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Spatial transcriptomic survey of human embryonic cerebral
cortex by single-cell RNA-seq analysis
Xiaoying Fan1,2, Ji Dong1,2, Suijuan Zhong3,4,5, Yuan Wei1,6, Qian Wu3,4,5, Liying Yan1,6, Jun Yong1,6, Le Sun3,4,5, Xiaoye Wang1,6,
Yangyu Zhao1,6, Wei Wang1,6, Jie Yan1,6, Xiaoqun Wang3,4,5,7, Jie Qiao 1,6,8,9 and Fuchou Tang 1,2,9

The cellular complexity of human brain development has been intensively investigated, although a regional characterization of the
entire human cerebral cortex based on single-cell transcriptome analysis has not been reported. Here, we performed RNA-seq on
over 4,000 individual cells from 22 brain regions of human mid-gestation embryos. We identified 29 cell sub-clusters, which showed
different proportions in each region and the pons showed especially high percentage of astrocytes. Embryonic neurons were not as
diverse as adult neurons, although they possessed important features of their destinies in adults. Neuron development was
unsynchronized in the cerebral cortex, as dorsal regions appeared to be more mature than ventral regions at this stage. Region-
specific genes were comprehensively identified in each neuronal sub-cluster, and a large proportion of these genes were neural
disease related. Our results present a systematic landscape of the regionalized gene expression and neuron maturation of the
human cerebral cortex.
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INTRODUCTION
The adult brain of vertebrate animals has extensive capabilities
due to its astonishing cell type diversity1,2 and precise arrange-
ment of regional structures,3 especially in the cerebral cortex as it
is the most evolved organ with the most complex functions in
human. The cerebral cortex contains convoluted, layered gray
matter that is only 2–3mm thick in human but with several
hundred square centimetres of surface area.4 Neurons residing in
the gray matter are the basic unit in the system and possess
outgoing axons that club together to form the white matter of the
cerebral cortex. Neurons located in different cortical layers and
regions project to their specific destinations where they can
receive and release signals by transmitting neurotransmitters to
feel and control.5–7 Previous classifications for neurons were
mainly based on their morphological, chemical, and electrical
properties. As these properties are controlled genetically, neuron
sub-cluster classifications have been defined by distinct molecular
characteristics in recent studies.8–12

The enormous diversity of neurons with precise framework
comes from genetically committed neural stem cell (NSC) and
progenitor pools.13,14 Apart from the diverse neurons, progenitor
pools produce more abundant glial cells including astrocytes and
oligodendrocytes.2 These glial cells do not transmit signals like
neurons, but they constitute the environment to chaperon the

neurons and shape the neuronal network,14,15 and their dysfunc-
tion is associated with many neural system diseases.16–18 Although
we have known that the neuronal and glial lineages share the
same origin, the genetic determinants diversifying the neural
progenitors into neuronal or glial specification are still not fully
understood.
As the major architecture of the adult brain is almost

established at the embryonic stage, dissecting the cell complexity
and specific regional features of the developing cortex is a
promising strategy for studying the functional specialization of the
cerebral cortex. Previous studies, which have analyzed temporal
and spatial neural development in rodent, human, and non-
human primate brains, and have uncovered specific regional and
temporal molecular characteristics of brain development, were
almost based on bulk RNA-seq analysis.19–24 The molecular
profiles of each structure can be unveiled by analyzing micro-
dissected cortical tissues. However, such assessments are far from
revealing the detailed mechanisms of cerebral cortex organiza-
tion, as dissected structures are still composed of multiple cell
types.
Single-cell transcriptome analysis may provide more precise

information according to current progress, especially on cell type
diversities,8–11,25–31 but barely approach the regional information
to reveal the transcriptional landscape of the entire human
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embryonic cerebral cortex at single-cell resolution. In this study,
we collected single cells for transcriptome analysis from different
regions of the entire human cortex at 22 and 23 weeks post-
conception (22W and 23W) and supplied the first data source to
lay the ground for understanding the cell type constitution and
molecular differences of regional development in the whole
human cerebral cortex at the mid-gestational stage.

RESULTS
Global clustering and identification of the single cells
To detect the molecular distributions of 20 major anatomical
cortical regions together with the medulla and the pons, we
picked single cells as summarized in Supplementary information,
Table S1. A total of 4,213 single cells from the cerebral cortex of a
22W embryo and two 23W embryos were analyzed. An average
of 1.3 × 106 mappable reads were generated for each cell, and on
average, 4,318 genes were detected in each individual cell. We
performed the t-distributed stochastic neighbor embedding (t-
SNE) analysis to explore the diversity of all these cells. The even
mixture of cells from different embryos in each cluster on the t-
SNE plot reflected negligible individual variance or a batch effect
for each cell type (Supplementary information, Figure S1a). Based
on the global expression patterns, all cells were classified into
three major groups, namely, neurons, glial cells and non-neural
cells (Fig. 1a).
Further, each major group was divided using a random forest

algorithm and we obtained eight major cell types, including
inhibitory neurons, excitatory neurons, Cajal-Retzius cells, glial
cells, microglia, endothelial cells, immune cells, and blood cells
(Fig. 1a and Supplementary information, Table S2). Classical
markers were specifically detected in the corresponding clusters
of cells (Supplementary information, Figure S1b). In total, 1,672
differentially expressed genes (DEGs) were obtained among these
major cell types using Seurat analysis. Gene ontology (GO) analysis
also showed that each type of cell specifically expressed genes
involved in the corresponding biological processes, as expected
(Fig. 1b and Supplementary information, Table S3).
Neuronal cells (inhibitory neurons, excitatory neurons and Cajal-

Retzius cells) accounted for 66% of the cells in the 22/23 W
cerebral cortex, whereas glial cells (which could be further divided
into NSCs, oligodendrocyte progenitor cells (OPCs), oligodendro-
cytes, and astrocytes) only accounted for 8% of the cells (Fig. 1c
and Supplementary information, Figure S1c). This cellular distribu-
tion is markedly different from that found in the gray matter of the
adult cerebral cortex, where glial cells are thought to outnumber
neurons by 1.5 times.32 However, co-immunostaining for NEU-
ROD1 and GFAP validated the much higher abundance of
excitatory neurons than astrocytes in different cortical regions at
this embryonic stage (Supplementary information, Figure S1d).
Thus, we deduced that the preferential expansion of glial cells
over neurons in the cerebral cortex occurs after 23 weeks post-
fertilization in humans. Very different from the cortical regions,
regions in the inferior surface such as the insular gyris (IG) and
medulla contain more glial cells (Supplementary information,
Figure S1e). More microglia were observed in the medulla than in
the IG region, while these microglia in the medulla seemed less
developed than those in the IG regions as the former are ameboid
whereas the latter start to develop ramified form (Supplementary
information, Figure S1e). This indicates that microglia develop-
ment was unsynchronized in different brain regions. The vast
majority of the cells in the cortex were in a quiescent/post-mitotic
state at this embryonic stage, except that ~40% of the NSCs were
still actively dividing (Supplementary information, Figure S1f).

