteostasis by degrading a-syn aggregates, and its
LMP7 subunit is significantly upregulated in the brain tissue of PD
patients [153].

In HD models, the expression of LMP2 and LMP7 is significantly
increased in neurons, accompanied by upregulation of immuno-
proteasome activity, which is closely associated with neurode-
generative changes [154]. Additionally, studies have found that in
ALS mouse models, induction of the immunoproteasome primarily
occurs in astrocytes and microglial cells, possibly mediated by
cytokines such as TNF-a and IFN-y [155].

The immunoproteasome may either play a protective role or
exacerbate neuroinflammation in neurodegenerative diseases. For
example, the immunoproteasome maintains cellular homeostasis
by degrading damaged proteins, but its excessive activation may
lead to the overrelease of inflammatory factors, further damaging
neurons [148]. Dual inhibitors of LMP2 and LMP7, such as YU102,
significantly reduce the release of inflammatory factors and
improve cognitive function in AD mice, without affecting AB
deposition [156].

Retinal diseases

Recent studies have elucidated the pivotal role of immunoprotea-
somes in retinal pathologies, demonstrating their regulation of
critical signaling pathways. Immunoproteasome subunits, such as
LMP10 and B5i (LMP7), exhibit upregulated expression in various
retinal disease models, modulating disease progression by degrad-
ing specific regulatory proteins. In hypertensive retinopathy, B5i
(LMP7) promotes the degradation of ATRAP, activating downstream
NF-kB, TGF-B/Smad, and ERK/Akt signaling pathways via ATIR,
which exacerbates vascular permeability and inflammation [157].
Similarly, LMP10 (B2i) degrades PTEN, activating the AKT/IKK(
pathway and inducing IkBa phosphorylation and NF-kB target gene
expression, thereby aggravating Ang Il-induced retinal pathology
[158]. Furthermore, in oxygen-induced retinopathy models, pB5i
suppresses autophagy by binding and degrading the key
autophagy protein ATG5, promoting VEGF-mediated pathological
angiogenesis [14]. These findings highlight the immunoprotea-
some’s role in disrupting protein homeostasis networks, such as the
PTEN-ATRAP-ATGS5 axis, during retinal disease progression.

In optic nerve injury models, depletion of immunoproteasome
subunits LMP2 and LMP7 significantly delays retinal ganglion cell
apoptosis, potentially by suppressing aberrant Akt signaling and
reducing oxidative stress [159]. Additionally, mTORC1 signaling
induces expression of the immunoproteasome subunit Psmb9
(B1i), accelerating the degradation of cell cycle proteins during
retinal development, thereby regulating the proliferation and
differentiation dynamics of neural progenitor cells [160]. This
interplay between protein synthesis and degradation underscores
the dual role of immunoproteasomes in maintaining retinal
homeostasis.

Collectively, immunoproteasomes regulate NF-kB, Akt/mTORCI,
and autophagy pathways by degrading key regulatory proteins
such as ATRAP, PTEN, and ATGS5, playing a central role in retinal
inflammation, vascular remodeling, and neurodegeneration.
Targeting specific immunoproteasome subunits or their down-
stream effectors may offer novel therapeutic strategies for retinal
diseases.

Tumor

In the process of tumorigenesis, several reports have documented
dysregulated expression and function of the immunoproteasome
[161]. Experiments have confirmed that the proteasome plays a
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critical role in cancer cell survival and cell cycle progression.
Mutations in cancer cell genomes lead to the production of
aberrant proteins and proteotoxic stress, making the clearance of
accumulated proteins essential for cell survival; the increased
protein synthesis must be matched by enhanced protein
degradation to maintain proteostasis. Consequently, cancer cells
often overexpress proteasome subunits, and inhibition of the
proteasome can result in cancer cell death [162, 163]. The
immunoproteasome is highly expressed in many cancers, includ-
ing multiple myeloma, breast cancer, prostate cancer, and certain
hematologic malignancies. Lymphocytes infiltrating the tumor
microenvironment secrete large amounts of IFN-y, which induces
cancer cells to express the immunoproteasome [161, 164]. This
phenomenon is particularly evident in solid tumors such as breast
and colorectal cancers [165, 166].

