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Colorectal cancer (CRC), including both microsatellite instability (MSI) and microsatellite stability (MSS) subtypes, frequently exhibits
intrinsic resistance to immunotherapy. However, the spatial tumor microenvironment (TME) and its role in distinguishing
immunotherapy responders from non-responders remain poorly understood. In this study, spatial multiomics, including imaging
mass cytometry (n= 50 in-house), spatial proteomics (n= 50 in-house), and spatial transcriptomics (n= 9 in-house), were
employed to elucidate the spatial TME of metastatic CRC (mCRC) patients receiving immunotherapy. These methodologies were
integrated with single-cell RNA sequencing (scRNA-seq), bulk RNA-seq, and bulk proteomics for comprehensive analysis and
validation. A spatial immune atlas containing 314,774 cells was constructed. We found that C1QC+ resident tissue macrophages
(RTMs) were more abundant in responders regardless of microsatellite status. Co-localization of C1QC+ RTMs with CD4+ T cells was
observed in responders, and MHC-II expression facilitated their interaction. In contrast, cancer-associated fibroblasts inhibited this
interaction in non-responders. Moreover, whole genome screening identified key genes involved in antigen presentation in C1QC+

RTMs. Hence, our study highlights the importance of spatial immune mapping in revealing the complex spatial topology of CRC and
corresponding immunotherapy response.
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INTRODUCTION
Colorectal cancer (CRC) is the third most common cancer, the
second leading cause of cancer-related death, and a major public
health issue1. Despite clinical advances in recent years, the 5-year
survival rate for patients with metastatic CRC (mCRC) remains low,
at approximately 14%2. New treatment strategies for mCRC,
especially immunotherapy, have radically changed the cancer
treatment paradigm3. There are remarkable dichotomy of tumor
immune phenotypes in CRC: microsatellite stability (MSS) and
microsatellite instability (MSI). Among them, MSS mCRC (account-
ing for 95% of all mCRC cases) presents primary resistance to
immune checkpoint inhibitors (ICIs)4. MSI mCRC is thought to be
sensitive to ICIs, but the reported 43.8% objective response rate
(ORR)5 is barely satisfactory. Multiple combination therapeutic
modalities, such as ICIs combined with tyrosine kinase inhibitors

(TKIs)6,7 or systemic chemotherapy8, have been used in an attempt
to improve immunotherapy efficacy for CRC. However, there are
no reproducible or consensus results to support their effective-
ness, especially in patients with the MSS subtype; therefore,
challenges remain, concerning the mechanism of immunotherapy
resistance as well as potential biomarkers for CRC patients.
With the advent of single-cell RNA sequencing (scRNA-seq),

emerging evidence suggests that the efficacy of ICIs largely
depends on the diversity and phenotype of cells in the tumor
microenvironment (TME). For instance, tumor-associated macro-
phages (TAMs) are relevant immunotherapy targets, as their
coexpressed genes encode immunostimulatory, immunosuppres-
sive and reparative factors9,10. Molecules, such as IL1B, TREM2,
FOLR2 and C1Q, have emerged as more identifiable macrophage
biomarkers for specific populations. Additionally, the single-cell
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landscape of CRC has been well elucidated. For instance, Zhang et
al. reported that two strictly exclusive TAM populations, consisting
of C1QC+ and SPP1+ TAMs, contribute to different functions like
antigen presentation or angiogenesis regulations in CRC, and are
responsible for opposite anti-tumor or pro-tumor activity11. Li
et al. found that proinflammatory IL1B+ TAMs decreased after
response to immunotherapy, providing potential target for
improving treatment efficacy12. Notably, scRNA-seq studies
provide detailed information on cell populations with distinct
molecular features; however, they have inherent limitations in
preserving spatial topology information. This loss occurs during
the tissue dissociation process. Currently, spatial-omics provides
new insights into the network and the spatial topology of the TME.
For example, Qi et al. revealed that the infiltration of FAP+

fibroblasts and SPP1+ macrophages is highly correlated in CRC
and that their presence is negatively correlated with lymphocyte
infiltration13. However, the previous studies were conducted with
treatment-naïve samples and had limited information on patient
immunotherapy outcome. The impact of spatial topology on
immunotherapy response in mCRC patients has yet to be
investigated, particularly at a single-cell spatial resolution.
In this study, we employed an integrative approach that

combines imaging mass cytometry (IMC), spatial transcriptomics,
spatial proteomics, scRNA-seq, bulk proteomics and bulk RNA-seq
to construct a comprehensive analysis of spatial immune atlas at
the single-cell level, offering high-throughput spatial phenotypic
information in mCRC patients who underwent immunotherapy. By
utilizing advanced deep learning methods, we investigated the
spatial topology of CRC and explored the potential mechanism of
resistance to immunotherapy in CRC.

RESULTS
A subset of MSS and MSI mCRC patients responded to
immunotherapy
The research methodology is illustrated in Fig. 1a. The immune
spatial topology of 25 mCRC patients who underwent immu-
notherapy (in-house cohort 1) was investigated via both spatial
IMC analysis (regions of interest (ROIs), n= 50) and spatial
proteomics analysis (ROIs, n= 50). Furthermore, spatial transcrip-
tomics was employed to explore the spatial TME characteristics at
the whole-slide level in 9 mCRC patients receiving immunotherapy
(in-house cohort 2). To validate our findings, we analyzed scRNA-
seq (n= 27) and bulk RNA-seq (n= 31) data from CRC patients
who received neoadjuvant immunotherapy (external cohorts).
Additionally, we utilized spatial transcriptomics data (n= 7) from
the integrated external CRC cohort and proteomics data (n= 114)
from treatment-naïve patients in the in-house cohort.
For cohort 1, all 25 mCRC patients in this study were enrolled at

The First Affiliated Hospital of Zhejiang University. We screened a
total of 502 mCRC patients and finally acquired 16 MSS mCRC
patients from the previous study we presented at the last ASCO
annual meeting14 and another 9 MSI mCRC patients who met all the
criteria to be included in this study (Supplementary Fig. S1). The
inclusion and exclusion criteria are available in Materials and
Methods. SixteenmCRC patients with the MSS subtype received ICIs
combined with regorafenib as a third-line therapy according to the
REGONIVO study15, and another nine MSI mCRC patients received
ICI monotherapy as a first-line treatment according to the KEYNOTE
177 study16. Responders were defined as patients who maintained
stable disease (SD) status or achieved partial remission for more
than 6 months, whereas non-responders were those whose disease
progressed within the same period. This classification aligns with
the complexity of tumor response in immunotherapy. SD patients
were considered responders as emerging evidence suggests that
those who maintain SD status for more than 6 months without
tumor growth derive real clinical benefit17. In general,
immunotherapy-responded patients demonstrated significantly

prolonged survival (Supplementary Fig. S2a, b). At the last follow-
up visit in November 2023 (median follow-up of 16.89 months (IQR
11·12–26·33)), almost all patients (11/13) who responded to
immunotherapy were in continuous remission or treatment (Fig.
1b, c). Among the MSS group, the median progression-free survival
(PFS) was not reached vs 3.00 months (95% CI 2.53–3.47) between R
and NR (P < 0.001) (Fig. 1b; Supplementary Fig. S2c). In the MSI
group, the median PFS was also not reached vs 2.07months (95% CI
0.77-3.37) between R and NR (P= 0.003) (Fig. 1c; Supplementary Fig.
S2d). Superiority of overall survival (OS) was also observed in both
MSS_R and MSI_R subgroup compared with NR subgroups
(Supplementary Fig. S2e, f).
The clinical characteristics are shown in Supplementary Table

S1. Consistent with previous report18,19, the liver was the most
common site of metastasis (11/25), followed by the lung (9/25)
and peritoneum (7/25) (Supplementary Fig. S2g). Yu et al. revealed
that liver metastases can create a systemic immune desert
properties and diminish immunotherapy efficacy20. In our cohort,
immunotherapy response was observed in both patients with and
without liver metastasis, and there was no significant difference in
the proportion of patients with liver metastasis between R and NR
patients (Supplementary Table S2). In addition, tumors arising
from different primary tumor sites (PTSs) of the colon are also
considered to have clinically and molecularly distinct hetero-
geneity21. There was no significant difference in the location of
PTS between the R and NR cohorts in our study, with MSS CRC
patients mainly having left-sided PTS, and MSI CRC patients
having both the left-sided and right-sided PTS (Supplementary
Fig. S2h). Imaging efficacy evaluation was conducted via repeated
computed tomography (CT) scans, and the representative images
of the four subgroups are shown in Fig. 1d.
In summary, for the primary cohort 1, data from 25 ICI-treated

patients, divided into four subgroups (MSI_R, MSI_NR, MSS_R and
MSS_NR), were collected for IMC and paired spatial proteomics
analysis. Significantly prolonged PFS and prolonged OS were
observed in MSS_R and MSI_R patients. There were no clinically
related prognostic interference, such as the location of the PTS or
the occurrence of liver metastases, between R and NR patients.

Establishment of a spatial immune atlas of MSS/MSI_R and NR
mCRC patients at single-cell resolution
We first set out to investigate whether spatial TME features differ
between MSS/MSI_R and NR CRC tumors. We collected formalin-
fixed, paraffin-embedded (FFPE) samples from 25 mCRC patients
prior to immunotherapy for IMC analysis. Treatment response was
evaluated after the completion of immunotherapy to stratify
patients into four subgroups (MSS_NR, n= 8; MSS_R, n= 8;
MSI_NR, n= 4; MSI_R, n= 5) (Fig. 2a). Two ROIs for each patient
were selected for a comprehensive overview of the spatial
organization of cells within the TME (Supplementary Figs. S3,
S4). First, samples were stained using a 38-plex metal-tagged
antibody panel (Fig. 2a). The panel included lineage and functional
immune cell markers, such as CD4 for T cells and CD163 for
macrophages, surrogates of cell states like Ki-67 for proliferation,
and structural markers cover epithelium, and stroma cells
(Supplementary Fig. S5a and Table S3). Next, laser ablation was
performed to acquire high-dimensional histopathological images
(Fig. 2a), which were further improved by signal compensation,
image denoising and image contrast enhancement according to
published methods22, as shown in Supplementary Fig. S5b. Lymph
node tissues served as positive controls to assess the staining
efficacy of the IMC panel (Supplementary Fig. S5c). Following
confirmation of the staining efficacy, the CRC tissues were
processed using the identical IMC staining protocol. Typical
regions of ROIs in CRC tissues, marked by DNA and staining
markers, were clearly visible in the scanned images (Supplemen-
tary Fig. S6). Finally, cell segmentation23–25 and phenotyping were
performed, followed by spatial analysis. (Fig. 2a).
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Fig. 1 A subset of MSS and MSI mCRC patients responded to immunotherapy. a Overview of the study design. b Progression-free survival
(PFS) of systemic chemotherapy and immunotherapy in 16 microsatellite stable (MSS) distant mCRC patients, including 8 responded (R)
patients and 8 non-responded (NR) patients. c PFS of immunotherapy in 9 microsatellite instable (MSI) CRC patients, including 5 R patients and
4 NR patients. d Representative CT images of MSS/MSI_R and NR patients.
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In general, we identified 314,774 high-quality cells with
accompanying spatial information. The cells were further clustered
according to the presented lineage and functional markers. The
clustering and sub-population strategies are shown in Supple-
mentary Fig. S7a. Briefly, Rphenograph clustering method was