Neuron sub-clusters in the human embryonic cortex
To further reveal the subpopulations of each major cell type, we
performed a more detailed analysis of each cell type with the

random forest algorithm. A total of 968 inhibitory neurons were
further divided into 8 sub-clusters, with each sub-cluster
characterized by unique marker genes such as neural peptides
(NXPH1, SST), enzymes (PAM), important calcium-binding proteins
(CALB2, CAMLG), transcription factors (TFs) (LHX6), and non-coding
RNAs regulating GABAergic cell fate (DLX6-AS1) (Fig. 2a). Inhibitory
neuronal subgroups 1-4 highly expressed LHX6 (Fig. 2b); these
subgroups are thought to be generated in the medial ganglionic
eminence (MGE), a major source of the GABAergic population in
the cerebral cortex.33 These cells expressed LHX6 together with
NXPH1 and PAM, and accounted for 50.9% of all the inhibitory
neurons in the cortex. Furthermore, 24.9% of the LHX6+

progenitors developed into a somatostatin (SST)-expressing
population (subgroup In_2). We identified a BOD1L1+ subgroup
among the inhibitory neurons (Fig. 2b,c). This subgroup of cells
did not express POLR2E, which encodes a subunit of RNA
polymerase II. The other 49.1% of the inhibitory neurons
(subgroups 5-8) were CALB2 positive. These cells expressed both
DLX2 and NR2F2 (encoding COUP-TFII) (Fig. 2c), indicating that
they may originate from the caudal ganglionic eminence (CGE)
and then migrate into the cortex.34 By calculating the proportions
of LHX6+ and CALB2+ inhibitory neurons in each cortical region,
we found that LHX6+ neurons are relatively enriched in the
superior part of the cerebral cortex, whereas the CALB2+ neurons
are enriched in the inferior regions (Fig. 2c, d).
The 1,625 excitatory neurons were further subdivided into 4

groups, and groups 1 and 2 showed higher expression of more
immature genes, such as EIF1B, MEIS2, and LINC0115835 (Fig. 2b).
The ortholog of LINC01158 in mouse, Pantr1, regulates the
differentiation of neuronal progenitors, whereas its paralog Pantr2
regulates the expression of Pou3f3 and maintains the proliferation
of progenitor cells in the developing cortex.36,37 The expression
pattern of LINC01158 indicated a different role in humans
compared with that in rodents. The other two subgroups were
more mature, as these groups highly expressed SYBU and CELF4.
FOXP1, a TF important for medium spiny projection neurons, was
also detected in the excitatory neuron subgroups 3 and 4 in the
cerebral cortex.38 Based on a pseudotime analysis, all the
excitatory neurons were arranged according to a developmental
course. Subgroup 1 (Ex_1) to subgroup 4 (Ex_4) cells ranked
sequentially from earlier to later in the pseudotime course, as
expected (Fig. 2e, left). Genes down-regulated during the
differentiation course of the excitatory neurons were mainly
associated with negative regulation of RNA polymerase II
transcription and cytokine production. These genes were more
enriched in germinal structures (VZ, ISVZ, and OSVZ), as reported
by Miller et al.20 (Fig. 2e and Supplementary information,
Figure S2a). In contrast, the positively regulated genes were
enriched in synaptic functions, such as membrane depolarization
during action potentials, and showed higher expression levels in
the upper structures of the cortex (IZ to MZ). These genes were
enriched in neuron-related functions, such as membrane depolar-
ization during action potential and signal release (Fig. 2e and
Supplementary information, Figure S2a). These findings suggest
that the molecular mechanism underlying the excitatory neuron
differentiation could be revealed by scRNA-seq.
Since subgroups Ex_1 to Ex_4 showed a developmental

relationship based on pseudotime analysis, we picked the TFs
that potentially regulated the maturation of excitatory neurons
from DEGs among these four groups. Four TFs (ZGLP1, HIC2,
POU2F2, and FOXK1) potentially positively regulated the matura-
tion of excitatory neurons and another four TFs (MEIS2, ZBTB20,
NFIA, and ZFHX4) potentially negatively regulated the maturation
of excitatory neurons in the developing human cortex, respec-
tively (Fig. 3a). We further analyzed the regulation network of
these eight TFs (Fig. 3b and Supplementary information, Table S4)
by analyzing the genes co-expressed with the TFs and extracted
the top 1,000 links showing positive correlation with each TF. We
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Fig. 1 Cell type classification in human embryonic cerebral cortex. a The schematic diagram displaying the dissection of embryonic brain and
how we obtained the single cell transcriptome data in 22 regions (for the abbreviations, see Supplementary information, Table S1). t-SNE
showed the cell types identified with all the single cells and the shadows mark different general cell types: the blue shade indicates glial cell,
the yellow shows neuron and the gray shows non-neural cell that is not supposed to be produced by neural stem cell. b Heatmap displaying
the DEGs that were cell type specific in our analysis. The enriched biological processes for each gene group were shown in the right. Classical
cell type marker genes were labeled. c Dendrogram showing the relationships of all the 29 sub-clusters and the histogram displaying the cell
number in each sub-cluster
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Fig. 2 Neuron cell sub-clusters in human embryonic cerebral cortex. a t-SNE map showing the subtypes of all inhibitory and excitatory
neurons. The inhibitory neuron could be subdivided into eight clusters, and all of those are GAD1 positive. The excitatory neurons are
NEUROD2 positive and could be subdivided into four clusters. In inhibitory neuron, Ex excitatory neuron. b Violin plot showing the DEGs of
subgroups with inhibitory neuron (left) and exicitatory neuron (right), respectively. c Schematic diagram describing where different types of
inhibitory neurons are generated and how they migrated. Violin plots show expression levels of interneuron progenitor genes DLX2 and
NR2F2 in each subgroups. The cortex landscape shows the dominant inhibitory neuron types in each region. Blue indicates that over 60%
inhibitory neurons in the corresponding region are in LHX6 subtype and the purple indicates that over 60% inhibitory neurons are in CALB2
subtype. White indicates that both subtypes of inhibitory neurons make up 40%–60% of the sum. Regions of gray color are detected with <15
inhibitory neurons. d The accurate percentages of inhibitory neurons belonging to LHX6 and CALB2 subgroups in regions colored with blue,
purple, and white. e Left, heatmap showing the genes positively and negatively regulating excitatory neuron maturation, respectively. The
color bars at the top represent cells from different clusters, which are arranged in a pseudotime order from immature to mature neurons.
Middle, expression of putative excitatory neuron maturation regulating genes in the structures studied by Miller et al.20 (sample 12566). Right,
enriched biological processes for down-regulated and up-regulated genes in excitatory neuron maturation. VZ ventricluar zone, ISVZ inner
subventricular zone, OSVZ outer subventricular zone, IZ intemediate zone, SP subplate zone, CP cortical plate, MZ marginal zone, SG subpial
granular zone
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found that FOXK1 was a candidate core TF regulating the
maturation of excitatory neurons since it showed the strongest
co-regulation patterns with potential target genes. Analysis of
biological process enrichment in the target genes of each TF
further suggested that FOXK1 participated in multiple processes of
neuronal maturation (Fig. 3c).

