Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A patient-derived organoid model captures fetal-like plasticity in colorectal cancer

Abstract

Phenotypic plasticity is a hallmark feature driving cancer progression, metastasis, and therapy resistance. Fetal-like transcriptional programs have been increasingly implicated in promoting plastic cell states, yet their roles remain difficult to study due to limitations of existing culture models. Here, we establish a chemically defined patient-derived organoid system that enables long-term expansion of colorectal cancer (CRC) cells while preserving fetal-like features associated with phenotypic plasticity. Using this model, we identify an oncofetal state (OnFS) that is enriched in advanced tumors and linked to key features of plasticity, including epithelial-mesenchymal plasticity, as well as increased metastasis and treatment resistance. Mechanistically, we show that FGF2-AP-1 signaling maintains the OnFS program and associated phenotypic plasticity in CRC. This model offers a powerful platform for studying the fetal-like features underlying cancer cell plasticity and their role in tumor progression and treatment resistance in CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A chemically defined organoid system enables long-term maintenance of fetal-like plasticity in patient-derived CRC models.
Fig. 2: A recurrent oncofetal-like transcriptional program marks a plastic subpopulation associated with CRC progression and poor prognosis.
Fig. 3: CiPDOs preserve oncofetal-like transcriptional states in vitro and in vivo.
Fig. 4: FGF2-AP-1 signaling supports the maintenance of fetal-like plasticity in CiPDOs.

Similar content being viewed by others

Data availability

The datasets generated during the current study are available in the GEO database (GSE261012, GSE261004). All other data used in this study are provided within the article as Source Data or are available from the corresponding authors upon reasonable request.

References

  1. Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fey, S. K., Vaquero-Siguero, N. & Jackstadt, R. Dark force rising: Reawakening and targeting of fetal-like stem cells in colorectal cancer. Cell Rep. 43, 114270 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Sharma, A., Bleriot, C., Currenti, J. & Ginhoux, F. Oncofetal reprogramming in tumour development and progression. Nat. Rev. Cancer 22, 593–602 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Fazilaty, H. & Basler, K. Reactivation of embryonic genetic programs in tissue regeneration and disease. Nat. Genet. 55, 1792–1806 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Mzoughi, S. et al. Oncofetal reprogramming drives phenotypic plasticity in WNT-dependent colorectal cancer. Nat. Genet. 57, 402–412 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nusse, Y. M. et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature 559, 109–113 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moorman, A. R. et al. Progressive plasticity during colorectal cancer metastasis. Nature 637, 947–954 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lukonin, I. et al. Phenotypic landscape of intestinal organoid regeneration. Nature 586, 275–280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qu, M. et al. Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration. Cell Res. 31, 259–271 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Barkley, D. et al. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat. Genet. 54, 1192–1201 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fujii, M. & Sato, T. Somatic cell-derived organoids as prototypes of human epithelial tissues and diseases. Nat. Mater. 20, 156–169 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Fujii, M. et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18, 827–838 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. LeSavage, B. L., Suhar, R. A., Broguiere, N., Lutolf, M. P. & Heilshorn, S. C. Next-generation cancer organoids. Nat. Mater. 21, 143–159 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Corsini, N. S. & Knoblich, J. A. Human organoids: New strategies and methods for analyzing human development and disease. Cell 185, 2756–2769 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, J., Sun, S. & Deng, H. Chemical reprogramming for cell fate manipulation: Methods, applications, and perspectives. Cell Stem Cell 30, 1130–1147 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Xiang, C. et al. Long-term functional maintenance of primary human hepatocytes in vitro. Science 364, 399–402 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Guan, J. et al. Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature 605, 325–331 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Vasquez, E. G. et al. Dynamic and adaptive cancer stem cell population admixture in colorectal neoplasia. Cell Stem Cell 29, 1213–1228.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Qin, X. et al. An oncogenic phenoscape of colonic stem cell polarization. Cell 186, 5554–5568.e18 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. de Lau, W. et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476, 293–297 (2011).

    Article  PubMed  Google Scholar 

  25. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haramis, A. P. et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303, 1684–1686 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. He, X. C. et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat. Genet. 36, 1117–1121 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Koo, J. et al. Live-cell invasive phenotyping uncovers ALK2 as a therapeutic target in LKB1-mutant lung cancer. Cancer Res. 84, 3761–3771 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sanvitale, C. E. et al. A new class of small molecule inhibitor of BMP signaling. PLoS One 8, e62721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blay, J. & Brown, K. D. Epidermal growth factor promotes the chemotactic migration of cultured rat intestinal epithelial cells. J. Cell Physiol. 124, 107–112 (1985).