applied to identify the 15 major cell clusters with the lineage
markers (Fig. 2b; Supplementary Fig. S7b). Uniform manifold
approximation and projection (UMAP) demonstrated the expres-
sion patterns of Pan-CK (tumor cell marker), CD3 and CD45RO
(memory T cell markers), CD20 (B cell marker), CD15 (one of the
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granulocyte markers), and CD68 and HLA-DR (macrophage
markers) (Supplementary Fig. S7b). We subsequently conducted
unsupervised clustering to identify distinct subpopulations within
monocytes and macrophages based on the expression of the
associated lineage and functional markers (Supplementary Fig.
S7c). This analysis revealed a total of four cell subclusters among
monocytes/macrophages, including infiltrating-like classic mono-
cytes, intermediate status monocytes, CD163−C1QCmedian

resident-tissue macrophages (CD163−C1QCmedian RTMs), and
C1QC+ RTMs (Fig. 2b; Supplementary Fig. S7c). Natural killer (NK)
and T cells were grouped into 14 subclusters using activation and
immune checkpoint markers, including cytotoxic and memory
CD8+ T cells, Tregs, PD1+CD4+ T cells, and TIM3+ CD4+ T cells (Fig.
2b; Supplementary Fig. S7d). We also identified B cells marked
with CD20, fibroblasts marked with collagen I and several other
cell types (Supplementary Fig. S7e). Finally, a total of 30 cell
populations with distinct expression patterns were identified in
our spatial immune atlas (Supplementary Fig. S7e). The propor-
tions of major cell types and immune cell subtypes among all cells
were separately presented (Fig. 2b, c). The cellular composition of
all ROIs, based on manual annotations, is presented in Fig. 2d and
Supplementary Figs. S8, S9, offering a detailed representation of
the proportions of immune, stromal, and epithelial cells. These
figures further provide a precise depiction of the TME.
In the next step, we used t-Distributed Stochastic Neighbor

Embedding (t-SNE) (Supplementary Fig. S10a) and hierarchical
clustering (Supplementary Fig. S10b) on the basis of the IMC data
to determine the degree of variation among the four groups. Both
t-SNE and hierarchical clustering showed significant stratification
among the four patient groups. The Ro/e analysis26 was further
performed to quantify the enrichment tendency of the cell
clusters among patients in different subgroups. Consistent with a
previous report27, it was found that the C1QC+ RTMs were
preferentially enriched in the MSI group compared with the MSS
group (Supplementary Fig. S10c). Additionally, they were enriched
in the R group compared to the NR group (Supplementary Fig.
S10d). Furthermore, we observed that the proportion of C1QC+

RTMs was the greatest in the MSI-R subgroup, followed by the
MSS_R, MSI-NR, and MSS_NR subgroups (Fig. 2e). In contrast, we
observed a significant enrichment of fibroblasts in non-respon-
ders, regardless of microsatellite status (Fig. 2e). To account for
both individual sample variability and population-level variability,
and to ensure statistical robustness, we performed additional
analyses, including χ2 tests, sample-level t tests, odds ratio (OR)
analysis28, and Milo differential abundance testing29 (Supplemen-
tary Figs. S11, S12). Furthermore, we computed the cell frequency
of cell clusters in each genomic phenotype (MSS/MSI) and
investigated their associations with the immunotherapy response
(Fig. 2f). Consistent with the results from the Ro/e analysis, the cell
frequency of C1QC+ RTM exhibited a robust correlation with the
MSS_R phenotypes calculated by logistic regression.
Lastly, we analyzed the spatial TME ecosystem on the basis of

the IMC output images (Fig. 2g). We observed that the differences
in the TME between MSS_R and MSS_NR were more pronounced
than those between MSI_R and MSI_NR (Fig. 2h). This suggests

that the TME may have a greater impact on immunotherapy
response in MSS patients compared to MSI patients. Specifically,
the greater heterogeneity in the TME of MSS_R and MSS_NR
groups highlights the potential role of TME composition in driving
differential responses to immunotherapy within the MSS subtype.
We then employed a ResNet18-based deep learning model
(Materials and Methods for details) to validate the associations
of C1QC+ RTMs and fibroblasts with the immunotherapy response
by quantifying the importance ranking of features. The results
indicated that DNA, αSMA, C1QC, Collagen I, CD45, and Vimentin
were the most important features for stratifying the four groups
(Fig. 2i). Hence, we believe that C1QC+ RTMs and fibroblasts may
both act as important players in orchestrating the response to
immunotherapy.
Taken together, the IMC analysis provided a spatially resolved

view of the TME in ICI-treated MSS/MSI_R and NR CRC patients. We
observed a greater proportion of C1QC+ RTMs, a subset of
macrophages, in ICI-responsive CRC patients than in non-
responsive patients, whereas a lower proportion of fibroblasts
were detected in ICI-responsive patients.

The spatial architecture of C1QC+ RTMs and fibroblasts
orchestrates antitumoral immunity in MSI and MSS CRC
patients
Antitumor immunity requires organized, spatial interactions
between tumor, immune, and stromal cells and extracellular
components of the TME30. To generate higher-order information
beyond cell type and abundance, we conducted a cellular
neighborhood (CN) analysis. The CN was defined as a central cell
and its 20 nearest neighboring cells (Fig. 3a). To analyze cell
interactions and functional units within MSS/MSI CRC samples, we
employed network, Voronoi, and CN plots derived from IMC
images (Fig. 3b). We systematically evaluated various values of k
(the number of neighborhoods, k= 5, 10, 15, and 20) to identify
the optimal clustering resolution, ultimately selecting k= 15 as it
provided the best balance between granularity and biological
interpretability (Fig. 3c; Supplementary Fig. S13). The spatial
distribution and visualization of CNs within the TME for each MSS
and MSI sample are presented in Supplementary Figs.
S14 and S15, offering a comparative analysis of CN patterns
across different response groups. Specifically, CN1 was highly
abundant in the MSI_R subgroup, less abundant in the MSS_R and
MSI_NR subgroup, and sparsely present in the MSS_NR subgroup
(Fig. 3d; Supplementary Fig. S16). We also found that the MSI_NR
subgroup had a high abundance of CN13, which was enriched
with fibroblasts.
To explore the underlying interactions of the cell populations in

the TMEs of the four groups, we conducted a spatial analysis of
paired cell–cell interactions (PCIs), which was driven by spatial
proximity between cells. Compared with those in the MSS_NR
group, CD4+ T cell populations, such as resident CD4+ T cells, naïve
CD4+ T cells, and memory CD4+ T cells, showed significant
interactions with C1QC+ RTMs in the MSS_R group (Fig. 3e),
highlighting the spatial proximity between C1QC+ RTMs and CD4+

T cells in MSS_R. Consistent with the results of the PCI analysis, the

Fig. 2 Spatial immune phenotypes of MSS/MSI_R and NR CRC patients at single-cell resolution. a The workflow of IMC analysis. b UMAP
plot visualizing the clustering of broad cell types within the IMC dataset (top left). Box plot showing the relative frequencies of each major cell
type among all cells in the IMC dataset, providing an overview of their abundance in the analyzed samples (top right). UMAP plots showing
the clustering of monocytes and macrophages, T cells and NK cells in the IMC dataset (bottom). c The immune cell subsets frequencies in total
cells. d Spatial distribution of cells (immune, stromal, and epithelial cells, and major cell subtypes) in representative sections from the four
groups, annotated based on manual classification results. e Prevalence of immunotherapy outcomes for each cell cluster, as estimated by the
cell frequency-based Ro/e analysis. f Risk ratios illustrating the associations between cell frequency and immunotherapy response are shown
for each cell subpopulation in the MSS (left) and MSI (right) TME, as determined by logistic regression analysis. g Workflow of cosine similarity
and ResNet18-based deep learning. h Heatmap visualization of cosine similarity scores between TME images. Each cell represents the pairwise
similarity score between two samples, with warmer colors indicating higher similarity (scale: 0.75–1.0). The labeled values indicate the average
similarity computed within individual groups or between different groups. i Feature importance calculated by ResNet18-based deep learning.
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distances between C1QC+ RTMs and CD4+ T cells were
significantly lower in the R groups than in the NR groups (Fig.
3f), further supporting their spatial colocalization and potential
interaction in responders. Further survival analysis revealed that
patients with shorter median distances between C1QC+ RTMs and

CD4+ T cells presented a greater survival benefit than those with
longer median distances (Supplementary Fig. S17a). Based on the
spatial distances between C1QC⁺ RTMs and CD4⁺ T cells, we
categorized CD4⁺ T cells into two groups: those proximal to C1QC⁺
RTMs and those distal to C1QC⁺ RTMs. The heatmap demonstrates
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that CD4⁺ T cells located proximal to C1QC⁺ RTMs display
significantly elevated expression of activation markers, such as
CD38, CD57, GZMB, TNFα, and PD-1, relative to their distal
counterparts (Fig. 3g). Furthermore, Ro/e analysis indicates that
responders, especially within the MSS subgroup, exhibit a greater
proportion of proximal CD4⁺ T cells, implying that spatial proximity
to C1QC⁺ RTMs may potentiate CD4⁺ T cell activation (Fig. 3h). In
the next step, we measured the distances from fibroblasts to
immune cells (Fig. 3i). Notably, we discovered that a shorter
distance between certain CD4+ T cell subsets (e.g., activated CD4+

T cells) and fibroblasts, was correlated with poorer outcomes (Fig.
3i; Supplementary Fig. S17b). The same tendency was also
observed between C1QC+ RTMs and fibroblasts (Fig. 3i; Supple-
mentary Fig. S17c). Lastly, we constructed a cellular spatial graph
for each sample to derive a barrier metric based on fibroblasts that
impedes C1QC+ RTMs and CD4+ T cells (Fig. 3j). The MSS_NR and
MSI_NR groups displayed significantly higher barrier scores
attributed to fibroblasts (Fig. 3k), leading to the spatial segregation
of C1QC+ RTMs by fibroblasts in non-responders.
In summary, we conducted CN, PCI, and cell distance analyses

to study the TME characteristics in MSS/MSI CRC patients with
different immunotherapy responses. Our findings suggest active
communication between C1QC+ RTMs and T cells in responders.
Furthermore, we observed greater distances between C1QC+

RTMs and T cells, in MSS/MSI_NR tumors than that in MSS/MSI_R
tumors, which may be attributed to the barrier effect of
fibroblasts. These observations may indicate specific cellular
interactions and relationships within the TME that are in
accordance with the general understanding of the immunother-
apy response.

