Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nociceptor neurons promote PDAC progression and cancer pain by interaction with cancer-associated fibroblasts and suppression of natural killer cells

Abstract

The emerging field of cancer neuroscience has demonstrated great progress in revealing the crucial role of the nervous system in cancer initiation and progression. Pancreatic ductal adenocarcinoma (PDAC) is characterized by perineural invasion and modulated by autonomic (sympathetic and parasympathetic) and sensory innervations. Here, we further demonstrated that within the tumor microenvironment of PDAC, nociceptor neurons interacted with cancer-associated fibroblasts (CAFs) through calcitonin gene-related peptide (CGRP) and nerve growth factor (NGF). This interaction led to the inhibition of interleukin-15 expression in CAFs, suppressing the infiltration and cytotoxic function of natural killer (NK) cells and thereby promoting PDAC progression and cancer pain. In PDAC patients, nociceptive innervation of tumor tissue is negatively correlated with the infiltration of NK cells while positively correlated with pain intensity. This association serves as an independent prognostic factor for both overall survival and relapse-free survival for PDAC patients. Our findings highlight the crucial regulation of NK cells by nociceptor neurons through interaction with CAFs in the development of PDAC. We also propose that targeting nociceptor neurons or CGRP signaling may offer a promising therapy for PDAC and cancer pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ablation of nociceptor neurons suppresses PDAC development and cancer pain.
Fig. 2: Ablation of nociceptor neurons improves the infiltration and cytotoxic function of NK cells.
Fig. 3: NK cells but not T cells mediated the inhibitory effect of nociceptor neurons on PDAC.
Fig. 4: CGRP modulates NK cells contributing to PDAC progression.
Fig. 5: IL-15 mediates the modulation of CGRP on NK cells.
Fig. 6: CGPR inhibits IL-15 secretion from CAFs.
Fig. 7: Interaction of nociceptive neurons with CAFs to suppress NK cells.
Fig. 8: Negative correlation of nociceptive innervation with survival of PDAC patients.

Similar content being viewed by others

Data availability

Deidentified scRNA-seq raw data are available from the National Genomics Data Center (https://ngdc.cncb.ac.cn/subcenter/1) under accession number OEP005530 (Shared URL: https://www.biosino.org/node/project/detail/OEP005530). Further information related to the data reported in this paper can be acquired from the lead contact Jihui Hao (haojihui@tjmuch.com) upon reasonable request.

References

  1. Monje, M. et al. Roadmap for the emerging field of cancer neuroscience. Cell 181, 219–222 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Winkler, F. et al. Cancer neuroscience: state of the field, emerging directions. Cell 186, 1689–1707 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mancusi, R. & Monje, M. The neuroscience of cancer. Nature 618, 467–479 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, K. et al. STING suppresses bone cancer pain via immune and neuronal modulation. Nat. Commun. 12, 4558 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanahan, D. & Monje, M. Cancer hallmarks intersect with neuroscience in the tumor microenvironment. Cancer Cell 41, 573–580 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shi, D. D. et al. Therapeutic avenues for cancer neuroscience: translational frontiers and clinical opportunities. Lancet Oncol. 23, e62–e74 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferdoushi, A. et al. Tumor innervation and clinical outcome in pancreatic cancer. Sci. Rep. 11, 7390 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kondo, N. et al. An increased number of perineural invasions is independently associated with poor survival of patients with resectable pancreatic ductal adenocarcinoma. Pancreas 44, 1345–1351 (2015).

    Article  PubMed  Google Scholar 

  9. Crippa, S. et al. Implications of perineural invasion on disease recurrence and survival after pancreatectomy for pancreatic head ductal adenocarcinoma. Ann. Surg. 276, 378–385 (2022).

    Article  PubMed  Google Scholar 

  10. Hinshaw, D. C. & Shevde, L. A. The tumor microenvironment innately modulates cancer progression. Cancer Res. 79, 4557–4566 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, H. et al. Role of the nervous system in cancers: a review. Cell Death Discov. 7, 76 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Demir, I. E. et al. Targeting nNOS ameliorates the severe neuropathic pain due to chronic pancreatitis. EBioMedicine 46, 431–443 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ceyhan, G. O. et al. Pancreatic neuropathy results in “neural remodeling” and altered pancreatic innervation in chronic pancreatitis and pancreatic cancer. Am. J. Gastroenterol. 104, 2555–2565 (2009).

    Article  PubMed  Google Scholar 

  14. Grossberg, A. J. et al. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. CA Cancer J. Clin. 70, 375–403 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ni, B. et al. Crosstalk between peripheral innervation and pancreatic ductal adenocarcinoma. Neurosci. Bull. 39, 1717–1731 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saloman, J. L. et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc. Natl. Acad. Sci. USA 113, 3078–3083 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sinha, S. et al. PanIN neuroendocrine cells promote tumorigenesis via neuronal cross-talk. Cancer Res. 77, 1868–1879 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, M. et al. Innervation of nociceptor neurons in the spleen promotes germinal center responses and humoral immunity. Cell 187, 2935–2951.e19 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Balood, M. et al. Nociceptor neurons affect cancer immunosurveillance. Nature 611, 405–412 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pinho-Ribeiro, F. A. et al. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell 173, 1083–1097.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baral, P. et al. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia. Nat. Med. 24, 417–426 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tamari, M. et al. Sensory neurons promote immune homeostasis in the lung. Cell 187, 44–61.e17 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Ceyhan, G. O. et al. Pancreatic neuropathy and neuropathic pain—a comprehensive pathomorphological study of 546 cases. Gastroenterology 136, 177–186.e1 (2009).