    Article  CAS  PubMed  Google Scholar 

  31. Fujii, M. et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell 23, 787–793.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. He, G. W. et al. Optimized human intestinal organoid model reveals interleukin-22-dependency of paneth cell formation. Cell Stem Cell 29, 1333–1345.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grivennikov, S. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ye, X. & Weinberg, R. A. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol. 25, 675–686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang, J. & Weinberg, R. A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Cook, D. P. & Vanderhyden, B. C. Transcriptional census of epithelial-mesenchymal plasticity in cancer. Sci. Adv. 8, eabi7640 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mustata, R. C. et al. Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep. 5, 421–432 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Bala, P. et al. Aberrant cell state plasticity mediated by developmental reprogramming precedes colorectal cancer initiation. Sci. Adv. 9, eadf0927 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gavish, A. et al. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours. Nature 618, 598–606 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Nagata, K. et al. Mesothelin expression is correlated with chemoresistance in Stage IV Colorectal Cancer. Ann. Surg. Oncol. 28, 8579–8586 (2021).

    Article  PubMed  Google Scholar 

  42. Cañellas-Socias, A. et al. Metastatic recurrence in colorectal cancer arises from residual EMP1(+) cells. Nature 611, 603–613 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Peng, M. et al. The role of Clusterin in cancer metastasis. Cancer Manag. Res. 11, 2405–2414 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gregorieff, A., Liu, Y., Inanlou, M. R., Khomchuk, Y. & Wrana, J. L. Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. Nature 526, 715–718 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Liu-Chittenden, Y. et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 26, 1300–1305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kamimoto, K. et al. Dissecting cell identity via network inference and in silico gene perturbation. Nature 614, 742–751 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zanconato, F. et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17, 1218–1227 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Whiting, F. J. H. & Graham, T. A. Plasticity in metastatic colorectal cancer. Dev. Cell 60, 171–173 (2025).

    Article  CAS  PubMed  Google Scholar 

  49. Moorman, A. et al. Progressive plasticity during colorectal cancer metastasis. Nature 637, 947–954 (2025).

    Article  CAS  PubMed  Google Scholar 

  50. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888–1902.e1821 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, J. et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173, 400–416.e11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Joanito, I. et al. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat. Genet. 54, 963–975 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kotliar, D. et al. Identifying gene expression programs of cell-type identity and cellular activity with singlecell RNA-Seq. Elife 8, e43803 (2019).

  59. He, P. et al. The changing mouse embryo transcriptome at whole tissue and single-cell resolution. Nature 583, 760–767 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Manders, F. et al. MutationalPatterns: the one stop shop for the analysis of mutational processes. BMC Genomics 23, 134 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Shicheng Sun, Jingyang Guan, Jinlin Wang for discussion of the manuscript. We thank Hui Wang for technical assistance with High-Content live imaging and 3D reconstruction. We thank the Optical Imaging Core Facility, National Center for Protein Sciences at Peking University in Beijing, China, for assistance with the use of High-Speed Spinning Disk Confocal Microscope, RS 2000, and Ms. Yan Luo for help with the multiplex immunofluorescence assay. We thank the flow cytometry Core at the National Center for Protein Sciences at Peking University, particularly Liying Du, Hongxia Lyu, Huan Yang and Jia Luo for technical help. We thank the National Center for Protein Sciences (Beijing) — the Protein Core at Peking University for assistance with the shRNA library and Dr Tao Xu for technical support. We would like to thank the Department of Laboratory Animals of Peking University Cancer Hospital for technical advice on animal experiments. We thank the High-Performance Computing Platform of the Center for Life Science, Peking University, for the support of bioinformatics calculations. This work was supported by the National Natural Science Foundation of China (32288102) and the National Key R&D Program of China Grant (2022YFA1103103).

Author information

Authors and Affiliations

Authors

Contributions

L.X. designed the research, performed experiments, analyzed the data and wrote the manuscript. Y.X., L.W. and C.L. performed the bioinformatics analysis. J.S. performed the PDOX experiments. Z.G., X.W., W.H. and M.L. acquired patient informed consents and clinical samples. Y.W. participated in immunohistochemistry imaging. J.X. wrote and revised the manuscript. H.D. and J.G. designed and supervised the study. M.Q. designed the research, analyzed the data, wrote the manuscript, and supervised the study. All authors edited and approved the manuscript.

Corresponding authors

Correspondence to Jin Gu, Hongkui Deng or Molong Qu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, L., Xu, Y., Gao, Z. et al. A patient-derived organoid model captures fetal-like plasticity in colorectal cancer. Cell Res 35, 642–655 (2025). https://doi.org/10.1038/s41422-025-01139-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41422-025-01139-y

This article is cited by

Search

Quick links