The scRNA-seq analysis indicates the antigen presenting role
of C1QC+ RTMs to CD4+ T cells via upregulated MHC class II
signaling
To further investigate the role of C1QC+ RTMs in immunotherapy,
we performed scRNA-seq analysis on 27 CRC tissue samples (22
pathological complete response (pCR) and 5 non-pCR), which were
obtained from 19 patients who underwent neoadjuvant therapy, as
reported by Li et al. 31 (Fig. 4a). To ensure consistency with our IMC
antibody panel and in-house IMC data, as well as to further explore
the functional characteristics of the macrophage subsets identified
in IMC at the high-throughput transcriptomic level, we re-annotated
the macrophage subsets in the published scRNA-seq dataset based
on established marker genes, including SPP1 and C1QC for
functionally distinct macrophage populations10,11,32, as well as
IL1B and S100A9, which define inflammatory and immunosuppres-
sive monocyte/macrophages11,33–35, respectively (Supplementary
Fig. S18a). We successfully identified C1QC+ RTMs in the scRNA-seq
data. This subset highly expressed C1QC and CD163 (Fig. 4b, c;

Supplementary Fig. S18a), and matched resident macrophages36–38,
corresponding to C1QC+ RTMs identified in IMC. Additionally, we
obtained three other major macrophage cell clusters, including
IL1B+ macrophages, S100A9+ macrophages, and SPP1+ C1QCmedian

RTMs (Fig. 4b), with distinct gene expression patterns (Supplemen-
tary Fig. S18a and Table S4). Among them, IL1B+ macrophages and
S100A9+ macrophages exhibited an infiltrating cell phenotype. In
contrast, SPP1+C1QCmedian RTMs displayed a resident cell pheno-
type. Specifically, IL1B+ macrophages expressed the inflammatory
response gene IL1B35 (Fig. 4c; Supplementary Fig. S18a). S100A9+

macrophages, which we identified previously34, expressed the
extracellular matrix-associated genes S100A9 and FCN1 (Fig. 4c;
Supplementary Fig. S18a). SPP1+C1QCmedian RTMs expressed the
lipid metabolism gene APOE and pro-angiogenic gene SPP1.
Additionally, this subset exhibited low expression of CD163 and
moderate expression of C1QC (Fig. 4c; Supplementary Fig. S18a),
similar to the phenotype of CD163−C1QCmedian RTMs identified in
IMC.
We calculated the RTM score for each subcluster on the basis of

the core gene signature previously reported37,39. As shown in Fig.
4d, the C1QC+ RTMs had the highest RTM score (the gene set is
shown in Supplementary Table S5), indicating the resident
phenotype of C1QC+ RTMs. Next, we calculated the M2 score to
evaluate M2 polarization in the four macrophage clusters. Among
them, the C1QC+ RTMs presented the lowest M2 score (Fig. 4e;
gene set shown in Supplementary Table S5). We also applied the
innate anti-PD-1 resistance (IPRES) signature (gene set shown in
Supplementary Table S6)40 to evaluate the immunosuppressive
status of the four macrophage subtypes and found that the C1QC+

RTMs had the lowest IPRES signatures and tended to be sensitive
to immunotherapy (Fig. 4f). In summary, C1QC+ RTMs displayed a
resident macrophage phenotype, which tends to be associated
with the immunotherapy response. Next, to further analyze the
distributions of the macrophage subpopulations, we performed a
Ro/e analysis. This analysis revealed greater infiltration of C1QC+

RTMs and a lower infiltration of IL1B+ macrophages in the pCR
group than in the non-pCR group (Fig. 4g). The cell proportion
analysis also showed that compared with the non-pCR samples,
the pCR samples presented a greater proportion of C1QC+ RTM
(31.8% vs 13.6%) and a lower proportion of IL1B+ macrophages
(7.9% vs 18.7%) (Fig. 4h). Subsequently, the top 20 genes with
high expression in C1QC+ RTMs from the scRNA-seq analysis were
defined as the C1QC+ RTM signature which demonstrated high
specificity in distinguishing C1QC+ RTMs from other macrophages
(Supplementary Fig. S18 and Table S4). We further validated the
role of C1QC+ RTM infiltration in pCR in a bulk transcriptome
dataset41 using ssGSEA scoring based on the C1QC+ RTM
signature. The results showed that the C1QC+ RTM score was
significantly greater in the pCR group than in the non-pCR group

Fig. 3 The spatial cell neighboring and cell–cell distance phenotype of MSS/MSI_R and NR CRC patients. a Schematic diagram of cell
neighbor (CN) identification. b Representative Network, Voronoi and CN diagrams of the TME in MSS/MSI_R and NR CRC samples. c Heatmap
of 15 distinct CNs based on the 29 original cell clusters and their respective abundances within each CN. d Tissue prevalence of each CN
cluster estimated by the Ro/e analysis. e Pairwise cell‒cell interaction heatmap. The background color represents overall interaction count
intensity across all samples, with darker shades indicating higher interaction intensities. Small squares denote statistically significant
interactions in comparisons between different patient groups, with their color representing the log2 fold change (log2FC) in interaction
strength. f Violin plots illustrating the distances between C1QC+ RTM and CD4+ T cells across the four groups. Significance between the two
groups was evaluated by the t tests with ****P < 0.0001. The one-way ANOVA test was used to compare the four groups. g Heatmap displaying
the expression levels of T cell-related markers (e.g., CD38, CD57, GZMB, TNFα, PD-1) in CD4⁺ T cells proximal to C1QC⁺ RTMs vs those distal to
C1QC⁺ RTMs, colored by z-score normalized expression levels. h Ro/e analysis of CD4⁺ T cells proximal to C1QC⁺ RTMs and distal to C1QC⁺
RTMs in the four groups. i The distance of immune cell subsets to fibroblasts associated with the prognosis of CRC. The Hazard Ratio and P
value was calculated on data from IMC by univariate Cox analysis. (j) Schematic diagram of fibroblast barrier score calculation. The barrier
score measures the degree of spatial interpositioning of C1QC+ RTM–adjacent fibroblasts between CD4+ T cells and their nearest C1QC+ RTM
(s) in a tissue core. In the lower half of the schematic, four nearest C1QC+ RTMs are defined for the purple CD4+ T cells. C1QC+ RTMs–adjacent
fibroblasts are found on three of these four paths from CD4+ T-cell to C1QC+ RTMs, resulting in a barrier score of 3/4. (k) Boxplot comparing
the fibroblast barrier scores in the four groups. Statistical significance was determined by one-way ANOVA comparing MSI_R, MSI_NR, MSS_R,
and MSS_NR groups.
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among CRC patients who were receiving neoadjuvant immu-
notherapy (Fig. 4i).
Next, we sought to explore the potential functions and relevant

pathways of C1QC+ RTMs and the other three macrophage
clusters. Gene Ontology (GO) analyses provided evidence of the

immunogenicity-enhancing effects of C1QC+ RTMs, mainly related
to increasing expression of pathways pertaining to antigen
processing via MHC-II signaling (Fig. 4j). MHC-II molecules are
expressed by macrophages that deliver antigens to CD4+ T cells
and play an important role in adaptive immunity42. As shown in
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Fig. 4k, the C1QC+ RTMs expressed high levels of MHC-II molecules
such as HLA-DMA, HLA-DMB, HLA-DQA1 and HLA-DRA. Next, we
identified T cell clusters such as CD40LG+CD4+ T cell,
CXCL13+CD4+ T cell, cytotoxic CD8+ T cell, naïve CD4+ T cell,
and Treg cell clusters (Supplementary Fig. S19a) and their top
marker genes (Supplementary Fig. S19b) for further cell–cell
interaction analysis. Our analysis revealed that the interaction
strength of C1QC+ RTMs with other immune cells was greater in
pCR tumors than in non-pCR tumors (Fig. 4l). Specifically, the
C1QC+ RTMs in pCR tumors showed greater interaction activities
with CD4+ T cells, including CXCL13+CD4+ T cells, CD40LG+CD4+

T cells, naïve CD4+ T cells, and Treg compared to the C1QC+ RTMs
in non-pCR tumors (Fig. 4m, n). Furthermore, we observed that
certain ligand-receptor pairs related to C1QC+ RTM and T cells
were dysregulated in non-pCR samples. For instance, NECTIN2-
TIGIT and LGALS9-HAVCR2 pairs were upregulated in non-pCR
samples, while HLA-DR guided pairs such as HLA-DRB5-CD4, HLA-
DOA-CD4, and HLA-DQA1-CD4 were downregulated in non-pCR
samples (Fig. 4o), indicating a potential defect in antigen
presentation and T cell activation in this group. Pathway activity
analysis further showed reduced activation, antigen presentation,
and immune signaling in CD4⁺ T cells, Tregs, and cytotoxic CD8⁺
T cells in non-pCR samples (Supplementary Fig. S19c). The
expression of key T cell activation and differentiation markers in
CD4+ T cells, including CD69, CD40LG, CD28, TNF, IL7R, CCR7, LEF1,
and TCF7, was significantly lower in non-pCR patients, indicating
impaired CD4+ T cell function (Supplementary Fig. S19d, e). These
findings collectively highlight a weakened CD4+ T cell-mediated
immune response in non-pCR patients, suggesting impaired anti-
tumor immunity.
Taken together, these findings suggest that C1QC+ RTMs may

promote antitumor immunity in CRC patients receiving ICI
treatment by enhancing their interaction with CD4+ T cells
through upregulation of MHC-II molecule expression.

Paired spatial resolved proteomics analysis confirms the
strong APC function of C1QC+ RTMs in immunotherapy
To enhance our comprehension of the spatial diversity and
possible roles of the proteome in MSI/MSS_R and NR CRC tissues,
we have devised a method that integrates manual tissue
microdissection by increasing the spatial resolution through tissue
expansion with bottom-up mass spectrometry (MS)-based pro-
teomic analysis43. This technique involves sequentially slicing
tissue samples and conducting both IMC and spatial proteomics
analysis to examine the molecular features within the ROIs of IMC
(Supplementary Fig. S20a). The tumor tissues were sequentially
sectioned, with adjacent pairs selected for processing. One section
was stained with hematoxylin and eosin (H&E) for ROI selection,
while the other was utilized for IMC analysis. The H&E-stained
sections were subsequently used for spatial proteomics investiga-
tions. Following H&E staining, tissue expansion was conducted,
and the chosen ROIs were subsequently expanded for dissection.

