Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanistic insights into RNA cleavage by human Argonaute2–siRNA complex

Abstract

In animals, AGO-clade Argonaute proteins utilize small interfering RNAs (siRNAs) as guides to recognize target with complete complementarity, resulting in target RNA cleavage that is a critical step for target silencing. These proteins feature a constricted nucleic acid-binding channel that limits base pairing between the guide and target beyond the seed region. How the AGO–siRNA complexes overcome this structural limitation and achieve efficient target cleavage remains unclear. We performed cryo-electron microscopy of human AGO–siRNA complexes bound to target RNAs of increasing lengths to examine the conformational changes associated with target recognition and cleavage. Initially, conformational transition propagates from the opening of the PAZ domain and extends through a repositioning of the PIWI–L1–N domain toward the binding channel, facilitating the capture of siRNA–target duplex. Subsequent extension of base pairing drives the downward movement of the PIWI–L1–N domain to enable catalytic activation. Finally, further base pairing toward the 3′ end of siRNA destabilizes the PAZ–N domain, resulting in a “uni-lobed” architecture, which might facilitate the multi-turnover action of the AGO–siRNA enzyme complex. In contrast to PIWI-clade Argonautes, the “uni-lobed” structure of the AGO complex makes multiple contacts with the target in the central region of the siRNA–target duplex, positioning it within the catalytic site. Our findings shed light on the stepwise mechanisms by which the AGO–siRNA complex executes target RNA cleavage and offer insights into the distinct operational modalities of AGO and PIWI proteins in achieving such cleavage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conformational dynamics of hAGO2 ternary complexes as complementarity extended towards the siRNA 3ʹ end.
Fig. 2: Structure of hAGO2–siRNA complex with complementary target of 12-nt.
Fig. 3: Structure of hAGO2–siRNA complex with complementary target of 14-nt.
Fig. 4: PAZ–N loop interaction is required to stimulate efficient slicing by extensive base pairing.
Fig. 5: Catalytic conformation of hAGO2–siRNA complex.
Fig. 6: Contacts in the central region are required to activate target cleavage.
Fig. 7: Structural comparison between MILI–piRNA–target (22-nt), EfPiwi–piRNA–target (25-nt) and hAGO2–siRNA–target (21-nt).

Similar content being viewed by others

References

  1. Meister, G. Argonaute proteins: Functional insights and emerging roles. Nat. Rev. Genet. 14, 447–459 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, X., Ramat, A., Simonelig, M. & Liu, M. F. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat. Rev. Mol. Cell Biol. 24, 123–141 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tang, G. siRNA and miRNA: An insight into RISCs. Trends Biochem. Sci. 30, 106–114 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Ghildiyal, M., Xu, J., Seitz, H., Weng, Z. & Zamore, P. D. Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 16, 43–56 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eichhorn, S. W. et al. MRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol. Cell 56, 104–115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bazzini, A. A., Lee, M. T. & Giraldez, A. J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mathonnet, G. et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317, 1764–1767 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Djuranovic, S., Nahvi, A. & Green, R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336, 237–240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol. 11, 599–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Chiu, Y. L. & Rana, T. M. RNAi in human cells: Basic structural and functional features of small interfering RNA. Mol. Cell 10, 549–561 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Chiu, Y. L. & Rana, T. M. siRNA function in RNAi: A chemical modification analysis. RNA 9, 1034–1048 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Jadhav, V., Vaishnaw, A., Fitzgerald, K. & Maier, M. A. RNA interference in the era of nucleic acid therapeutics. Nat. Biotechnol. 42, 394–405 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Wilkins, C. et al. RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 436, 1044–1047 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, X. H. et al. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312, 452–454 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheloufi, S., Dos Santos, C. O., Chong, M. M. W. & Hannon, G. J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cifuentes, D. et al. A novel miRNA processing pathway independent of dicer requires argonaute2 catalytic activity. Science 328, 1694–1698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, S. et al. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl. Acad. Sci. USA 107, 15163–15168 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jee, D. et al. Dual strategies for argonaute2-mediated biogenesis of erythroid miRNAs underlie conserved requirements for slicing in mammals. Mol. Cell 69, 265–278.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elkayam, E. et al. The structure of human argonaute-2 in complex with miR-20a. Cell 150, 100–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schirle, N. T. & MacRae, I. J. The crystal structure of human argonaute2. Science 336, 1037–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schirle, N. T., Sheu-Gruttadauria, J. & MacRae, I. J. Structural basis for microRNA targeting. Science 346, 608–613 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martinez, J. & Tuschl, T. RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev. 18, 975–980 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wee, L. M., Flores-Jasso, C. F., Salomon, W. E. & Zamore, P. D. Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 151, 1055–1067 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Becker, W. R. et al. High-throughput analysis reveals rules for target RNA binding and cleavage by AGO2. Mol. Cell 75, 741–755.e11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yuan, Y. R. et al. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol. Cell 19, 405–419 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Parker, J. S., Roe, S. M. & Barford, D. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J. 23, 4727–4737 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, Y. et al. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754–761 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang, G., Reinhart, B. J., Bartel, D. P. & Zamore, P. D. A biochemical framework for RNA silencing in plants. Genes Dev. 17, 49–63 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Caudy, A. A. et al. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).