Comparison of human embryonic neurons to adult neurons in the
cortex
Lake et al. revealed the molecular signatures of neurons in
different cortical regions of the human adult brain.26 We
wondered whether these signatures were already formed in the
mid-gestational embryonic cortex. First, we analyzed the expres-
sion levels of excitatory and inhibitory neuron sub-cluster markers
identified in the adult cortex (Fig. 4a). Approximately half of the
excitatory sub-cluster markers were expressed in the embryonic
excitatory neurons; these markers could be used to discern only
the Ex_1/2 from the Ex_3/4 subgroups. Few of the inhibitory sub-
cluster markers were detected in the embryonic inhibitory
neurons, perhaps because both the excitatory and inhibitory

neurons at this embryonic stage were not fully developed with
functional projections, and most of these neurons were still
progenitors during migration. Further analysis of the expression
levels of the layer markers also showed no patterns of these adult
neuron markers on the embryonic neuronal sub-clusters for either
excitatory or inhibitory neurons (Fig. 4b). Only the more mature
sub-clusters of excitatory neurons, Ex_3 and Ex_4, showed a broad
distribution across layer 6b to layer 2 and these cells expressed
markers of multiple layers (Supplementary information, Figure
S2b). We suspected that these migrating neurons express multiple
layer signatures at 23W, and later, when they have arrived at their
final destination, they will mature and express marker genes
specific for the layer that they migrate into and develop full
projections.
We noticed that the expression level of upper layer marker

CUX239,40 could clearly specify the four sub-clusters of excitatory
neurons and the more mature neurons showed higher expression
of CUX2 (Fig. 4b). Thus, CUX2 could be used to evaluate the
maturation degree of each region in the whole cerebral cortex.
According to the CUX2+ cell ratio in each region, we found that
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Fig. 3 Regulation network of the transcription factors in excitatory neuron differentiation. a The expression changes of TFs negatively (top
row) and positively (bottom row) regulating the maturation of excitatory neurons along the pseudotime. b The transcription networks of the
TFs regulating excitatory neuron maturation. Top 1,000 target genes for each TF were listed in Supplementary information, Table S4.
c Enrichment analysis on target genes for each TF shown in b and c. No enriched terms for NFIA and ZFHX4. Terms colored in red are known
pathways quite related to neural development
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the neurons in the pre-central cortex (PRC, also known as the
primary somatomotor cortex) and the post-central cortex (PC, also
known as the primary somatosensory cortex) were more mature
than the neurons in other cortical regions (Fig. 4c). RNA in situ
hybridization of CUX2 was performed for the PC and the inferior
temporal cortex (IT) regions, which indeed confirmed more CUX2+

cells in the PC region (Fig. 4d). Similar mature patterns were
revealed when we analyzed the expression levels of synapse
formation and function related genes as measures of neuron
maturity in each cortical region (Fig. 4e).
To obtain further insight into the differences between

embryonic and adult cortex neurons, we compared our single-
cell data with those of the adult neurons by principal component
analysis (PCA) after removing batch effect (Fig. 5a). The findings
showed that the heterogeneity of the excitatory neurons at mid-
gestation stage was already comparable to that of the adult brain.
Both PC1 and PC2 reflected the differences between immature
and mature embryonic neurons, and the enriched terms were also
associated with projection development and synaptic plasticity
(Fig. 5b). The results for inhibitory neurons were very different. PC1
genes clearly separated the embryonic inhibitory neurons from

the adult neurons (Fig. 5c). The adult inhibitory neurons highly
expressed PC1 positive direction genes, which were enriched in
neuron signaling genes, whereas the embryonic inhibitory
neurons specifically expressed PC1 negative direction genes,
which were associated with cellular metabolism. The PC3 and PC4
genes mainly reflected the differences among the subgroups of
adult inhibitory neurons, whereas the embryonic inhibitory
neurons exhibited no significant differences on these two axes
(Fig. 5d). We inferred that this difference might exist because the
mid-gestation inhibitory neurons were still immature and had not
differentiated into subtypes comparable to those in the adult
cortex. Since the SST+ inhibitory subgroup is classified as a sub-
cluster at this stage, we wondered whether this subtype of neuron
matures earlier than other subtypes of inhibitory neurons. We
combined our inhibitory neurons with those identified in the
developing pre-frontal cortex26 and performed pseudotime
analysis. Inhibitory neurons at 22–23W in this study mainly
located from early to the middle developing stages on the
pseudotime path (Fig. 5e). The SST+ neurons randomly appeared
in the whole developing course of the pseudotime path,
indicating that they were not more mature compared to other

Fig. 4 Maturation degree of embryonic neurons is different from the adult neurons. a Heatmap showing the expression of marker genes
identified in the adult neuron subtypes. b Expression of layer markers in different sub-clusters of excitatory neuron (left) and inhibitory neuron
(right). c Landscape showing the maturity level of each region in the cortex measured by CUX2-positive excitatory neuron ratio. Regions of
gray color are ruled out as they are detected with < 50 neurons. d In situ hybridization of CUX2 in PC and IT regions of a 22WF embryo. Scale
bar, 100 μm. e Landscape showing the maturity level of each region in the cortex measured by expression level of synapse formation and
function related genes
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inhibitory neurons. Thus we inferred that the SST expression
should not be of the same function as those in adult neurons.
To more thoroughly analyze the cell types of the human cortex,

we also compared our data with the single-cell data from Pollen
et al.27 and Darmanis et al.11 We analyzed all the single-cell
samples by PCA after batch effect correction using mutual nearest
neighbor (MNN) algorithm in Scran package.41,42 The PC2 positive
direction genes were enriched for the neuron progenitor-specific
genes, especially for those at early embryonic stage (Fig. 6a). PC3

and PC4 clearly separated the adult cells from the embryonic cells,
except for the Cajal-Retzius cells identified in our study, which
mixed well with the adult cells. Thus, Cajal-Retzius cells were
probably the cells that kept the most similar expression signatures
from mid-gestation stage to adult. All the cells could be clustered
into 8 groups, each showing a specific gene expression pattern
(Fig. 6b). According to the marker gene expression signature for
each group, both the actively dividing neural stem cell group and
the quiescent neural stem cell group mainly consisted of GW16,