These dissected ROIs were then subjected to LC‒MS/MS analysis.
Through the integration of IMC and spatial proteomics methods,
we were able to elucidate molecular features. As the demo shown
in Supplementary Fig. S20a, we chose the exact same 50 ROIs
consistent with the IMC outputs in 25 samples. Microdissection
was performed via tissue expansion, which was executed after the
tissue stained with H&E and embedded in a hydrogel. Next,
peptide extraction and analysis was performed using a timsTOF
Pro mass spectrometer in parallel accumulation-serial fragmenta-
tion combined with data-independent acquisition (diaPASEF)
mode. MS data quality control demonstrated robust reproduci-
bility in the coefficient of variation and Pearson correlation
analysis for global precursors and proteins (Supplementary Fig.
S20b, c). When examining pooled samples across different
batches, we observed high consistency with pooled samples
(Supplementary Fig. S20d, e). We have thus confirmed that
integrated IMC and spatial proteomics analysis provides detailed
protein information underlying the TME components.
The highly expressed proteins were determined within each

group, and subsequent GO analyses were performed to explore
the potential biological functions (Fig. 5a). The upregulated
proteins in the MSI_R group were associated with RNA splicing,
protein–RNA complex organization, and nuclear pore complex
assembly. Interestingly, we observed heightened activities of
negative regulation of antigen processing and presentation,
negative regulation of T cell proliferation, and positive regulation
of regulatory T cell differentiation in MSI_NR samples. Moreover,
the upregulated proteins in the MSS_R group were involved in
polysaccharide catabolic processes, antigen processing via MHC-II,
and hormone metabolism. Lastly, the biological processes of
MSS_NR are centered around chromosome segregation, nuclear
division, and the regulation of mitotic cytokinesis. Therefore, we
investigated the expression patterns and signaling pathways
differences in MSS_R/NR samples via GSEA. The MSS_R showed
enrichment of the APC and C1QC+ RTM signatures (Fig. 5b).
Furthermore, the genes whose expression was upregulated in
MSS_R samples were associated with pathways related to immune
process regulation pathways, whereas those whose expression
was downregulated were associated with pathways related to the
response to DNA damage stimulus and the cell cycle (Fig. 5c). The
unsupervised immunotherapy-related pathway enrichment analy-
sis highlighted the intratumoral heterogeneity observed among
CRC subgroups, including the MSS/MSI subgroups and immu-
notherapy R/NR subgroups (Fig. 5d). In general, samples from R
groups showed more enriched pathways related to inflamma-
somes, interferon gamma signaling, cancer immunotherapy by
PD-1 blockade, T cell receptor and co-stimulatory signaling, IL-12
signaling mediated by STAT4, and co-stimulation by the CD28
family. Signals emanating from inflammasomes, and T cell co-
stimulatory receptors are thought to influence the fate and
effector functions of CD8+ T cells44,45. The IL12/JAK2/STAT4
pathway is considered to significantly activate effector T cells46.

Fig. 4 scRNA-seq analysis indicates C1QC+ RTM-mediated immune activation via MHC class II signaling. a UMAP plot of broad cell types
from the Li et al. cohort. b UMAP plot of the macrophages showing transcriptionally distinct clusters. c UMAP plots showing the expression of
selected marker genes in macrophages. d–f The Resident tumor macrophage (RTM) score, M2 score and innate anti-PD-1 resistance (IPRES)
score in distinct cell clusters. The one-way ANOVA test was adopted to evaluate the statistical significance. g Abundance of each macrophage
cluster in the tissue of pCR and non-pCR groups was estimated via Ro/e analysis. h Cell cluster frequency shown as a fraction of total
macrophages in pCR and non-pCR group. i C1QC+ RTM score calculated by single sample gene set enrichment analysis (ssGSEA) method on
the basis of bulk transcriptome from pCR and non-pCR group. The Wilcoxon Rank-Sum Test was adopted to evaluate the statistical
significance. j GO analysis of C1QC+ RTMs and the other three macrophage clusters. k Violin plot showing the expression levels of MHC-II
molecules in C1QC+ RTMs and the other three macrophage clusters. l The outgoing and ingoing interaction strength of immune cells in pCR
and non-pCR group. The x-axis and y-axis scales differ between the pCR and non-pCR groups. m The number of pair–ligand interactions
between T cells and C1QC+ RTM in the pCR and non-pCR groups. n Differences in the MHC-II pathway interaction of various cell types. The
thicker the line, the stronger the connection. o Up-regulated and down-regulated receptor–ligand pairs that differ significantly between pCR
and non-pCR based on C1QC+ RTM and other cell clusters. Dot size indicates the P value, colored according to the communication probability
of pathways.
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Fig. 5 Paired spatial resolved proteomics confirm the antigen presenting role of C1QC+ RTMs in immunotherapy. a The potential
biological functions and relevant signaling pathways of MSS/MSI_R and NR CRC patients were evaluated by the GO analyses. The
hypergeometric test for over-representation was adopted to evaluate the statistical significance with multiple tests corrections. b Gene set
enrichment analysis (GSEA) enrichment for APC and C1QC+ RTMs in MSS_NR and MSS_R samples. NES, normalize enrichment score. The
Kolmogorov-Smirnov test was adopted to evaluate the statistical significance with multiple tests corrections. c Fast gene set enrichment
analysis (FGSEA) enrichment for top 10 upregulated pathways and top 10 downregulated pathways comparing MSS_NR and MSS_R according
to the hallmark gene sets. d Heatmap showing different immunotherapy-related pathways enriched in the integrated MSS/MSI_R and NR
groups by gene set variation analysis (GSVA) analysis, colored by z-score transformed mean GSVA scores. e Boxplot illustrating the C1QC+ RTM
scores, calculated using the C1QC+ RTM signature, in spatial proteomics analyses. The one-way ANOVA test was adopted to evaluate the
statistical significance. f Scatter plots showing Pearson’s correlation between C1QC+ RTM and MHC-I score, calculated using the C1QC+ RTM
signature and MHC-I signature, in spatial proteomics analyses. g, h Scatter plots depicting the Pearson’s correlation between C1QC+ RTM and
MHC-II scores, as determined through spatial proteomics analyses and further validated through bulk proteomics. The Pearson Coefficient
Test was adopted to evaluate the statistical significance.
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Moreover, the costimulatory receptor CD28 is essential for
adaptive immunity against malignant tumor47. We subsequently
evaluated the C1QC+ RTM score in the four groups of CRC
patients. The C1QC+ RTM score significantly differed among the
groups (P= 0.028), with the highest score observed in the MSI_R
and the lowest in the MSS_NR (Fig. 5e). To further assess the
functionality of C1QC+ RTMs, we calculated the Pearson correla-
tion coefficient between the C1QC+ RTM score and the MHC I/II
score (the gene set is shown in Supplementary Table S7). Our
analysis revealed a positive but moderate correlation between the
C1QC+ RTM score and MHC I expression (Pearson correlation
coefficient (R)= 0.35) (Fig. 5f). In contrast, there was a notably
stronger positive correlation between the C1QC+ RTM score and
MHC II expression (R= 0.54) (Fig. 5g), which was further confirmed
in an additional in-house set48 of 114 bulk proteomics samples
(R= 0.46) (Fig. 5h).
Overall, our findings underscore the distinct abundance of

C1QC+ RTM across the four groups through spatial proteomics
analysis, which corroborates the data obtained from IMC analysis.
Furthermore, the new proteomics analysis provides compelling
evidence supporting a correlation between increased APC
activities mediated by MHC II and the abundance of C1QC+ RTMs.
This finding further strengthens and validates the results obtained
from the scRNA-seq and IMC analyses.

CRISPR-Cas9-mediated genome-wide knockout screen
identifies regulators and pathways involved in modulating
the antigen presentation function of C1QC+ RTMs
To identify the genes and pathways involved in the antigen
presentation function of C1QC+ RTMs, we performed a CRISPR-
Cas9-mediated genome-wide knockout screen using the Brunello
library, which comprises 76,441 single guide RNAs (sgRNAs)
targeting 19,114 genes (Fig. 6a). We first generated THP-1 cell lines
that constitutively expressed Cas9. Next, the cells were subjected
to transduction with lentivirus containing the Brunello library at a
multiplicity of infection (MOI) of 0.3 to ensure that the cells were
individually infected. Two days after transduction, we started
selection with puromycin for 5–6 days to isolate infected cells and
to reach 400-fold coverage. The cells were then differentiated into
M0 macrophages following PMA priming and further polarized
with IFNγ + LPS. At the endpoint, two distinct groups of
macrophages with high C1QC expression, C1QChighMHC-IIhigh

macrophages and C1QChighMHC-IIlow macrophages, were har-
vested for next-generation sequencing (NGS) to identify enriched
sgRNAs and corresponding mutant genes. Biological replicates
across all three cell clusters demonstrated high sequencing quality
on the basis of cumulative distribution function plots (Fig. 6b).
Deep sequencing revealed notable gene hits, including RBP7, UST,
OPRL1, HOXD1 and other genes in the C1QChighMHC-IIlow

macrophage populations, and ESRRA, MEX3D, ASF1B, DPH1,
MAGEB2, ACTR3B and other genes in the C1QChighMHC-IIhigh

macrophage populations (Fig. 6c). GO analysis of these hits from
both C1QChighMHC-IIhigh and C1QChighMHC-IIlow macrophage
populations revealed significant enrichment in terms related to
antigen-presentation capacity (APC) and macrophage activity,
such as complement activation, the regulation of phagocytosis,
peptide antigen assembly with the MHC protein complex, and
antigen receptor-mediated signaling pathways (Fig. 6d). These
findings validate the robustness of our CRISPR-Cas9-mediated
genome-wide knockout screening. Subsequent Kyoto Encyclope-
dia of Genes and Genomes (KEGG) and network analyses
elucidated the pathway networks involved in APC regulation in
C1QC+ macrophages. The results showed that, following genome-
wide knockout, lysosome pathways, the cAMP signaling pathway,
the Hippo signaling pathway, MAPK signaling pathways, and
endocytosis were involved in MHC-IIlow macrophage populations
(Fig. 6e). In contrast, the Notch signaling pathway, endocytosis
pathway, the JAK-STAT signaling pathway, and the estrogen

signaling pathway were associated with MHC-IIhigh macrophage
populations after genome-wide knockout (Fig. 6f). Hence, the
pathways identified in our screen were potentially involved in
regulating APC function in C1QC+ macrophage populations.
Notably, ESRRA, an orphan nuclear receptor implicated in cancer
progression and resistance to immunotherapy, was identified as a
key hit49,50. Previous studies by Sahu et al. have shown that ESRRA
inhibitor can stimulate cytokine secretion, induce proinflammatory
macrophage polarization, and enhance antigen-presentation,
thereby recruiting T cells into tumors50. To validate our genome-
wide screening results, we specifically knocked out ESRRA in THP-1
cells and subjected them to M1 polarization with IFNγ + LPS.
Compared with the vector control and pHK14-Cas9 groups, the
ESRRA KO cells exhibited significantly higher MHC-II expression
(Fig. 6g, h). Collectively, the whole genome screening identifies
critical genes and pathways involved in regulating APC function in
C1QC+ macrophages.