High immunoproteasome expression can be achieved via non-
IFN-y pathways in certain hematologic cancers, such as acute
myeloid leukemia (AML) [161]. In AML, immunoproteasomes
regulate protein homeostasis and transcriptional networks,
critically influencing leukemia cell survival and drug resistance.
Studies reveal that AML cells with KMT2A rearrangements
(KMT2A-r) exhibit specific dependence on the immunoprotea-
some catalytic subunit PSMB8 (B5i). Inhibiting PSMB8 upregulates
the transcription factor BASP1, suppressing oncogenic gene
expression driven by KMT2A fusion proteins, and synergizes with
Menin inhibitors to enhance anti-leukemic activity [167]. Addi-
tionally, UBE2N-mediated K63 ubiquitination stabilizes oncogenic
protein networks to maintain protein homeostasis in AML,
whereas UBE2N inhibition triggers immunoproteasome-
dependent K48 ubiquitination and degradation pathways, high-
lighting the bidirectional regulatory role of immunoproteasomes
in AML [168]. Notably, AML cells can evade T-cell immunotherapy
by downregulating immunoproteasome subunits (e.g., B1i), but
targeting alternative epitopes (e.g, WT1s-45) generated by
constitutive proteasomes can overcome this resistance [169].

In contrast, immunoproteasome activity in CLL is markedly
elevated compared to constitutive proteasomes and is closely
associated with disease progression. CLL cells are highly sensitive
to selective immunoproteasome inhibitors, such as LU035i, which
induce apoptosis by targeting the P5i subunit with minimal
toxicity to normal hematopoietic cells [170]. However, interferon-y
(IFN-y) in the CLL microenvironment activates the p38 MAPK
signaling pathway, promoting immunoproteasome formation and
conferring resistance to the BCL-2 inhibitor venetoclax. Combined
treatment with p38 MAPK inhibitors or immunoproteasome
inhibitors (e.g., ONX-0914) reverses this resistance and enhances
venetoclax cytotoxicity [171]. These findings elucidate the
divergent roles of immunoproteasomes in AML and CLL, providing
a foundation for developing tailored therapeutic strategies for
distinct leukemia subtypes.

The NF-kB pathway is one of the key tumor signaling pathways
regulated by the immunoproteasome [172]. In the classical
pathway, activation of the IkB kinase complex (IKKB/a/y) leads to
phosphorylation of the NF-kB inhibitor IkB, resulting in the
ubiquitination of IkBa and its recognition and degradation by
the proteasome [173-176]. When the immunoproteasome
degrades kB, NF-kB translocates into the nucleus, thereby
promoting gene transcription and cell proliferation [177]. In
addition to regulating this pathway, the immunoproteasome has
been shown to process tumor antigens, influencing immune
surveillance and immune evasion. However, its precise role in
tumorigenesis and invasion remains unclear, and the underlying
mechanisms are not fully understood [178, 179].

The p53 protein is an important transcription factor and serves
as a key tumor suppressor [180]. In approximately half of human
cancers, the p53 gene is mutated or deleted. The p53 protein is
degraded by the 26S proteasome through a polyubiquitination
process. Under normal conditions, the half-life of p53 is short, but
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under stress conditions (such as DNA damage), its degradation is
inhibited, leading to a rapid increase in its levels. Inhibiting
proteasome-mediated p53 degradation may become a promising
tumor suppressive strategy [88, 180].

Autoimmune diseases

The immunoproteasome participates in the development of
various autoimmune diseases by regulating T cell polarization,
the NF-kB signaling pathway, and the production of inflammatory
cytokines by macrophages [181-185]. For example, inborn errors
of immunity (IEl) primarily manifest as sterile autoinflammation
and are often classified as systemic autoinflammatory diseases
(SAID). SAID is usually caused by mutations in various pathways
involving innate immune responses, which remain persistently
activated after being triggered, leading to the development of
systemic autoinflammation [186, 187]. SAID can be classified
based on the primary inflammatory pathway it interferes with, one
of which is called interferonopathies, characterized by enhanced
type | interferon signaling, with proteasomal molecular defects
closely linked to this pathological state [188].

The immunoproteasome is also involved in the pathogenesis of
chronic thyroiditis. Transgenic mice with specific IFN-y expression
in the thyroid exhibit symptoms of chronic thyroiditis and
hypothyroidism [189, 190]. These studies provide important
theoretical support for the clinical application of the immunopro-
teasome as a potential therapeutic target and offer new insights
into understanding the pathophysiological mechanisms of sys-
temic inflammatory diseases.