Fig. 5 Comparison of embryonic neuron sub-clusters to adult ones. a PCA plot of both excitatory neuron sub-clusters and adult ones. b
Heatmap of expression of the top genes in the PCs corresponding to panel (a) and the enriched terms for each PC gene set. Red bar indicates
the genes positively correlated in each PC and the green bar indicates the negatively correlated genes in each PC. c PCA plot of both
inhibitory neuron sub-clusters and adult ones. d Heatmap of expression of the top genes in the PCs corresponding to panel (c) and the
enriched terms for each PC gene set. e Monocle analysis of inhibitory neurons together with those identified in developing pre-frontal cortex.
SST+ cells show up randomly on the pseudotime
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GW21, and fetal neurons (Fig. 6b, c). The differences between
adult excitatory neurons and inhibitory neurons were milder than
those between the embryonic excitatory neurons and inhibitory
neurons. The NSCs and adult neurons were the most unique cell
types. Unsupervised clustering through Pearson distance calcula-
tion among these 8 groups revealed that the longest distance for
the cell groups was between the adult neurons and the NSCs
(Fig. 6d).

Sub-clusters of non-neuronal cells in the human embryonic cortex
Glial cells were further subdivided into six sub-clusters (Supple-
mentary information, Figure S3a and b). The two sub-clusters
expressing VIM were NSCs (NSC_1 and NSC_2), and NSC_2 was
more active in the cell cycle. These NSCs showed a glial fate
preference to differentiate into astrocytes (marked by AQP4) and
OPCs (marked by PDGFRA), and further into oligodendrocytes

(marked by MOBP) (Supplementary information, Figure S3b and c).
The non-neural cells were further divided into three microglial
sub-clusters (marked by CD68, Micro_1, Micro_2, and Micro_3),
four immune sub-clusters that were further identified as B cells
(marked by CD52, CD79A/B), myeloid cells (marked by LYZ, CSTA),
naïve-like T cells (marked by IL7R, TCF7), and effector T cells
(marked by NKG7, CST7). There were two endothelial sub-clusters
(marked by SPARC, Endo_1 and Endo_2) and one blood cell sub-
cluster (marked by hemoglobin genes such as HBG1) (Supple-
mentary information, Figure S4a and b). Cell cycle analysis of these
subgroups revealed that NSC_2 and Micro_1 cells were in an
actively dividing state (Supplementary information, Figures S3d
and S4c).
In total, 29 sub-clusters of cells were identified in the human

22–23-week embryonic cerebral cortices, and neurons accounted
for the majority of them. The more mature cell types, such as

Fig. 6 Comprehensive analysis on cell types of human cortex. a PCA of single neuronal cells from different data sets. The PC2 clearly separates
progenitors from the differentiated cells, and PC3 and PC4 separate embryonic cells from the adult cells. b Heatmap showing the clustering of
cells from different data sets and group-specific gene expression. c Classical marker gene expression in each identified cell group. d
Unsupervised clustering of the 8 cell groups showing the distances between the cell groups
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Fig. 7 Spatial differences in the developing human cortex. a Pie chart displaying the cell type constitution in the four cerebral lobes and in the
inferior region of cerebral cortex. b Immunofluorescence of GFAP in the pons, PC and IT regions of a 23W female sample. The statistics of
GFAP+ cell ratio in each region are shown in the histogram. Scale bar, 50 μm. c In situ hybridization of astrocyte genes RAMP3 (Astro_1) and
PTGDS (Astro_2) showing higher abundance of the two subtypes of astrocytes in pons than that in IT and PC regions. Moreover, the PC shows
the lowest astrocyte density. Scale bar, 150 μm. d–f DEGs across all cerebral cortex regions that are detected with more than 5 inhibitory
neurons (d), immature excitatory neurons (Ex_1/2, e) and mature excitatory neurons (Ex_3/4, f). GAD1 and NEUROD2 are the housekeeping
control for inhibitory and excitatory neurons, respectively. g RT-qPCR of NRGN in IG, IT, PC, and SP regions. The NRGN abundance in each
region was normalized by GAPDH. h Validation of excitatory neurons expressing myocardial protein TNNT2 in the 23WF ST region by
immunofluorescence. The PAO region is displayed as a negative control. TNNT2 antibody was tested in the cadiomyocytes as shown in
Supplementary information, Figure S6c. Scale bar, 50 μm
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Cajal-Retzius cells and oligodendrocytes, expressed more genes
and contained more abundant transcripts in each individual cell
(Supplementary information, Figure S5). Similarly, the gene and
transcript numbers increased along with the maturation of
excitatory neurons. This effect was likely due to the increased
transcription activity during the maturation of excitatory neurons
(Fig. 2e and Supplementary information, Figure S2).

Spatial differences for different types of cells in the developing
human cortex
The spatial position recorded for each cell provided valuable
information for investigating the regional differences in the
embryonic cerebral cortex in terms of regional cell type diversity.
The four main regions in the cortex, the frontal lobe, the parietal
lobe, the occipital lobe, and the temporal lobe, consisted of more
neurons (Fig. 7a), whereas regions in the inferior surface contained

many more glial cells. We particularly observed a high abundance
of astrocytes in the pons (Fig. 7a and Supplementary information,
Figure S6a). Immunostaining for GFAP to detect cells from the
pons, the IT and PC regions showed the most astrocytes in the
pons. Impressively, the astrocytes in the pons showed more
mature morphology, with longer processes than those in the PC
and IT regions (Fig. 7b). To determine whether there was a
distribution difference between the two sub-clusters of astrocytes,
we performed in situ hybridization for RAMP3 (marking the
Astro_1 sub-cluster) and PTGDS (marking the Astro_2 sub-cluster)
on the pons and cortical regions. Both sub-clusters were much
more abundant in the pons than those in the PC and IT (Fig. 7c).
We also noticed more excitatory neurons in regions belonging to
the frontal lobe and more inhibitory neurons in the regions
belonging to the temporal lobe (Fig. 7a and Supplementary
information, Figure S6a). To validate the distribution differences of
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Fig. 8 Expression pattern and coexpression networks of autism risk genes. a Violin plots showing the epxression levels of the nine hcASD
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network for the hcASD genes and the pASD genes
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the cerebral cortex, we did RT-qPCR to compare the expression
levels of NEUROD2 and GAD1 in the PC and IT regions. In
agreement with the sequencing data, the PC region showed
higher expression of NEUROD2, whereas the IT region showed
higher expression of GAD1 (Supplementary information, Figure
S6b). Moreover, the immunostaining of NEUROD2 in PC and IT
regions also showed relatively more excitatory neurons in the PC
(Supplementary information, Figure S6c).
We next questioned whether there were differences in cell

heterogeneity among different regions. We extracted regions with
over 50 single cells analyzed by RNA-seq for specific neuron sub-
clusters and calculated the correlation coefficients between
individual cells within each region. The gene expression hetero-
geneity of both excitatory and inhibitory neurons in the frontal
lobe was significantly lower than that of other regions for each
neuron sub-cluster (Supplementary information, Figure S6d). In
contrast, the excitatory neuron sub-clusters in each region were
more homogeneous than the inhibitory sub-clusters in the same
region, which was compatible with the rich diversity of
interneurons in mature human cortex and mouse cerebral cortex.8,
9,11