Spatial transcriptomics reveals the colocalization between
C1QC+ RTMs and CD4+ T cells in the CRC TME of responders
Owing to the limitations of IMC, the investigation of the
relationship between C1QC+ RTMs and CD4+ T cells was restricted
to a small spatial area. Nevertheless, we aimed to examine the
interaction between C1QC+ RTMs and CD4+ T cells at the broader
histological level of CRC. To achieve this, we performed spatial
transcriptomic analysis on 9 CRC samples from an independent in-
house cohort. CRC tissues were obtained before the initiation of
immunotherapy, and patients were stratified based on their
treatment response post-immunotherapy (MSS_NR, n= 2; MSS_R,
n= 2; MSI_NR, n= 3; MSI_R, n= 2). The spatial expression
patterns of key lineage markers in each sample are shown in
Supplementary Fig. S21. Next, we integrated spatial transcriptomic
data with scRNA-seq data using the deconvolution method, robust
cell type decomposition (RCTD)51, to quantify the proportions of
different cell types within each spot. Based on the spot-cell type
composition matrix, unsupervised clustering was performed to
identify the cellular niches within each sample (Fig. 7a). We
delineated the cellular composition of these niches across
different samples (Supplementary Fig. S22), representing potential
structural building blocks among tissue samples. Additionally, to
uncover the spatial distribution patterns of TME cells in different
regions, we analyzed the intensity of various TME cell types both
inside and outside the tumor region (Supplementary Fig. S23),
with tumor boundaries defined by expert pathologists.
To further explore the spatial dynamics of cellular interactions in

CRC, we applied the MISTy algorithm52 to assess whether the
abundance of major cell types in individual transcriptomic spots
could be predicted based on their spatial context, defined by the
composition of neighboring cell types. Specifically, we assessed
the importance of cell type abundance within a single spot
(colocalization) in the tumor region. Our analysis revealed that, in
both MSS and MSI CRC samples, responders exhibited a higher
abundance of C1QC+ RTMs in the vicinity of CD4+ T cells
compared to non-responders (Fig. 7b). Additionally, we observed
that C1QC+ RTMs in non-responders were frequently surrounded
by fibroblasts (Fig. 7b), suggesting a potential physical barrier role
of fibroblasts in regulating the spatial distribution of C1QC+ RTMs.
Furthermore, gene signature scoring (with gene lists provided in
Supplementary Tables S4, S8) confirmed the colocalization of
C1QC+ RTMs and CD4+ T cells in the tumor regions of responders,
with overlapping increased scores and enhanced APC activity. In
contrast, in non-responders, high C1QC+ RTM scores showed less
pronounced overlap with high CD4+ T cell scores but correlated
with elevated CAF scores (Fig. 7c, d; Supplementary Fig. S24).
Subsequently, to validate the colocalization of C1QC+ RTMs and

CD4+ T cells, we analyzed publicly available spatial transcriptomic
data from 7 CRC specimens12,53,54. Dimensionality reduction
clustering based on the spot-gene expression matrix, combined
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with gene set scoring analysis (with gene lists provided in
Supplementary Tables S4 and S8), revealed the colocalization of
C1QC+ RTMs and CD4+ T cells across all samples (Supplementary
Fig. S25a–n). More importantly, KEGG pathway enrichment
analysis revealed that clusters enriched with C1QC+ RTMs and

CD4+ T cells were significantly associated with antigen presenta-
tion and processing, phagosomes, and helper T cell differentiation,
in contrast to other clusters (Supplementary Fig. S25o). We further
spatially focused on the MHC-II signaling pathway network that
mediates antigen presentation using CellChat55. Our analysis
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identified a substantial MHC-II signaling network in regions
enriched with C1QC+ RTMs and CD4+ T cells, primarily driven by
the HLA-DR family (Supplementary Fig. S25p). In addition, C1QC+

RTMs and CD4+ T cells in the tumor region interacted more
significantly through the MHC-II signaling pathway than those in
the normal region did (Slice2 and Slice3 in Supplementary Fig.
S25p), indicating the enhanced APC of C1QC+ RTMs in the tumor
region. These findings highlight the close spatial proximity of
C1QC+ RTMs and CD4+ T cells in CRC tumors and suggest that
their interaction, mediated by HLA-DR, may contribute to the
establishment of an active TME.
In conclusion, the spatial transcriptome analysis further

substantiated the findings obtained through IMC and spatial
proteomics, confirming the close spatial relationship between
C1QC+ RTMs and CD4+ T cells within CRC tumors. This association
was more clearly observed in CRC tissues from immunotherapy-
responsive patients regardless of microsatellite status. Notably,
compared with R group tissues, NR group tissues were signifi-
cantly enriched in fibroblasts that colocalized with C1QC+ RTMs.
Therefore, we hypothesized that fibroblasts have the potential to
impede the APC of C1QC+ RTMs–CD4+ T cell pairs.

Detection of whole slide imaging location of CD4+ T cells and
C1QC+ RTMs by multiplex immunofluorescence (mIF) staining
To evaluate the potential spatial interaction of CD4+ T cells and
C1QC+ RTMs at the whole slide imaging (WSI) level, mIF staining
was used to detect the spatial patterns of CD68, C1QC, HLA-DR,
CD4 and αSMA. The co-localization of CD4+ T cells with
C1QC+CD68+ cells was assessed by staining for CD4, C1QC, and
CD68, and DAPI (Supplementary Fig. S26a). Spatial analysis with
HALOTM system was applied to measure the distance between
C1QC+CD68+ cells and the nearest CD4+ T cells (Supplementary
Fig. S26b). The results revealed that in the R groups, the
proportion of co-localization (defined as a distance of less than
50 μm between C1QC+CD68+ cells and CD4+ T cells) was greater
compared to the NR groups, confirming our data from IMC and
spatial transcriptome analysis (Supplementary Fig. S26b, c).

Pan-cancer survival analyses and immunotherapy response
prediction according to the infiltration density of C1QC+ RTMs
Given our recognition of the pivotal role of C1QC+ RTMs in anti-
tumor immune response, we next sought to evaluate the
prognostic value of C1QC+ RTMs in cancer immunotherapy. We
obtained 18 microarray datasets obtained from the Gene
Expression Omnibus (GEO) database of 898 immunotherapy-
treated cancer patients, including non-small cell lung cancer
(NSCLC), skin cutaneous melanoma (SKCM), breast cancer (BRCA),
esophageal cancer (ESCA), urothelial carcinoma (UC), renal cell
carcinoma (RCC), and stomach adenocarcinoma (STAD) (Supple-
mentary Table S9). Additionally, the difference in the abundance
of C1QC+ RTMs between R and NR in each dataset was further
evaluated using the gene signature determined in the scRNA-seq
analysis. In general, the C1QC+ RTM abundance could be used to
distinguish the R and NR groups in each dataset (Supplementary
Fig. S27a). Meta-analysis further revealed that C1QC+ RTM
infiltration was positively correlated with immunotherapy

responsiveness in 14/18 independent datasets, including all
NSCLC, RCC, STAD and GBM datasets and partial SKCM datasets
(Supplementary Fig. S27b). The hazard ratio of C1QC+ RTMs in
predicting R vs NR in all tumors was found to be 1.69 in both the
common effect model and the random effects model. We
subsequently conducted survival analysis across 7 datasets and
found that greater infiltration of C1QC+ RTMs tended to be
associated with longer survival (Supplementary Fig. S27c). The
hazard ratios of C1QC+ RTMs contributing to impaired survival
versus prolonged survival were 0.70 and 0.72 in the common
effect model and random effects model, respectively. Collectively,
we found that C1QC+ RTMs accumulate in immunotherapy
responsive cancer tumor tissue samples and contribute to
prolonged survival, which suggest its potential role as an effective
prognostic marker in cancer immunotherapy.

DISCUSSION
Immunotherapy for mCRC has been disappointing, with only the
MSI-H subtype demonstrating promising benefits. However,
approximately 50% of MSI-H mCRC patients still exhibit primary
resistance to immunotherapy16. In MSS mCRC, tumor regression
has been observed in only 5%–20% of patients following
combination immunotherapy15,56. We hypothesize that there
may be commonalities between MSI-H resistant patients and
MSS immunoinsensitive patients. Therefore, we designed this
study to uncover the spatial microenvironment ecosystem in both
immunotherapy-responding and non-responding MSS/MSI-H
patients to identify spatial features associated with immunother-
apy benefit.
The TME has been proven to play a role in the efficacy of

immunotherapy in various tumor types. The TME of CRC has been
extensively investigated in previous studies31,34,57. For instance,
Huang et al. revealed that TAMs and granulocytic myeloid-derived
suppressor cells may hinder immunotherapeutic efficacy by
increasing the expression of immunoreceptor tyrosine-based
inhibitory motif-bearing receptors, especially SIRPA58. Bahar et al.
reported that the close proximity of PD-L1+ macrophages and
PD1+ T cells is a potential predictive biomarker for the
effectiveness of PD-1 blockade in MSI CRC59. Spatial topology
information is typically lost during scRNA-seq analysis, but recent
studies have employed spatial techniques to obtain the spatial
information on the CRC TME13,60. A pivotal study by Bortolomeazzi
et al. used IMC and mIF to analyze samples from MSI-H CRC
patients included in the KEYNOTE-177 trial to investigate their
response to immunotherapy. Their findings revealed that PD-
L1+CD74+ macrophages were consistently the only immune cell
subset associated with a durable response in CRC patients who
benefited from immunotherapy61. These macrophages express
PD-L1 and are closely situated to PD-1+CD8+ T cells, suggesting
that the interaction between PD-1 and PD-L1 on these cells might
impede CD8+ T cell activity62. However, the mechanism under-
lying the effectiveness of immunotherapy in some MSS patients is
still poorly understood. In this study, we employed various
techniques, including IMC, spatial proteomics, spatial transcrip-
tome, scRNA-seq, bulk RNA-seq, and bulk proteomics, to