    Article  PubMed  Google Scholar 

  24. Selvaraj, D., Hirth, M., Gandla, J. & Kuner, R. A mouse model for pain and neuroplastic changes associated with pancreatic ductal adenocarcinoma. Pain 158, 1609–1621 (2017).

    Article  PubMed  Google Scholar 

  25. Li, L. et al. The impact of TRPV1 on cancer pathogenesis and therapy: a systematic review. Int J. Biol. Sci. 17, 2034–2049 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lai, N. Y. et al. Gut-innervating nociceptor neurons regulate Peyer’s Patch Microfold cells and SFB levels to mediate Salmonella host defense. Cell 180, 33–49.e22 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, X. et al. Phenotype screens of murine pancreatic cancer identify a Tgf-α-Ccl2-paxillin axis driving human-like neural invasion. J. Clin. Invest. 133, e166333 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Makhmutova, M. & Caicedo, A. Optical imaging of pancreatic innervation. Front. Endocrinol. 12, 663022 (2021).

    Article  Google Scholar 

  29. Schwartz, E. S. et al. TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis. J. Neurosci. 33, 5603–5611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma, Y. et al. Combination of PD-1 inhibitor and OX40 agonist induces tumor rejection and immune memory in mouse models of pancreatic cancer. Gastroenterology 159, 306–319.e12 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, K. et al. PD-1 blockade inhibits osteoclast formation and murine bone cancer pain. J. Clin. Invest. 130, 3603–3620 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wakabayashi, H. et al. Decreased sensory nerve excitation and bone pain associated with mouse Lewis lung cancer in TRPV1-deficient mice. J. Bone Miner. Metab. 36, 274–285 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Y., Chen, M., Liu, Z., Wang, X. & Ji, T. The neuropeptide calcitonin gene-related peptide links perineural invasion with lymph node metastasis in oral squamous cell carcinoma. BMC Cancer 21, 1254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Croop, R. et al. Oral rimegepant for preventive treatment of migraine: a phase 2/3, randomised, double-blind, placebo-controlled trial. Lancet 397, 51–60 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Lipton, R. B. et al. Rimegepant, an oral calcitonin gene-related peptide receptor antagonist, for migraine. N. Engl. J. Med. 381, 142–149 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Shimasaki, N., Jain, A. & Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug Discov. 19, 200–218 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Dean, I. et al. Rapid functional impairment of natural killer cells following tumor entry limits anti-tumor immunity. Nat. Commun. 15, 683 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, D. & Wei, H. Natural killer cells in tumor immunotherapy. Cancer Biol. Med. 20, 539–544 (2023).

    PubMed  PubMed Central  Google Scholar 

  39. Kurz, E. et al. Exercise-induced engagement of the IL-15/IL-15Rα axis promotes anti-tumor immunity in pancreatic cancer. Cancer Cell 40, 720–737.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rebelo, R., Xavier, C. P. R., Giovannetti, E. & Vasconcelos, M. H. Fibroblasts in pancreatic cancer: molecular and clinical perspectives. Trends Mol. Med. 29, 439–453 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Li, X. et al. Sonic hedgehog paracrine signaling activates stromal cells to promote perineural invasion in pancreatic cancer. Clin. Cancer Res. 20, 4326–4338 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Stopczynski, R. E. et al. Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma. Cancer Res. 74, 1718–1727 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saloman, J. L. et al. Systemic depletion of nerve growth factor inhibits disease progression in a genetically engineered model of pancreatic ductal adenocarcinoma. Pancreas 47, 856–863 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ye, Y., Xie, T. & Amit, M. Targeting the nerve-cancer circuit. Cancer Res. 83, 2445–2447 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, B. et al. Combinatorial sympathetic and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) blockades inhibit the murine melanoma growth by targeting infiltrating T cells. Transl. Cancer Res. 10, 899–913 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Globig, A. M. et al. The β(1)-adrenergic receptor links sympathetic nerves to T cell exhaustion. Nature 622, 383–392 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, M. W. et al. Perineural invasion reprograms the immune microenvironment through cholinergic signaling in pancreatic ductal adenocarcinoma. Cancer Res. 80, 1991–2003 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Szallasi, A. Resiniferatoxin: Nature’s precision medicine to silence TRPV1-positive afferents. Int. J. Mol. Sci. 24, 15042 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brown, D. C. Resiniferatoxin: The evolution of the “Molecular Scalpel” for chronic pain relief. Pharmaceuticals 9, 47 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Brown, D. C., Agnello, K. & Iadarola, M. J. Intrathecal resiniferatoxin in a dog model: efficacy in bone cancer pain. Pain 156, 1018–1024 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schnittert, J., Bansal, R. & Prakash, J. Targeting pancreatic stellate cells in cancer. Trends Cancer 5, 128–142 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Sparmann, G. et al. Inhibition of lymphocyte apoptosis by pancreatic stellate cells: impact of interleukin-15. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G842–G851 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Ma, S., Caligiuri, M. A. & Yu, J. Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol. 43, 833–847 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vivier, E. et al. Natural killer cell therapies. Nature 626, 727–736 (2024).