We next analyzed DEGs among the cortical regions based on
different neural sub-clusters. For inhibitory neurons (Fig. 7d), we
found that the GABA receptor GABRA2 showed region-specific
expression. The neuronal functional genes MGLL, TRAP1, and
NLGN243–45 were more specifically expressed in the PC, indicating
that regional DEGs may be involved in the formation of region-
specific functions of the corresponding regions. We also found
that Ex_1/2 neurons played a special role in the caudal middle
frontal lobe (CMF) (Fig. 7e). Neuronal progenitors in this region
highly expressed several genes related to neural diseases. For
example, CLU and CST3 are related to Alzheimer’s disease.46,47

Other region-specific genes such as NTRK2, which was highly
detected in PC and supra-maginal regions, was reported to
regulate the survival of neurons, and its down-regulation may
cause autism.48 The BDNF/TrkB (TrkB also known as NTRK2)
signaling pathway was also reported to be important in memory
and learning during neural development.49 NRGN showed
regionally differential expressions in both inhibitory and mature
excitatory neurons but barely detectable expression in the Ex_1/2
neurons (Fig. 7d, f and Supplementary information, Figure S6e).
RT-qPCR showed enriched expression of NRGN in the IG region,
consistent with the single-cell RNA-seq data (Fig. 7g). Unexpect-
edly, we identified several myocardial genes, such as MYL7, TNNT2,
and ACTC1, which were expressed in the ST (Fig. 7f). We observed
that TNNT2 co-localized with the neural marker NEUROD2 in
individual cells in both the 22W and 23W ST regions at the
protein level (Fig. 7h and Supplementary information, Figure S6f).
As a control, we did not find this group of cells in the pars orbitalis
region (PAO) of the 22W and 23W embryos.

Expression pattern and co-expression networks of autism risk
genes
Autism risk genes might be up-regulated in mid-gestation human
cortical projection neurons.50,51 As we investigated the transcrip-
tome of the whole cortex at this gestation stage at single-cell
resolution, we further analyzed the expression patterns of the
high-confidence autism spectrum disorder (hcASD) genes and
probable ASD (pASD) genes.50 All 9 hcASD genes were detected in
the neuronal sub-clusters (Fig. 8a), whereas both hcASD and pASD
genes showed expression enrichment in the Ex_4 sub-cluster
(Fig. 8b). This finding agreed with previous results suggesting that
cortical projection neurons were related to the pathogenesis of
autism. We then measured the expression of both sets of ASD
genes in Ex_4 in different regions. The pASD genes showed
accordant expression across all regions, whereas the hcASD genes
showed much lower enrichment scores in the IP and IT regions
than those in other regions (Fig. 8b). The co-expression network of

these nine hcASD genes revealed a key role for ANK2 in the
expression network, and no interaction of KATNAL2 with other
hcASD genes (Fig. 8c and Supplementary information, Table S5).
GO analysis of the co-expressing genes showed the most
significant enrichment in keratinization. Other enriched biological
processes were revealed, such as spinal cord motor neuron
differentiation and epidermis morphogenesis (Fig. 8d). Interaction
analysis of the hcASD genes with the pASD genes revealed
abundant interactions between ANK2, SCN2A, and POGZ and the
pASD genes (Fig. 8e). Both the expression patterns and networks
indicated that multiple distinct pathways and processes were
potentially involved in the ASD phenotype. In addition to the
hcASD and pASD genes, there were more network genes
participating in functions that might increase the risk for ASD
when they went wrong.

DISCUSSION
In this study, we uncovered 29 cell sub-clusters within the mid-
gestation stage of human embryonic cerebral cortex in vivo and
identified the unique signature of each type of cell related to their
biological functions, such as in the cell cycle, TF networks, and
metabolism. Inhibitory neurons originating from the MGE and the
CGE exhibited clear differences in both their gene expression
signatures and distribution patterns. The LHX6+ inhibitory neurons
tended to be enriched in the top dorsal regions of the cerebral
cortex, whereas the CALB2+ ones were in the inferior regions. Our
findings indicate the potential in vivo molecular regulation of the
maturation process of human excitatory neurons, which provides
additional clues to aid in the generation of neurons in vitro with
specific physiological functions.
By comparing our single-cell data to those of previous studies,

we observed drastic differences between embryonic neurons and
adult neurons. The results also indicate that the embryonic
excitatory neurons had different gene regulation networks during
maturation compared to the inhibitory neurons, and the latter
showed delayed maturation compared with the former. For the
SST+ inhibitory neurons, they are the earliest to show up as a
subgroup during embryonic development. However, these SST+

neurons are still different from the adult ones as the former
showed no maturity apart from the expression of SST. It is a very
important question of why these SST+ inhibitory neurons show up
earlier than other subtypes. Previous studies proved a key role of
inhibitory neurons in circuit development,52–55 and thus SST+

inhibitory neurons might play a vanguard role in constructing the
local circuit. As different subtypes of inhibitory neurons have
different impacts on circuits, for example, the efferents of SST
neurons are to principal cells, whereas the efferents of vasointest-
inal peptide (VIP) interneurons are mainly to SST neurons,33 which
in turn lead to a disinhibition of those principal cells.56–58 It is easy
to understand that the VIP neurons are generated later than SST
neruons during development as they need local cues from both
exicitatory and inhibitory signals for their final positioning59,60 and
morphological development,61 thus SST neurons should show up
earlier in the cerebral cortex. Therefore, we infer that the early
appearance of SST+ inhibitory neurons at embryonic stage is not
to inhibit functions of other neurons as they do in the adult
circuits, but these SST+ neurons are helping to form neural circuits.
This hypothesis needs more experimental validation in the future.
Regional differences were observed at different aspects. First of