Fig. 6 Whole genome screening detecting the potential related pathways involved in regulating APC in C1QC+ RTMs. a Schematic
representation of the workflow for the genome-wide CRISPR/Cas9 screen. b Cumulative distribution function (CDF) of biological replicates of 5
representative samples of M0, MHClow, and MHChigh cells. CPM, counts per million. n= 5 in each group. c Top hit genes of MHClow and
MHChigh cells. The P value was corrected by Benjamini-Hochberg test. d Gene ontology (GO) term analysis of MHClow and MHChigh cells.
e, f KEGG gene interaction network of the hit genes in MHClow and MHChigh cells. Subnetworks (Neighborhoods) are colored and annotated
with enriched functional categories. Gray lines, connections within a neighborhood; red lines, connections between neighborhoods.
g, h Representative flow cytometric plot and quantification of MHC-II expression levels in ESRRA-KO THP-1 cells during macrophage
polarization. Vector control and THP-1-Cas9 were used as control for comparison. Vector control indicates THP-1 cells infected with lentivirus
carrying an empty plasmid lacking gRNA. gMFI, geometric mean fluorescence intensity. P values in h were determined using one-way ANOVA.
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Fig. 7 Differences in the co-localization of C1QC+ RTMs and CD4+ T cells between R and NR CRC patients revealed by spatial
transcriptomics. a Schematic diagram of niche computation, H&E staining of each sample, and the spatial map of niches. The white dashed
line in the H&E section separated the para tumor from the tumor, and the black dashed line separated the tumor from the necrotic region.
b Co-localization analysis using the MISTy algorithm. Median importance of cell-type abundance in predicting the abundances of other cell
types within a spot for MSI_R (top left), MSI_NR (top right), MSS_R (bottom left), and MSS_NR (bottom right). c Spatial feature plots showing
signature scores for MSI_R, MSI_NR, MSS_R, and MSS_NR samples. d Violin plots illustrating the gene set scoring results for each niche in the
MSI_R_1 sample.
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comprehensively investigate the spatial topology of the TME
landscape in patients with MSI/MSS who are responsive and non-
responsive to immunotherapy at the single-cell level.
TAMs often act as immunosuppressive agents by secreting

tumor-promoting factors and interacting with other cells, such as
fibroblasts and tumor cells, within the TME. M1-phenotype
macrophages are MHC-II-positive cells that are more active in
initiating and promoting the immune response in tumors. The loss
of the M1 phenotype of macrophages in the TME may lead to a
loss of MHC-II molecules, impairing the anti-tumor capacity. RTM is
a type of macrophage that gain increasing insights into TME of
tumors. The RTMs play a vital role in maintaining tissue structure
and integrity, both in normal and tumor tissues, owing to their
high self-renewal capacity63. These cells are closely involved in
regulating immunity, maintaining homeostasis, and promoting
fibrosis within the TME. They have been reported to express
specific markers such as C1QC, FOLR2, and MHC-II class
molecules37,64. Recent studies have made the C1QC+ RTM a
controversial prognostic biomarker and acts as a contradictory
player in anti-tumor immunity. For instance, it has been reported
that the high number of C1QC+ RTMs in RCC tumor is associated
with higher postsurgical recurrence65. Zhang et al. also verified the
negative association between survival time and the abundance of
C1QC+ RTMs in hepatocellular carcinoma66. However, RTMs in
triple-negative breast cancer have been proven to be positively
correlated with T cell infiltration and favorable prognosis37.
Importantly, C1QC+ TAMs in CRC are considered to interact with
T cells and promote their recruitment and activation, resulting in
prolonged survival11.
C1QC+ macrophages can be identified in the colon mucosa of

ulcerative colitis and healthy individuals67, suggesting the resident
phenotypes in the CRC TME. According to a study by Zhang et al.
11, C1QC+ macrophages are associated with complement activa-
tion as well as enriched antigen processing and presentation
pathways. CSF1R blockade may selectively deplete C1QC+

macrophages. The elimination of C1QC+ macrophages featured
with high APC capacity could potentially serve as an unrecognized
mechanism of resistance against non-specific macrophage deple-
tion caused by anti-CSF1R therapy11. However, importantly, the
results obtained were derived from the scRNA-seq data from
treatment-naïve CRC patients, and lack spatial information and
real-world treatment-related data. Consistent with the findings of
this study, our data also suggest that the C1QC+ RTMs promoted
immune response via the regulation of MHC-II molecules which
mediate antigen presentation. We found that higher C1QC+ RTM
abundance was positively correlated with immunotherapy
response and resulted in prolonged survival. Our analyses also
revealed that, in responders, C1QC+ RTMs colocalize and interact
with CD4+ T cells through the high expression of MHC-II
molecules. Moreover, IMC analysis demonstrated that CD4+

T cells in closer proximity to C1QC+ RTMs significantly upregulated
activation markers (CD38, CD57, GZMB, TNFα, and PD-1)
compared to their distal counterparts, and these cells were more
abundant in responders. CD4+ T cells play a central, multifaceted
role in coordinating immune responses and are an essential
component of the immune system that cannot be overlooked.
Depending on the cytokine environment, TCR stimulation, and
functional state of the APC, CD4+ T cells can differentiate into
various conventional subsets, including helper T cells (Th) 1, Th17
and follicular helper T cells (Tfh)68. These subsets could activate
and regulate other immune cells, thereby participating in host
anti-tumor immunity by directly or indirectly influencing antigen
presentation, co-stimulation signaling, and CD8+ T/NK cell
activation and cytotoxicity68–71. Therefore, CD4+ T cells play an
indispensable role in orchestrating precise anti-tumor immune
responses. Our study demonstrates that C1QC+ RTMs may
promote CD4+ T cell activation through MHC-II molecules, thereby
enhancing anti-tumor immunity and benefiting immunotherapy.

Furthermore, in this study, IMC analysis revealed that non-
responders exhibited a higher abundance of fibroblasts compared
to responders, prompting us to further investigate the role of
fibroblasts in modulating immunotherapy response. Using a
ResNet18 deep learning model, we further demonstrated that
fibroblasts are a critical determinant of immunotherapy outcomes.
In addition, inspired by a recent study72, we developed a fibroblast
barrier score based on IMC data to directly assess the barrier effect
of CAFs on the interaction between C1QC+ RTMs and CD4+ T cells.
The results showed that, regardless of microsatellite status, non-
responders exhibited a higher fibroblast barrier score. Moreover,
colocalization analysis of spatial transcriptomic data further
demonstrated that in both MSS and MSI CRC samples, C1QC+ RTMs
were frequently surrounded by fibroblasts in non-responders. These
findings provide evidence that the physical obstruction imposed by
fibroblasts on the interaction between C1QC+ RTMs and CD4+

T cells represents a key feature contributing to impaired
immunotherapy response. Fibroblasts play a pivotal role in shaping
the TME and modulating immune infiltration. Broz et al. revealed
that fibroblasts can impede cytotoxic T-cell infiltration into the
tumor parenchyma via the expression of CXCL1673. And Liu et al.
reported that SPP1+ macrophages and fibroblasts combine to form
a tumor immune barrier in HCC, thereby limiting immune infiltration
into the tumor core74. On the basis of these observations, we
speculate that fibroblasts may act as a barrier, hindering the anti-
tumor immune capacity of C1QC+RTM/CD4+ T cell pairs.
Regorafenib can modify the TME in multiple ways, distinguish-

ing it from other tyrosine kinase inhibitors. Studies have
demonstrated that regorafenib not only inhibits the interaction
between tumor cells and fibroblasts but also decreases tumor
angiogenesis and lymphangiogenesis75. This dual action results in
reduced invasion and metastasis of colon cancer. Our findings
indicate that fibroblasts impede the anti-tumor immune response
mediated by C1QC+ RTMs and CD4+ T cell pairs. Therefore, our
study elucidated the potential mechanism of enhanced treatment
efficacy of regorafenib in combination with ICIs in MSS mCRC.
However, regorafenib also diminishes the population of macro-
phages in a dose-dependent manner by inhibiting CSF1R76, which
may decrease the presence of C1QC+ RTMs, thereby limiting the
utility of regorafenib. Hence, a more precise approach would
involve utilizing therapeutics that specifically target fibroblasts77

or pro-tumorigenic TAMs in CRC treatment.
Our study has several limitations that should be acknowledged.

First, the sample size may constrain the generalizability of our
findings. Second, the selection of IMC ROIs to represent the TME of
each patient limits our ability to fully capture intratumoral spatial
heterogeneity. Third, although we employed L2 regularization and
5-fold cross-validation to mitigate overfitting, the small cohort size
may still result in the ResNet18 deep learning model capturing
noise rather than meaningful biological relationships. Future
studies with larger sample sizes are needed to validate and
extend these findings. Additionally, while our multi-omics
approach provides robust evidence of co-localization and inferred
interactions between C1QC⁺ RTMs and CD4⁺ T cells—particularly
those mediated by HLA-DR molecules—it does not directly
establish functional validation. Experimental validation of these
interactions remains challenging due to the inherent complexity
of reconstituting a functional MHC-II complex in humanized
monocytic cell lines and primary human-derived cells.
In conclusion, through conducting spatial multi-omics analysis

and implementing deep learning techniques, we have successfully
created a spatial immune atlas that pertains to CRC patients
undergoing immunotherapy in real-world settings. This atlas
precisely maps the multicellular ecosystem of ICIs-treated MSS/
MSI CRC, revealing the involvement of C1QC+ RTMs in driving the
immunotherapy response through enhanced MHC-II expression
and interactions with CD4+ T cells. Our study has uncovered the
importance of spatial organization and cell‒cell interactions in
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antitumor immunity (Fig. 8). These findings not only provide crucial
insights into predicting the response to ICIs in CRC but also lay the
foundation for future pan-cancer studies in a universal manner.

MATERIALS AND METHODS
Ethics Statement
The study followed the Declaration of Helsinki principles and was
approved by the Medical Ethics Committee of the First Affiliated Hospital,
Zhejiang University, Hangzhou, China (Approval Number: 2023-1008-EXP).

Patient cohort
This study comprised a total of six cohorts, including three in-house
cohorts and three external cohorts.

Cohort 1 (in-house)
Cohort 1 was the primary cohort that underwent IMC and paired spatial
proteomics analyses. The cohort consisted of 25 mCRC patients who
underwent immunotherapy at the First Affiliated Hospital of Zhejiang
University. Samples of CRC tissues were collected from all patients prior to
immunotherapy, and treatment responses were assessed following
immunotherapy to guide patient stratification (MSS_NR, n= 8; MSS_R,
n= 8; MSI_NR, n= 4; MSI_R, n= 5). The baseline characteristics of the
enrolled mCRC patients are summarized in Supplementary Table S1. The
inclusion criterion for patients was pathologically confirmed stage IV CRC,
with definitive MSS/MSI results tested by PCR or NGS. MSI patients received
immunotherapy as first-line treatment, while MSS patients received a
combination of regorafenib and immunotherapy as third-line treatment.
The main exclusion criteria were patients with insufficient tissue samples or
substandard quality control for further testing. For IMC and spatial
proteomics analyses, two ROIs were collected from each patient, resulting
in a total of 50 ROIs for each analytical platform.

Cohort 2 (in-house)
Cohort 2 was an independent mCRC patient cohort that underwent spatial
transcriptome analysis. CRC tissues were obtained before immunotherapy
initiation, and patients were stratified based on their treatment responses
evaluated after immunotherapy (MSS_NR, n= 2; MSS_R, n= 2; MSI_NR,
n= 3; MSI_R, n= 2). The inclusion and exclusion criteria were consistent
with those of Cohort 1.

Cohort 3 (External)
Cohort 3 consisted of a publicly available cohort of patients who received
neoadjuvant therapy31. ScRNA-seq was conducted on 27 MSI CRC tissue
samples (22 pCR and 5 non-pCR) obtained from 19 patients.