IMMUNOPROTEASOMA-RELATED THERAPEUTIC STRATEGIES
Inhibitors

Bortezomib is a non-selective proteasome inhibitor that has been
approved for the treatment of multiple myeloma [191]. In a phase
I clinical trial involving patients with refractory hematologic
malignancies, bortezomib demonstrated efficacy in patients with
multiple myeloma, mantle cell lymphoma, and non-Hodgkin
lymphoma. Phase Il studies focused on relapsed and refractory
myeloma, with about one-third of patients responding to
treatment, leading to accelerated approval of bortezomib by the
US FDA in 2003 as a treatment option [192]. Subsequently,
bortezomib was further approved as a first-line treatment for
newly diagnosed multiple myeloma [88]. However, due to the
non-selective nature of bortezomib, it may affect other targets in
addition to inhibiting the proteasome, leading to peripheral
nervous system adverse effects in over 30% of patients [193].

As most proteasome inhibitors are non-selective, researchers
have developed the selective (5i inhibitor PR-957/ONX0914,
whose selectivity can be explained by the differences in the S1
pockets of B5 and B5i [194]. PR-957 shows at least 14 times higher
selectivity for B5i compared to 35, while not significantly affecting
the overall function of the proteasome. In animal models, PR-957
successfully blocked the presentation of B5i-specific antigens and
inhibited the release of IL-23, IFN-y, and IL-2, demonstrating its
potential therapeutic effects [195]. Recent studies have found that
the LMP7-selective inhibitor KZR-329 and the LMP2-selective
inhibitor KZR-504 show significant effects in a rat aortic transplant
model. By co-inhibiting LMP2 and LMP7, the generation of
inflammatory cytokines, complement, and antibodies can be
effectively suppressed, reducing apoptosis of vascular wall cells
and significantly slowing the progression of transplant-associated
arteriosclerosis [196].

Nanomaterials

Extracellular vesicles (EVs) are nanoscale particles with a bilayer
lipid membrane, containing various biomolecules such as proteins,
lipids, mRNA, miRNA, DNA, and other small molecules [197, 198].
Mesenchymal stem cells (MSCs) are a promising cellular resource
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for treating a variety of diseases [199]. Currently, bortezomib
(BTZ)-based chemotherapy regimens are the first-line treatment
for multiple myeloma [200]. However, this regimen is associated
with significant side effects, such as peripheral neuropathy,
nephrotoxicity, and leukopenia. By encapsulating pH-responsive
BTZ-containing polymeric nanoparticles in apoptotic MSC-derived
extracellular vesicles (apoVs) and combining the synergistic effects
of BTZ and apoVs, the therapeutic efficacy against multiple
myeloma can be significantly enhanced [201].

CONCLUSION AND PERSPECTIVE

The immunoproteasome, an inflammation-induced proteasome
variant, leverages its distinct catalytic subunits to play critical roles
in antigen processing and proteostasis under stress conditions. Its
functions in disease exhibit duality: it offers protection in
conditions such as cardiovascular diseases, respiratory diseases,
neurodegenerative disorders, autoimmune diseases, retinopathy,
and cancer by mitigating cellular damage and clearing misfolded
proteins; however, its dysregulation can exacerbate pathological
progression via inflammatory signaling.

Despite progress, immunoproteasome research faces significant
challenges. Subunit-specific functions, particularly in non-immune
tissues, remain poorly understood; for instance, B5i/LMP7 drives
NF-kB activation in cardiovascular pathologies, whereas (32i/MECL-
1 influences macrophage polarization, yet the mechanisms are
elusive. Additionally, microenvironmental regulation—via cyto-
kine gradients, metabolic conditions, or autophagy interactions—
is insufficiently characterized, impeding targeted therapy devel-
opment. Preclinical studies, often reliant on genetic knockouts or
non-specific inhibitors, fail to reflect subunit nuances in human
diseases. Moreover, the long-term impacts of immunoproteasome
modulation, including risks of immune suppression or off-target
effects, remain underexplored clinically.

Future efforts should emphasize subunit-selective drug design to
optimize therapeutic outcomes while preserving physiological
proteostasis. Techniques such as cryo-EM and single-cell omics
could clarify the structural and functional diversity of immunopro-
teasomes across tissues. Multi-omics approaches may elucidate
how microenvironmental factors shape immunoproteasome activ-
ity in specific diseases. Clinically, rigorous trials are essential to
evaluate the safety and efficacy of therapies like 35i inhibitors (e.g.,
ONX 0914) and nanomaterial-based delivery systems, particularly
for chronic inflammatory and neurodegenerative conditions.
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