all, different cortex regions showed different cell type constitu-
tions, for example, the regions in the inferior surface contain more
glia cells, whereas the cortical regions contain more neurons.
Moreover, both the excitatory and inhibitory neurons showed
asymmetric distributions among the cortical regions. Regions in
the frontal lobe contain more excitatory neurons, whereas regions
in the temporal lobe contain more inhibitory ones. These
differences in cell type constitution could possibly lead to regional
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specificity of the neural networks and their functions. Besides,
neurons of the same sub-cluster showed different degrees of
heterogeneity within each region of the cortex, and the frontal
lobe was the most homogeneous region for a specific neuron sub-
cluster. The different degrees of heterogeneity might be related to
the complex neural connections when neurons are fully devel-
oped. Moreover, we observed that the maturation of different
cortex regions was not synchronized, which may reflect the facts
of regional difference in development. At last, we found that even
for the same type of neurons, regional specific gene expression
patterns existed, and these DEGs were strongly related to known
neural diseases or region-specific neural functions.
Neural disorders are affecting numerous patients’ health and life

and they are still urgent issues currently without effective
solutions. Many of the neural disorders are proved to be
connected to the neural developmental stages,62–66 and especially
the autism spectrum disorder (ASD) was reported to be closely
related to the neuron projection at mid-fetal stage in human.47 We
further analyzed the ASD risk genes in each neuron sub-cluster
and brain region, and their network genes were revealed, offering
a more precise view of the disease genes’ regulation in the mid-
gestation stage of the human cerebral cortex.
In summary, our results contribute to understanding the

regionalization of the human cerebral cortex, which lays the
ground for dissecting molecular and cellular mechanisms of brain
development and diseases.

MATERIALS AND METHODS
Human embryonic brain collection and dissection
Human embryonic brains were obtained from the Third Hospital
of Peking University with agreement of the donors. The 22W and
23W brains were collected from twins, and we collected each
female cerebral cortex from the right hemisphere. We collected
the right brain cortex from a 22W male embryo. Only a few cells
were collected from the male cerebral cortex of the right brain at
22W. For dissection of cortical regions (Fig. 1a and Supplementary
information, Table S1), we referred to The Human Brain during the
Second Trimester, by Shirley A. Bayer.67 For each female right brain,
we dissected 19 regions from the cerebral cortex, and we also
collected the insular gyrus, the pons and the medulla from the
inferior surface. We barely cut the germinal zone in each region.

Tissue digestion and single-cell RNA-seq library preparation
The dissected regions were transferred into 500 µl hibernate E
medium (Invitrogen, Cat# A1247601) with 2 mg/ml collagenase IV
(Gibco, Cat# 17104-019) and 20 U/µl DNase I (NEB, Cat# M0303L).
The samples were roughly pipetted to break down the tissue and
then added to 500 µl hibernate E medium containing 1mg/ml
papain (Sigma, Cat# P4762) and 20 U/μl DNase I. The tissue
fragments were kept at 37 °C in a thermocycler for 5 min. The
sample was then pipetted thoroughly to obtain single cells. To
stop digestion, the tubes were centrifuged at 300× g for 2 min, the
cell pellet was collected, the supernatant was discarded, and the
cells were resuspended with 1 ml hibernate E medium. We
removed the block mass using a 40-μm filter. The cell suspension
was kept on ice to prevent cell death during the single-cell
collection procedure. We randomly picked single cells that
appeared to be alive and placed them in 2.5 μl cell lysis buffer
using a mouth pipet under a microscope. We modified the STRT-
seq method for amplification of single-cell transcriptomes by
changing the reverse transcription primer, the induced cell
barcode, and the unique molecular identifier (UMI). The final
primer concentration for reverse transcription was 300 nM. The
amplification primers at the 3′ end were chemically modified with
biotin. Before library construction, we enriched the fragments
containing the cell barcode and UMI with streptavidin beads. The
cDNAs of all 96 cells with different cell barcodes were pooled

together for one library construction.68 Each single cell was
sequenced for 2 × 106 of 150-bp paired-end reads using an
Illumina HiSeq 4000.

Processing of single-cell RNA-Seq data
Raw reads were first segregated based on the cell-specific barcode
information in read 2 of the pair-ended reads. Then, sequences in
read 1 were trimmed with customized scripts to remove the TSO
sequence, the polyA tail sequence and sequences with low-quality
bases (N > 10%) or contaminated with adapters. Subsequently, the
stripped read 1 sequences were aligned to the hg19 human
reference genome (UCSC) using TopHat (version 2.0.12).69

Uniquely mapped reads were counted using htseq-count from
the HTSeq package70 and then grouped based on the cell-specific
barcodes. For each gene, we discarded duplicated transcripts with
identical UMIs. Finally, the transcript number for each gene in each
cell was quantified by the number of distinct UMIs of that gene.
In total, we sequenced 4,664 single cells, and cells with fewer

than 1,000 detected genes, 20,000 detected transcripts and 20%
mapping ratio were removed. We also removed cells with too
many raw reads, as these cells may not truly be single cells, thus
leaving 4,233 cells for further analysis. Because most of our single
cells did not reach one million UMIs, we normalized the expression
value by log2(TPM/10 + 1) rather than log2(TPM + 1) (TPM:
transcripts per million). By doing so, we avoided counting each
transcript several times and overestimating the gene expressions.

Nonlinear dimensional reduction (t-SNE) and clustering
We visualized our 4,233 single cells by t-SNE using the Barnes-Hut
algorithm (implemented in the Rtsne package in R). First, we used
the Seurat method to select the highly variable genes (HVGs)
based on the log2(TPM/10 + 1) expression values. Only genes with
an expression level >1 and expressed in at least 3 single cells were
considered, whereas single cells with <1,000 expressed genes
were excluded, leaving 4,213 cells for the subsequent analysis.
HVGs with an average expression greater than 1 and a dispersion
greater than 1 were used as inputs for the t-SNE analysis.
To cluster the cells, we first used the Seurat Find Clusters