  36. Ameres, S. L., Martinez, J. & Schroeder, R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130, 101–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Li, Z. et al. Structural insights into RNA cleavage by PIWI Argonaute. Nature 639, 250–259 (2024).

    Article  Google Scholar 

  38. Schirle, N. T., Sheu-Gruttadauria, J., Chandradoss, S. D., Joo, C. & MacRae, I. J. Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets. Elife 4, e07646 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Anzelon, T. A. et al. Structural basis for piRNA targeting. Nature 597, 285–289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, Y. et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921–926 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sheng, G. et al. Structure-based cleavage mechanism of Thermus thermophilus argonaute DNA guide strand-mediated DNA target cleavage. Proc. Natl. Acad. Sci. USA 111, 652–657 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Filipowicz, W. RNAi: The nuts and bolts of the RISC machine. Cell 122, 17–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Rivas, F. V. et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nat. Struct. Mol. Biol. 12, 340–349 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. De, N. et al. Highly complementary target RNAs promote release of guide RNAs from human argonaute2. Mol. Cell 50, 344–355 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hutvágner, G. et al. A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  PubMed  Google Scholar 

  46. Van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007).

    Article  PubMed  Google Scholar 

  47. Baccarini, A. et al. Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr. Biol. 21, 369–376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mohamed, A. A., Wang, P. Y., Bartel, D. P. & Vos, S. M. The structural basis for RNA slicing by human Argonaute2. Cell Rep. 44, 115166 (2025).

    Article  CAS  PubMed  Google Scholar 

  49. Sarkar, S., Gebert, L. F. R. & MacRae, I. J. Structural basis for gene silencing by siRNAs in humans. bioRxiv https://doi.org/10.1101/2024.12.05.627081 (2024).

  50. Sheu-Gruttadauria, J. et al. Structural basis for target-directed microRNA degradation. Mol. Cell 75, 1243–1255.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, P. Y. & Bartel, D. P. The guide-RNA sequence dictates the slicing kinetics and conformational dynamics of the Argonaute silencing complex. Mol. Cell 84, 2918–2934.e11 (2024).

    Article  CAS  PubMed  Google Scholar 

  52. Matsumoto, N. et al. Crystal structure of silkworm PIWI-clade argonaute Siwi bound to piRNA. Cell 167, 484–497.e9 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Li, Z. et al. Mammalian PIWI–piRNA–target complexes reveal features for broad and efficient target silencing. Nat. Struct. Mol. Biol. 31, 1222–1231 (2024).