Cohort 4 (External)
In Cohort 4, a publicly available cohort41, RNA-seq was performed on MSI
CRC tissue samples collected from 31 patients (24 pCR and 7 non-pCR).

Cohort 5 (integrated external)
This cohort consists of seven publicly available spatial transcriptomics
datasets derived from CRC tissues. The data required for analysis are
accessible from the 10X Genomics website (https://www.10xgenomics.com/
resources/datasets) as well as previously published studies12,53,54.

Cohort 6 (in-house)
Cohort 6 included bulk proteomics data from 114 CRC patients reported in
our previous study34. All patients were treatment-naive.

ROI selection criteria for IMC and spatial proteomics
In both IMC and spatial proteomics analyses, two ROIs were selected from
each patient, resulting in a total of 50 ROIs analyzed per platform. The ROI
had an area of 1 mm² and a thickness of 4 μm. Two consecutive tissue
sections were obtained for each ROI. One section was H&E stained to guide
ROI selection. The other section was used for IMC analysis, a technique that
ablates tissue during data acquisition. Following ROI selection, the H&E-
stained section was also used for spatial proteomics analysis with an
expansion-gel-based approach. This method ensured that protein-level
data corresponded precisely to the IMC-analyzed regions, ensuring that
the results from both techniques were directly comparable and minimizing
variability caused by tumor heterogeneity.
The ROIs were selected by an experienced pathologist following a

standardized protocol to ensure consistency across samples. All ROIs were
chosen from tumor regions near the invasive margin, as these areas are
known to be rich in immune cells and provide a representative snapshot of
the tumor–immune interface. This approach allows us to analyze the
dynamic interactions between enriched immune cells, which are critical for
understanding immunotherapy response.

IMC acquisition and data analysis
FFPE tissue sections were cut into two sequential 4-μm sections and heated
at 68 °C for 1 h. The first section was subjected to H&E staining, and two ROIs
measuring 1 mm2 were identified by an experienced pathologist using the
same criteria. The second section was subjected to antigen retrieval via a
citric acid solution, followed by washing with ddH2O and PBS. SuperBlockTM

blocking buffer was added to the tissue and incubated for 30min at room
temperature. Since lymph nodes are rich in immune cells, they provide an
ideal reference for validating antibody staining and ensuring the robustness
of the experimental protocol. We used normal, non-metastatic lymph node
tissue from patients independent of the IMC cohort as a positive control to
evaluate the staining performance of the IMC panel. After confirming the

Fig. 8 Heterogeneous TME of immunotherapy responder and non-responder CRC patients and the working model for ResNet18-based
deep learning. Immunotherapy-sensitive CRC presents higher infiltration of C1QC+ RTM and CD4+ T cell pair and lower fibroblasts than
immunotherapy-resistant CRC. ResNet18-based deep learning further effectively dissects the detailed spatial topology of the CRC TME and
highlights the vital role of C1QC.
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staining quality, the same IMC staining protocol was applied to CRC tissues. A
50 μL antibody mixture was added to each tissue and incubated overnight at
4 °C. The samples were then stained with Iridium solution and dried before
being stored at 4 °C for detection by the Hyperion Imaging System. The data
analysis included spillover signal compensation, image denoising, image
contrast enhancement, and cell segmentation based on a previous study78.
The image channel was segmented into individual cells and components via
connection-sensing segmentation. The regionprops function in MATLAB was
utilized to identify connected components for cell segmentation. Artifacts in
other membrane channels were eliminated if their distance to the nearest
nuclei centroid exceeded 15 pixels. Marker expression was normalized, and
batch effects were corrected via the “Harmony” package. Cell clustering was
performed via the “Rphenograph” package with 100 nearest neighbors, and
the resulting cluster means were visualized using heatmaps. The “imcRtools”
package was employed for downstream analysis. To determine the CN of
each cell, the 20 nearest neighboring cells were identified based on
Euclidean distance. To identify the optimal number of CNs, we systematically
tested different values of k (the number of clusters) and evaluated their
impact on the clustering results. Specifically, we tested k= 5, 10, 15, and 20,
ultimately selecting k= 15, as it provided the best balance between
granularity and biological interpretability. A logistic regression model based
on cell frequency (cell count/total nuclei count) was used to evaluate the
association between cell abundance and immunotherapy response,
implemented via the “glm” function in the “stats” package in R, as previously
described by Wang et al. 79 The use of cell frequency allows for biologically
meaningful interpretation of immune cell infiltration patterns and ensures
methodological consistency with Ro/e analysis, MiloR differential abundance
testing, and odds ratio calculations.

The definition of RTMs
RTMs are defined by a set of characteristic markers, including C1QC, C1QA,
CD163, FOLR2, and APOE as supported by previous literature80–82. In the
IMC data, due to the limited number of antibodies available in the panel,
we primarily used C1QC to define RTMs. C1QC+ RTMs exhibited high
expression of C1QC and CD163, while CD163−C1QCmedian RTMs display
moderate expression of C1QC, both of which were defined as resident
tissue phenotypes. In scRNA-seq, C1QC+ RTMs highly expressed C1QC,
C1QA, CD163, and FOLR2, further indicating the tissue-resident character-
istics of this subset. SPP1+C1QCmedian RTMs (which share a similar
phenotype with CD163−C1QCmedian RTMs identified in IMC) exhibited
high expression of APOE and moderate expression of C1QC, thus also
classified as RTMs.

t-SNE visualization
t-SNE was used to embed each category (MSS_NR/MSS _R/MSI_NR/MSI_R)
in a 2D plot. We defined a label array “labels” where each category has a
corresponding numerical identifier. Then, we used sklearn.manifold.TSNE
to reduce the dimensionality of the high-dimensional feature vector
all_sample_vec to a two-dimensional space, resulting in features_em-
bedded. Finally, we plotted the reduced data features_embedded and
assigned a different color for each category.

Hierarchical clustering dendrogram
A dendrogram displaying the hierarchical clustering results of the feature
vectors was created on the basis of the feature vector array all_sample_-
vec. We performed hierarchical clustering analysis on all_sample_vec using
the scipy.cluster.hierarchy.linkage function with the Ward’s method to
calculate the distance between clusters. The Ward’s method aims to
minimize the total sum of squared errors within clusters, where the sum of
squared errors within a cluster refers to the sum of the squared distances
of all samples to the cluster center. The linkage function returns a matrix Z
that contains information about all the clustering steps. We passed the
matrix Z to the scipy.cluster.hierarchy.dendrogram function to plot the
dendrogram of the hierarchical clustering.

Tissue distribution of clusters
For each cell subtype, we evaluated its distribution pattern across the four
groups through the calculation of the Ro/e as previously
described26,32,83–85. Specifically, Ro/e is the ratio of the observed cell
number to the expected cell number of a given combination of cell
subtype and tissue. We used the “calTissueDist” function from the Startrac
package to obtain the observed and expected cell numbers, using cell
frequency as the input data. Briefly, a cell subtype was more frequently

observed in a specific tissue than random expectations when Ro/e > 1 and
was therefore assumed to be enriched in that group.

Calculation of sample similarity
In our study, we evaluate the similarity between samples by computing the
cosine similarity of their features. Specifically, we utilized data from 37
channels in each sample to train a classification model, denoted as M,
based on the ResNet18 architecture. During the training process, we
applied L2 regularization (with a weight decay parameter of 0.01) to all
fully connected layers except the output layer to avoid overfitting and
improve the model’s generalizability. Additionally, 5-fold cross-validation
was employed to assess the model’s performance across different subsets
of the data, ensuring its robustness and preventing overfitting by
evaluating on multiple data splits.
Subsequently, we employed model M to transform the 37 channels of

each sample into a 1D vector and calculated the cosine similarity between
the vectors derived from different samples. A cosine similarity value
approaching 1 indicates higher similarity between the two vectors,
whereas a value nearing -1 suggests lower similarity. This process enables
us to quantitatively assess the resemblance between samples based on
their feature representations utilizing our classification model. The cosine
similarity is calculated as follows:

cosð~a�~bÞ ¼ ~a�~b
~aj j ~b
�
�
�

�
�
�

where the numerator is the inner product of two vectors and the
denominator is the product of the modules (lengths) of two vectors.

Calculation of channel importance
We employed Permutation Importance to conduct channel importance
analysis. Permutation Importance is a model-agnostic variable filtering
method that can be applied to any model without necessitating retraining.
Initially, an input variable (channel data) is randomly shuffled, and the
model is subsequently evaluated on the validation set to assess the impact
on model output. A decrease in model performance indicates the
variable’s significance in accurately predicting outcomes, with greater
decrements reflecting higher importance of the variable in the model’s
predictive capability.
Specifically, the initial step involves scrambling the data from channel x

in each sample, followed by inputting model M to achieve classification
results. By evaluating the disparity in classification accuracy pre- and post-
scrambling, the significance level of channel x is determined. To enhance
the reliability of our findings and minimize the impact of chance variation,
we conducted three independent random scrambles of each channel’s
data. 5-fold cross-validation was also employed to ensure that the
importance results remained stable across different data splits, thus
reducing the risk of overfitting to a single data subset.

Barrier score construction
The fibroblast barrier score was calculated using the method described in
Failmezger et al.’s study86. First, the nearest neighbor map of cell location
was constructed by connecting each cell with its five nearest neighbors. To
calculate the fibroblast barrier of CD4+ T cells relative to C1QC+ RTMs, we
used the Python “cuGraph” search shortest path algorithm to find the
shortest path for each CD4+ T cell to C1QC+ RTM. Fibroblasts were then
enumerated along each path. For CD4+ T cells of origin with multiple
C1QC+ RTMs at the same distance, the score was defined as the mean
number of fibroblasts along all paths. To limit the score to fibroblasts that
clustered at the edge of the C1QC+ RTMs, we counted only fibroblasts in
the vicinity of the C1QC+ RTMs. Barrier scores were calculated as the
average of all CD4+ T cells per image, with a barrier score of 1 (otherwise 0)
for CD4+ T cells isolated from fibroblasts adjacent to the nearest C1QC+

RTM, followed by an average score for all shortest paths for each CD4+ T
cell to the nearest C1QC+ RTM.

scRNA-seq and bulk RNA-seq data analysis
The scRNA-seq data was analyzed using the Seurat package in R software
with default parameters87. UMAP, implemented in R software, was used for
dimensional reduction. Highly expressed genes within each cluster were
identified using the Seurat package, with an adjusted P value threshold of
less than 0.05. Major clusters were identified using a clustering algorithm
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based on shared nearest neighbors (SNNs) and modularity optimization.
The “FindNeighbors” and “FindClusters” functions with default settings
were used. Further clustering analysis was conducted to identify subsets
within the major cell clusters. The Benjamin-Hochberg adjustment method
was used to account for multiple tests. The “clusterProfiler” package was
used to perform GO analysis on the identified genes. The GSVA package in
R software was used to calculate the single-sample gene set enrichment
analysis (ssGSEA) score for each gene set88. The Fast GSEA (FGSEA) was
performed with the “fgsea” package. The “cellchat” package in R software
was used to explore ligands and target gene pairs involved in cell-cell
interactions89.