function, which is an implementation of a graph-based clustering
approach, to obtain clusters based on all the HVGs (for details, see
http://satijalab.org/seurat/pbmc-tutorial.html). We merged the
obtained clusters into three main groups, namely, a neuron group,
a glial cell group, and a non-neural cell group (see Supplementary
information, Figure S1a). Second, as the heterogeneity of fetal brain
cells was limited, to further obtain accurate subgroups in each main
group, we employed previously reported methods.26 For each
iteration, this method can split a certain group into 2 subgroups.
We could then decide whether the obtained subgroups should be
separated into smaller subgroups based on the feature genes
selected by the random forest algorithm and the DEGs of the
obtained subgroups. Specifically, subgroups were classified and
verified using unsupervised hierarchical clustering and a random
forest algorithm in R. In brief, (1) we first calculated the gene
expression variation for each gene across all cells as CV2= variance/
mean2, which was then fitted to an inverse distribution, and we
chose genes with a CV2 beyond one standard error of the mean; (2)
we then carried out hierarchical clustering and determined two
clusters at the first split; (3) we performed a 10-fold random forest
feature selection to select DEGs dividing the two clusters; (4) for
each class, we selected samples with internal vote probabilities
> 0.6 as the training set to achieve an optimal classifier, which was
used to predict the rest of the samples; (5) 100 runs of 10-fold
random forest cross-validation (CV) were carried out, and the
samples with internal vote probabilities < 0.55 were abandoned; (6)
we repeated steps 1–5 on the newly formed classes to obtain finer
clusters. Finally, 13 clusters, including 8 inhibitory neuron clusters, 4
excitatory neuron clusters, and 1 Cajal-Retzius cell cluster, were
identified for the neuron group (see Figs. 1a and 2a), 6 clusters for
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the glial cell group (see Supplementary information, Figure S3a) and
10 clusters for the non-neural cell group (see Supplementary
information, Figure S4a). In addition, subsequent t-SNE plots for
each primary group were generated by the Rtsne package using
the DEGs (see below) of all the clusters in that group, except in the
neuron group, for which we did not include the Cajal-Retzius
cell cluster.

Identification of DEGs and GO analysis
To identify unique cluster-specific marker genes, we used the Seurat
function find_all_markers (thresh.test= 1, test.use= “roc”). For two
given clusters, the find.markers function was used to identify DEGs
with the parameters thresh.use=1, test.use=“roc”. In the roc test, a
value representing the ‘classification power’ ranging from 0 (for
‘random’) to 1 (for ‘perfect’) would be generated for a certain gene.
We chose genes with a fold-change ≥ 2 or ≤ 0.5 and a power ≥ 0.4 as
DEGs. The R software program was used to plot heatmaps, pie charts,
and bar plots. Violin plots were generated using Seurat. Enrichment
analysis was performed using Metascape (http://metascape.org).71

Gene information involved in certain pathways was selected from
KEGG (http://www.genome.jp/kegg/pathway.html).72

Developmental pseudotime analysis
The monocle2 package in R73,74 was used to determine the
developmental pseudotime of excitatory neurons and glial cells.
Following the monocle vignette, we used UMI count data as input
and selected DEGs identified in the last procedure to order the
cells. For all other parameters, the default settings were used. We
also plotted eight TFs in DEGs along the inferred developmental
pseudotime. The regulation networks for the 8 TFs were
constructed by GENIE3 package and plotted by cytoscape.
For excitatory neurons, in Fig. 2e and Supplementary informa-

tion, Figure S2 (right), we compared our dataset with two 21 pcw
datasets from Miller et al.20 to see in which regions the subtype
marker genes were enriched. We downloaded the microarray
datasets and extracted the intersection genes with the genes
identified to show regulation in excitatory neuron differentiation
by monocle2. We then plotted heatmaps using z-score values with
genes ordered as in Fig. 2e (left) and samples ordered from inner
to outer layers of the prenatal neocortex.

Cell cycle analysis
A previously reported core gene set was used to perform cell cycle
analyses, including 43 G1/S and 54 G2/M genes.75,76 We calculated
the average expression of each gene set as the corresponding
score. Cells were determined to be quiescent if their G1/S score
< 2 and G2/M score < 2; otherwise, they were deemed
proliferative. In addition, proliferative cells were designated G2/
M if their G2/M score > G1/S score, whereas cells were designated
G1/S if their G1/S score > G2/M score.

LHX6+ interneuron and CALB2+ interneuron ratio in each specified
cerebral cortex region
For each region, we defined the interneuron cells with a log2(TPM
of LHX6/10 + 1) greater than 1 as LHX6+ interneurons. Similarly,
interneuron cells with a log2(TPM of CALB2/10 + 1) greater than 1
were defined as CALB2+ interneurons. Then, the LHX6+ interneuron
ratio was calculated as the number of LHX6+ interneurons to the
total number of LHX6+ interneurons and CALB2+ interneurons. In
addition, LHX6+ regions were recognized as regions with a LHX6+

interneuron ratio > 0.6. CALB2+ regions were identified in the same
way. Regions that contained each type of interneuron between 0.4
and 0.6 were considered balanced regions. We did not include
regions with a sum of both types of neurons less than 15.

Comparison with previous published datasets
To reveal more developmental clues, we compared our dataset with
three published datasets of the human cortex: two fetal11,27 and one

adult dataset.26 We combined our dataset with the two fetal datasets
using the mnnCorrect function of the scran package in R.37,38 This
strategy relied on a shared subset of the population between
batches and detected MNNs in the high-dimensional expression
space to correct batch effects. The corrected dataset was then used
to perform PCA through the FactoMineR package in R. Due to the
abundance of cells in our dataset, there would have been PCA bias if
we had used all the cells. Thus, we randomly selected 200 excitatory
and 200 interneuron cells to redo the PCA. For each of the first four
PC dimensions, the top 50 correlated genes combining both
positively and negatively correlated genes were selected. We then
performed unsupervised hierarchical clustering using Pearson
correlation based on these genes through hclust in R. Cluster-
specific markers were identified by t-test, and the P-value was
corrected by the BH method using the p.adjust function.
For comparison with the adult cortex dataset, we first used

Seurat to identify HVGs with an average expression > 1 and
dispersion > 1 for both the adult dataset and our dataset
separately. The expression value of the adult dataset was
normalized by log2(TPM + 1) as used in the paper that it came
from, while the expression value of our dataset was normalized by
log2(TPM/10 + 1). Then, we calculated the z-score values for both
datasets based on their own HVGs. Finally, we combined the two
z-score-based datasets using all the HVGs to perform PCA through
FactoMineR package in R. For each of the first four PCs, genes with
correlation > 0.3 or < –0.3 were selected to plot heatmaps and to
perform enrichment analysis. However, for the PC1 positive
direction, we chose the top 100 correlated genes because there
were too many genes whose correlation exceeded 0.3.

Enrichment score for autism gene sets and gene regulation
network
To study the expression pattern of ASD-related genes, we
collected two datasets described in Willsey et al.: 9 high-
confidence ASD (hcASD) genes and 122 probable ASD (pASD)
genes.50 We calculated the enrichment score for these two gene
sets across all neuron cells using the AUCell package (https://
github.com/aertslab/GENIE3).77,78 Regulation networks for the 9
hcASD genes were constructed by the GENIE3 package (https://
github.com/aertslab/AUCell)45 and plotted by Cytoscape.