    Article  CAS  PubMed  Google Scholar 

  54. Arif, A. et al. GTSF1 accelerates target RNA cleavage by PIWI-clade Argonaute proteins. Nature 608, 618–625 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiol, J. et al. RNA clamping by Vasa assembles a piRNA amplifier complex on transposon transcripts. Cell 157, 1698–1711 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Dai, S. et al. A family of C. elegans VASA homologs control Argonaute pathway specificity and promote transgenerational silencing. Cell Rep. 40, 111265 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Flores-Jasso, C. F., Salomon, W. E. & Zamore, P. D. Rapid and specific purification of Argonaute-small RNA complexes from crude cell lysates. RNA 19, 271–279 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Scheres, S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Emsley, P. & Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 2126–2132 (2004).

  61. Adams, P. D. et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  62. Pettersen, E. F. et al. UCSF Chimera — A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Craig C. Mello, Phillip D. Zamore, Dangsheng Li for insightful suggestions; members of Shen’s lab for discussions; Cryo-EM Facility of Westlake University for providing support on cryo-EM data collection. This work was supported by Westlake Education Foundation, Zhejiang Provincial Foundation of China (2021R01013), the National Natural Science Foundation of China (32070628), Westlake Education Foundation (041010140118), Zhejiang Provincial Key Laboratory Construction Project, and the Westlake Laboratory of Life Sciences to E.Z.S., the National Natural Science Foundation of China (32271261), Zhejiang Provincial Natural Science Foundation of China (LR22C050003), Westlake University (1011103860222B1), and Institutional Startup Grant from the Westlake Education Foundation (101486021901) to J.W.

Author information

Authors and Affiliations

Authors

Contributions

E.Z.S. conceived and designed the study. Z.L., Y.Z., Q.X., J.Z., T.Z., J.X. and S.L. performed experiments and analyzed the data. E.Z.S. wrote the manuscript with help from all authors; H.G., Z.Z., J.W. and E.Z.S. reviewed and edited the manuscript. E.Z.S. and J.W. supervised the project.

Corresponding authors

Correspondence to Jianping Wu or En-Zhi Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Fig. S1

Supplementary Fig. S2

Supplementary Fig. S3

Supplementary Fig. S4

Supplementary Fig. S5

Supplementary Fig. S6

Supplementary Fig. S7

Supplementary Fig. S8

Supplementary Fig. S9

Supplementary Fig. S10

Supplementary Fig. S11

Supplementary Table S1

Supplementary Table S2-S3

41422_2025_1114_MOESM14_ESM.mp4

Supplementary Video S1. Overview of cryo-EM density and the structural model of hAGO2D669A-siRNA-target (12-nt). The map and model are colored as in Fig. 1.

41422_2025_1114_MOESM15_ESM.mp4

Supplementary Video S2. Overview of cryo-EM density and the structural model of hAGO2D669A-siRNA-target (14-nt, sesqui-lobed).

41422_2025_1114_MOESM16_ESM.mp4

Supplementary Video S3. Overview of cryo-EM density and the structural model of hAGO2D669A-siRNA-target (14-nt, uni-lobed).

Supplementary Video S4. Overview of cryo-EM density and the structural model of hAGO2D669A-siRNA-target (19-nt).

Supplementary Video S5. Overview of cryo-EM density and the structural model of hAGO2D669A-siRNA-target (21-nt).

41422_2025_1114_MOESM19_ESM.mp4

Supplementary Video S6. Conformational dynamics of hAGO2 ternary complexes as complementarity extended towards the siRNA 3ʹ end.

41422_2025_1114_MOESM20_ESM.mp4

Supplementary Video S7. Conformational dynamics of MILI ternary complexes as complementarity extended towards the piRNA 3ʹ end.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xu, Q., Zhang, Y. et al. Mechanistic insights into RNA cleavage by human Argonaute2–siRNA complex. Cell Res 35, 453–464 (2025). https://doi.org/10.1038/s41422-025-01114-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41422-025-01114-7

Search

Quick links