Spatial proteomics acquisition and data analysis
The workflow of spatial proteomics was similar to that of our previous
work43 with some modifications. The H&E stained sections from the IMC
were used for microscopic imaging and ROI confirmation. A new
continuous section was taken and incubated with a protein anchoring
solution. After incubation, the reaction was stopped with an anchor stop
solution. The tissue was air-dried in a fume hood and coated with a
gelation solution. It was then incubated overnight in a refrigerator. The
cover glass was placed on top and put into a vacuum drying oven at 37 °C
to form a hydrogel in an oxygen-free environment. Next, the cover glass
was removed, and a denaturation solution was added to the sample.
Physical denaturation treatment was performed using a sterilization pot.
The sample was washed three times with 1× PBS (pH 7.4). Coomassie
Brilliant Blue staining solution was applied, followed by quick washing with
1× PBS (pH 7.4). The sample was expanded to achieve the desired
expansion factor. The location of interest was selected, and the sample was
transferred to a tip device. Further steps included decolorization,
dehydration, reduction, alkylation, and overnight trypsin digestion,
followed by sequential extraction and recovery of peptides from low to
high organic phases. The samples were dried and redissolved using a mass
spectrometry buffer. The redissolved samples were subjected to a 60-min
linear LC gradient of diaPASEF mass spectrometry detection using timsTOF
Pro. Finally, DIA-NN (version 1.8.1) software90 was employed to search the
acquired mass spectrometry files in a self-built laboratory library and
obtain the final protein matrix for subsequent data analysis.

Genome scale CRIPSR screen in THP-1 cells
Cell culture. THP-1 cells (ATCC) were cultured in RPMI 1640 media + 10%
FBS (Sigma‒Aldrich) + 100 U Pen/Strep and maintained at 37 °C and 5%
CO2 in a humidified tissue culture incubator.

gRNA pool library production. Human CRISPR Brunello lentiviral pooled
library (Addgene, Plasmid #73138) consisting of 76,441 gRNAs was co-
transfected with packaging plasmids (psPAX2 and pMD2.G) into
HEK293T cells using LipoD 293T transfection reagent (Signagen,
#SL100668) following the manufacturer’s protocol. Twenty-four hours after
transfection the media was replaced. The virus supernatant was collected
at 48 and 72 h after transfection. The virus was concentrated using PEG
virus precipitation (Promega, #V3011). In brief, the collected supernatant
was pooled and spun down at 3000× g for 15 min to remove cell debris.
The supernatant was carefully collected, and 8mL of 40%
PEG8000 solution was added to 32mL of viral supernatant for a final
concentration of 8% PEG8000. After mixing well with vortexing the virus
supernatant was incubated overnight at 4 °C. The next day, the viral
supernatant was centrifuged at 3000× g for 30 min at 4 °C. The supernatant
was aspirated carefully to avoid disturbing the virus pellet which was then
resuspended in RPMI and stored at –80 °C. To determine the virus titer, 1 ×
106 THP1-Cas9 cells were plated per well of a 24-well plate. THP1-Cas9 cells
were transduced with different amounts of the aliquoted lentivirus in the
presence of 8 μg/mL of polybrene. Twenty-four hours following infection,
puromycin (2 μg/mL) was added. After 3 days of puromycin selection,
infected cells in each well were counted to determine the virus efficiency.

Screening. THP1-Cas9 cells were transduced with the Brun86ello library
lentivirus at an MOI of 0.3, and the cells were selected with puromycin
(2 μg/mL) prior to PMA priming and following polarization. All the
differentiation conditions involved the addition of PMA (Sigma-Aldrich)
to RPMI media with 10% FBS for 24 h to prime THP-1 monocytes into
macrophage-like cells. After washing off PMA, cells were rested in fresh
media for 24 h before exposure to polarizing cytokines (IFN-γ + LPS). For
M1 cells, the IFN-γ and LPS concentrations were maintained consistently
during the 48-h cytokine exposure.

Library preparation and sequencing. Genomic DNA was isolated using the
DNeasy Blood and Tissue Kit (Qiagen, #51192) following the manufac-
turer’s protocol. PCR was conducted using Q5 Hot Start High-Fidelity 2×
Master Mix, with an input gDNA amount of 15 μg for each sample. The
thermal cycling conditions included an initial denaturation step at 98 °C for
3 min followed by 28 cycles of amplification (10 s at 98 °C, 30 s at 60 °C, and
25 s at 72 °C) and a final extension step at 72 °C for 5 min. PCR amplification
of the gRNA cassette for Illumina sequencing of the gRNA representation
was done following the Broad protocol available online (https://
media.addgene.org/cms/filer_public/56/71/5671c68a-1463-4ec8-9db5-
761fae99265d/broadgpp-pdna-library-amplification.pdf). NGS Illumina
sequencing was done by the YCGA core to a depth of 200×.

Screen data analysis. Raw sequencing fastq data had adapter sequences
trimmed via Cutadapt v3.4191 using a 10% error rate and the following
sequences: forward, 5ʹ-tcttgtggaaaggacgaaacaccg; reverse, 5ʹ-gttttagagcta-
gaaatagcaagt. Trimmed sequences were then filtered to remove those with <
15 nt length. The remaining sequences were aligned to a reference, comprising
the CRISPR sgRNA-spacer sequences. Alignment was performed using Bowtie
v1.3.02 with the following settings: -v0, -m1 -best. The sgRNA counts for each
sample were processed and analyzed using SAMBA R package v1.3.0 (https://
github.com/Prenauer/SAMBA). Specifically, sgRNAs were filtered to include
those with > 10 counts across screened samples (non-control). A two-step data
analysis was performed, first with an sgRNA-level analysis by the edgeR R
package v3.38.43 pipeline with TMM-wsp size factors, feature-wise dispersion,
quasilikelihood (QL) generalized linear model fitting, and QL F tests. In the
second analysis step, sgRNA scores were aggregated into a gene score,
calculated as a weighted sum of the sgRNA log2 fold-changes (log2FC). Gene
level P values were assessed based on a null distribution of gene scores, which
were scored from randomly grouped sgRNAs of non-targeting controls. P
values were adjusted using the method by Benjamini and Hochberg. An
additional metric to assess gene enrichment was the number of sgRNA/gene
with a log2FC > the 90th percentile of the randomized null data log2FC,
representing a 10% FDR. Screen data were also analyzed with the commonly
used MAGeCK RRA algorithm for robust comparison92. We assessed the effects
of MHCIIhigh and MHCIIlow coefficients and verified that there was high gRNA
detection for all samples.

Flow cytometry. During the polarization of ESRRA-KO THP-1 and
corresponding control cells (THP-1-Cas9, Vector control) using IFN-γ + LPS,
induced cells were collected on days 1, 2 and 3 to access the dynamic
changes in MHC-II expression. Harvested cells from each group were
washed with pre-cooled FACS buffer (PBS containing 2% FBS) and the cell
pellets were resuspended for subsequent FcR blocking using truStain FcX
(BioLegend). Subsequently, staining antibodies were added at optimal
concentrations and incubated for 30min at 4 °C in the dark. The antibodies
used for flow cytometry were listed as follows: anti-human CD11b FITC
(ICRF44), anti-human CD80 BV421 (2D10) and anti-human HLA-DR, DP, and
DQ PE (Tü39). For live/dead discrimination, LIVE/DEAD Fixable NIR
commercial kit (Invitrogen) was employed. Prepared samples were run
on a BD FACSAria II flow cytometer (BD Biosciences). For intracellular
staining, the cells were fixed and permeabilized using the Intracellular
Fixation & Permeabilization Buffer Set (Invitrogen) according to the
manufacturer’s protocol. The following antibodies were used: rabbit anti-
human C1QC polyclonal antibody and FITC-conjugated goat-anti-rabbit
secondary antibody. For cell sorting, MHChigh and MHClowC1QC+ THP-1
cells were sorted with a BD FACSAria II flow cytometer (BD Biosciences) for
library readout. Data analysis and visualization were performed via FlowJo
software (v10.8.1).

Spatial transcriptomics acquisition and data analysis
Nine CRC FFPE tissues were cut into small pieces (4–5mm3) and fixed and
embedded in paraffin. The target area of the tissue was sliced using a Lycra
microtome following the 10× Genomics Protocol (CG000518, RevB). To
prepare the FFPE samples, dewaxing, H&E staining, and decrosslinking
steps were carried out according to the 10× Genomics Visium CytAssist
Spatial Gene Expression for FFPE instructions (CG000520, RevA). The probe
hybridization and library construction were performed following the
product description of the 10× Genomics Visium CytAssist Spatial Gene
Expression Reagent Kit (CG000495, Rev C). The constructed library was
sequenced using Illumina NovaSeq 6000 or BGI-T7, with a PE-150
sequencing method. The raw sequencing readings were quality-checked
with Space Ranger-2.0.0, followed by the generation of expression matrices
and spot location information. For the in-house cohort, the RCTD
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deconvolution method was applied to calculate the proportions of various
cell types in each spot. Based on the spot-cell type composition matrix, the
cellular niche of each tissue slice was identified. The MSITy algorithm was
used for co-localization analysis, which calculated the dependencies
between cell types within a spot. The gene set scoring was based on the
AddModuleScore algorithm. For the external cohort, the SCTransform
function in the Seurat (v4.0) was used to normalize the data. Dimensional
reduction and unsupervised clustering were implemented with indepen-
dent component analysis (dims = 1: 30). The clusters were annotated
according to the expression level of classical markers and the correspond-
ing slice morphology. Spatial communication analysis was performed with
the “CellChat (v2)” package55.

mIF staining
After deparaffinization of paraffin sections (4–5 μm), antigen repair was
performed in microwave (100% power for 5min, followed by 60% power for
15min). The sections were then blocked using blocking solution for 30min
at room temperature. The primary antibody was incubated for 1–2 h at room
temperature, followed by incubation with the appropriate secondary
antibody for 30min. The cells were incubated with TSA dye and DAPI
nuclear staining (TissueGnostics, Vienna, Austria) for 10min and then
washedwith PBS. This procedure was repeated for each antibody. The spatial
relationships between immune cells were evaluated using infiltration
analysis. The HALO™ system was used to visually compare location patterns
within the immune cells and measure cell-to-cell distances.

Statistical analysis
The statistical visualizations were created using PRISM (version 10.0.3) and
R (version 4.0.4). The univariate Cox test was utilized to compare the
survival outcomes.
The data were presented as mean values with standard error of the

mean (SEMs). A significance level of P < 0.05 or adjusted P < 0.05 was used
to determine statistical significance. The following symbols were used to
indicate the level of significance: *P < 0.05, **P < 0.01, ***P < 0.001, and
****P < 0.001.
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