    Article  CAS  PubMed  Google Scholar 

  55. Renz, B. W. et al. β2 Adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 33, 75–90.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Ramer, M. S., Bradbury, E. J., Michael, G. J., Lever, I. J. & McMahon, S. B. Glial cell line-derived neurotrophic factor increases calcitonin gene-related peptide immunoreactivity in sensory and motoneurons in vivo. Eur. J. Neurosci. 18, 2713–2721 (2003).

    Article  PubMed  Google Scholar 

  57. Kobayashi, H. et al. Neuro-mesenchymal interaction mediated by a β2 adrenergic-nerve growth factor feedforward loop promotes colorectal cancer progression. Cancer Discov. 15, 202–226 (2025).

    Article  CAS  PubMed  Google Scholar 

  58. Bennett, M. I. Mechanism-based cancer-pain therapy. Pain 158, S74–S78 (2017).

    Article  PubMed  Google Scholar 

  59. Schweizerhof, M. et al. Hematopoietic colony-stimulating factors mediate tumor-nerve interactions and bone cancer pain. Nat. Med. 15, 802–807 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Selvaraj, D. et al. A functional role for VEGFR1 expressed in peripheral sensory neurons in cancer pain. Cancer Cell 27, 780–796 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jimenez-Andrade, J. M., Ghilardi, J. R., Castañeda-Corral, G., Kuskowski, M. A. & Mantyh, P. W. Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain 152, 2564–2574 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhao, T. et al. ESE3-positive PSCs drive pancreatic cancer fibrosis, chemoresistance and poor prognosis via tumour-stromal IL-1β/NF-κB/ESE3 signalling axis. Br. J. Cancer 127, 1461–1472 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu, J. et al. Tumoral EHF predicts the efficacy of anti-PD1 therapy in pancreatic ductal adenocarcinoma. J. Exp. Med. 216, 656–673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Donnelly, C. R. et al. STING controls nociception via type I interferon signalling in sensory neurons. Nature 591, 275–280 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Luo, X. et al. IL-23/IL-17A/TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice. Neuron 109, 2691–2706.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lovell, M. R. et al. Effect of cancer pain guideline implementation on pain outcomes among adult outpatients with cancer-related pain: A stepped wedge cluster randomized trial. JAMA Netw. Open 5, e220060 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. de Conno, F. et al. Pain measurement in cancer patients: a comparison of six methods. Pain 57, 161–166 (1994).

    Article  PubMed  Google Scholar 

  68. Gerbershagen, H. J., Rothaug, J., Kalkman, C. J. & Meissner, W. Determination of moderate-to-severe postoperative pain on the numeric rating scale: a cut-off point analysis applying four different methods. Br. J. Anaesth. 107, 619–626 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would thank Prof. Zilong Wang (Southern University of Science and Technology, China) for providing TRPV1-Cre and DTR mice. This work was funded by the National Natural Science Foundation of China (82030092 and 82273362), Major Project of Tianjin Public Health Science and Technology Program (24ZXGZSY00020), Tianjin Key Medical Discipline (Specialty) Construction Project (TJYXZDXK-009A), and State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine Project (QZ23-1).

Author information

Authors and Affiliations

Authors

Contributions

J.H., R.R.J., X.W., and K.W. conceived and designed the study. K.W., B.N., Y.X., Z.L., L.Y., C.M., S.G., H.W., Y.M., T.X.Z., W.Y., F.Z., and Y.Z. performed the experiments. C.H., Y.X., T.S.Z., Y.F., A.C., C.Y., and J.Y. carried out data analysis. K.W. and X.W. wrote the first drafts of the manuscript; R.R.J. and J.H. edited the manuscript. Illustrations were created by B.N. and Y.X. using BioRender. All authors had full access to the data and approved the final version. J.H., X.W., R.R.J., and K.W. were responsible for the decision to submit the manuscript.

Corresponding authors

Correspondence to Kaiyuan Wang, Ru-Rong Ji, Xiuchao Wang or Jihui Hao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Ni, B., Xie, Y. et al. Nociceptor neurons promote PDAC progression and cancer pain by interaction with cancer-associated fibroblasts and suppression of natural killer cells. Cell Res 35, 362–380 (2025). https://doi.org/10.1038/s41422-025-01098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41422-025-01098-4

This article is cited by

Search

Quick links