Regional heterogeneity of neurons across the whole cerebral
cortex
For frontal, parietal, temporal, and occipital lobes, and inferior
regions, we explored the regional heterogeneity of neurons by
calculating the Pearson correlation between single cells of the
heterogeneous genes for each sub-cluster whose cell number was
> 200. For each sub-cluster, we used Seurat to identify HVGs with
an average expression > 1 and a dispersion > 1. We then
calculated the Pearson correlation using these HVGs. For cells of
each sub-cluster in a certain region, we first obtained the
correlation distribution of single cells in that region, excluded
self-correlation values (for which the value should be 1) and then
calculated the correlation with cells in each of the other four
regions. Wilcox.test in R was performed to test the significance of
correlation between two distributions. To ensure that the
conclusion was valid, we also identified HVGs with an average
expression > 1 and dispersion > 0.5 to calculate the Pearson
correlation and tested the significance of correlations between
two distributions. The results of this procedure were similar (data
not shown).

Developmental maturation degree across the whole cortex
We used two independent methods to estimate the develop-
mental maturation degree across the whole cortex. The first
method evaluated synapse formation and function across cortical
regions. The rationale was that a region is believed to be more
mature if there are more cells that have formed synapses or whose
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synapses are functional. Thus, we calculated the mean expression
of the gene set of GO terms 0007268-0007271 and 0016079-
0016082 for each neuron (including both excitatory and inhibitory
neurons) and averaged the expression values for a certain region,
which was regarded as an indicator of synapse formation and
function for that region. In addition, regions with fewer than 50
excitatory neurons were excluded. We then displayed the values
of the cortical regions using heatmaps (see Fig. 4e).
The second method estimated the ratio of excitatory neurons

expressing CUX2. Because CUX2 is an upper layer marker and
cortical development follows an inside-out order for layer
formation, a region is more mature if there are more excitatory
neurons expressing CUX2. In this analysis, only excitatory neurons
whose CUX2 expression value based on the log2(TPM/10 + 1) was
> 1 were deemed to exhibit true expression. Thus, for a certain
region, the ratio of excitatory neurons expressing CUX2 was
calculated as excitatory neurons expressing CUX2/all excitatory
neurons. In addition, regions with fewer than 50 excitatory
neurons were excluded. We also displayed these cortical region
values using heatmaps (see Fig. 4c).

RT-qPCR validation
We dissected the IG, IT, PC, SP regions when we received the brain
sample of a 22 W female embryo. Each region was digested into
cell suspensions before extracting the total RNA with QIAGEN
RNeasy mini kit (QIAGEN, Cat# 74104). Then reverse transcription
was carried out in a volume of 19 μl, containing 2.5 ng/μl oligod(T)
primer (Takara, Cat# 3806), 0.5 mM dNTP mixture (Takara, Cat#
R045B), 2 U/μl RNase inhibitor (Ambion, Cat# AM2684), 5 mM DTT,
1× first strand and 0.5 U/μl superscript III reverse transcriptase
(Invitrogen, Cat# 18080-044). After reverse transcription at 50 °C
for 60 min and 70 °C for 15 min to inactivate the enzyme, 1 μl
RNase H (Invitrogen, Cat# 18021-071) was added into each
reaction tube to digest RNA. For each sample we added nuclease-
free water to obtain 1 ng/μl cDNA. The qPCR detection was run on
CFX connect system (Biorad) using SYBR Green (Roche, Cat#
13396700). Primers for each genes: GAPDH forward, CGACACC-
CACTCCTCCACCT, reverse, CTTGTGCTCTTGCTGGGGCT; NRGN for-
ward, AGCGTCACCCAAGCACACTC, reverse, GCAAGGGTCGTCCG
AAACCA; GAD1 forward, CGCTCTCTGTCTGGCTGTACG, reverse,
ACAGTTGTGAGCCTGGTCACTT; NEUROD2 forward, GGTTCCCCC
AAAAAGGGGCA, reverse, GGGTGTCCGACGGGAGTTTC.

Immunohistochemistry
We fixed tissue samples in 4% paraformaldehyde for 16 h,
cryoprotected them in 30% sucrose, and embedded them in
optimal cutting temperature compound (Thermo Scientific). Then,
40-μm cryosections were collected on Superfrost slides (VWR)
using a Leica CM3050S cryostat. Primary antibodies rabbit anti-
NEUROD2 (1:500, Abcam ab104430), mouse anti-TNNT2 (1:100,
Abcam ab8295), rabbit anti-GFAP (1:250, Sigma G9269) were
diluted in blocking buffer containing 10% donkey serum, 0.5%
Triton X-100 and 0.2% gelatin diluted in PBS at pH 7.4. Binding was
revealed using an appropriate Alexa FluorTM 488, Alexa FluorTM
594, or Alexa FluorTM 647 fluorophore-conjugated secondary
antibody (Life Technologies). Cell nuclei were counter-stained
using DAPI (Life Technologies). Images were collected using an
Olympus FV1000 confocal microscope.

In situ hybridization
Probes complementary to target human mRNAs used for RNA
in situ hybridization were cloned from primary human fetal
cortical cDNA reverse-transcribed using PrimeScript II 1st Strand
cDNA Synthesis Kit (Takara) with oligo dT primers. The RNA
samples were isolated from 22W and 23W human cortex using SV
Total RNA Isolation System (Promega). Specific genes were
amplified using the following primers: RAMP3 forward, AAG GCT
TTC GCA GAC ATG AT, reverse, ACA GGA TGC AGC AGG TGA TT;

PTGDS forward, GCT CCT CCT GCA CAC CTC, reverse, CAA TGG TAT
CCT CTG TGA AGC CC; CUX2 forward, CTG GAG AAG AAA GCC TAC
CT, reverse, GAC AGG TGA CAC AGA CAT CAT G. Primers specific to
target genes of interest were designed using Primer3. PCR used
Q5 High-Fidelity DNA Polymerase (NEB). PCR products of
predicted band sizes were gel-extracted and ligated using the
Hieff CloneTM Plus One Step Cloning Kit (Yeason). Ligation
products were transfected into Trans5α Chemically Competent E.
coli (Transgene). Cloned sequences were confirmed by sequen-
cing. Digoxigenin-labeled RNA probes for in situ hybridization
were generated by linearizing the pSPT18 Vector and in vitro-
transcribing the probe using T7 or SP6 RNA Polymerase (Roche) in
the presence of DIG-RNA Labeling Mix (Roche). In situ hybridiza-
tion was performed blinded to the sense/antisense status of each
probe, and sense control probes gave no signal (data not shown).
The in situ hybridization protocol was described previously (Inma
Cobos).

Data and software availability
The accession number for all sequencing data reported in this
paper is GEO: GSE103723 (The following secure token has been
created to allow review of record GSE103723 while it remains in
private status: wnyxaammzloppsl). The expression pattern of our
single-cell RNA-seq data are available from the corresponding
author upon request.
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