Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Establishment of human gastrulating stem cells with the capacity of stable differentiation into multiple gastrulating cell types

Abstract

Pluripotent stem cells (PSCs) have been derived from various species, but most culture systems stabilize only a single PSC type. By contrast, epiblast cells in vivo exist along a continuum and interact dynamically with both embryonic and extraembryonic cells, interactions missing in standard PSC cultures. This absence limits the self-organizing potential of PSCs and leads to disorganized tissue formation in teratomas. To address this, we developed a unified culture system that supports the stable differentiation of epiblast-like cells into multiple key human gastrulating cell types, collectively called human gastrulating stem cells (hGaSCs). hGaSCs, composed of endoderm-like, mesoderm-like, ectoderm-like, amnion ectoderm-like, and primordial germ cell-like cells, maintain a stable balance during long-term culture. In 3D culture, hGaSCs self-assemble into gastruloid-like structures (hGaSC-gastruloids) that model aspects of a Carnegie Stage 7 human embryo, including gastrulation and germ layer specification. Using hGaSC-gastruloids, we modeled the effects of valproic acid (VPA) on human gastrulation and uncovered molecular pathways underlying VPA-induced malformations. When transplanted into the seminiferous tubules, hGaSCs formed embryo-like structures, progressing through fetal tissue and organ development, unlike the disorganized growth seen in teratomas. In conclusion, hGaSCs provide a versatile platform to study human gastrulation, early organogenesis, developmental defects, and drug teratogenicity, with promising applications in tissue and organ generation from cultured stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Establishment of stable hGaSCs.
Fig. 2: Structure, morphology, and transcriptional characterization of hGaSC-gastruloids.
Fig. 3: Morphological and transcriptional characterization of t-Gastruloids formation from hGaSCs transplanted testes.
Fig. 4: Single-cell visualization of the ordered gastrulation pattern of hGaSCs in the testis.

Similar content being viewed by others

References

  1. Hoogland, S. H. A. & Marks, H. Developments in pluripotency: a new formative state. Cell Res. 31, 493–494 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Wei, Y. et al. Dissecting embryonic and extraembryonic lineage crosstalk with stem cell co-culture. Cell 186, 5859–5875.e24 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, L. et al. Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids. Cell 186, 3776–3792.e16 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, D. et al. Human primordial germ cells are specified from lineage-primed progenitors. Cell Rep. 29, 4568–4582.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kojima, Y. et al. Evolutionarily distinctive transcriptional and signaling programs drive human germ cell lineage specification from pluripotent stem cells. Cell Stem Cell 21, 517–532 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Xiang, L. et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 577, 537–542 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Tyser, R. C. V. et al. Single-cell transcriptomic characterization of a gastrulating human embryo. Nature 600, 285–289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mackinlay, K. M. et al. An in vitro stem cell model of human epiblast and yolk sac interaction. Elife 10, e63930 (2021).

  10. Chen, L. et al. The nuclear receptor HNF4 drives a brush border gene program conserved across murine intestine, kidney, and embryonic yolk sac. Nat. Commun. 12, 2886 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun, S. et al. A transgene-free, human peri-gastrulation embryo model with trilaminar embryonic disc-, amnion- and yolk sac-like structures. bioRxiv https://doi.org/10.1101/2024.08.05.606556 (2024).

  12. Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  Google Scholar 

  13. Xia, W. et al. Resetting histone modifications during human parental-to-zygotic transition. Science 365, 353–360 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, C. et al. A comprehensive human embryo reference tool using single-cell RNA-sequencing data. Nat. Methods 22, 193–206 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hu, Z. et al. Transient inhibition of mTOR in human pluripotent stem cells enables robust formation of mouse-human chimeric embryos. Sci. Adv. 6, eaaz0298 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sperber, H. et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat. Cell Biol. 17, 1523–1535 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Irie, N. et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell 160, 253–268 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu, L. et al. Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification. Cell Stem Cell 28, 550–567.e12 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Kinoshita, M. et al. Capture of mouse and human stem cells with features of formative pluripotency. Cell Stem Cell 28, 2180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rostovskaya, M., Andrews, S., Reik, W. & Rugg-Gunn, P. J. Amniogenesis occurs in two independent waves in primates. Cell Stem Cell 29, 744–759 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kobayashi, M. et al. Expanding homogeneous culture of human primordial germ cell-like cells maintaining germline features without serum or feeder layers. Stem Cell Rep. 17, 507–521 (2022).

    Article  CAS  Google Scholar 

  24. Zheng, Y. et al. Controlled modelling of human epiblast and amnion development using stem cells. Nature 573, 421–425 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chal, J. & Pourquié, O. Making muscle: skeletal myogenesis in vivo and in vitro. Development 144, 2104–2122 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, J. et al. Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors. Nat. Commun. 10, 2238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rito, T. et al. Timely TGFβ signalling inhibition induces notochord. Nature 637, 673–682 (2025).

    Article  CAS  PubMed  Google Scholar 

  28. Pedroza, M. et al. Self-patterning of human stem cells into post-implantation lineages. Nature 622, 574–583 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karvas, R. M. et al. 3D-cultured blastoids model human embryogenesis from pre-implantation to early gastrulation stages. Cell Stem Cell 30, 1148–1165.e47 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Weatherbee, B. A. T. et al. Pluripotent stem cell-derived model of the post-implantation human embryo. Nature 622, 584–593 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hislop, J. et al. Modelling post-implantation human development to yolk sac blood emergence. Nature 626, 367–376 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pham, T. X. A. et al. Modeling human extraembryonic mesoderm cells using naive pluripotent stem cells. Cell Stem Cell 29, 1346–1365.e10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oldak, B. et al. Complete human day 14 post-implantation embryo models from naive ES cells. Nature 622, 562–573 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kagawa, H. et al. Human blastoids model blastocyst development and implantation. Nature 601, 600–605 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, X. et al. Modelling human blastocysts by reprogramming fibroblasts into iBlastoids. Nature 591, 627–632 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Yu, L. et al. Blastocyst-like structures generated from human pluripotent stem cells. Nature 591, 620–626 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Fan, Y. et al. Generation of human blastocyst-like structures from pluripotent stem cells. Cell Discov. 7, 81 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sozen, B. et al. Reconstructing aspects of human embryogenesis with pluripotent stem cells. Nat. Commun. 12, 5550 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ai, Z. et al. Dissecting peri-implantation development using cultured human embryos and embryo-like assembloids. Cell Res. 33, 661–678 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhou, F. et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572, 660–664 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Molè, M. A. et al. A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre. Nat. Commun.12, 3679 (2021).

  42. Yanagida, A. et al. Naive stem cell blastocyst model captures human embryo lineage segregation. Cell Stem Cell 28, 1016–1022.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yan, L. et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131–1139 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Meistermann, D. et al. Integrated pseudotime analysis of human pre-implantation embryo single-cell transcriptomes reveals the dynamics of lineage specification. Cell Stem Cell 28, 1625–1640.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Zeng, B. et al. The single-cell and spatial transcriptional landscape of human gastrulation and early brain development. Cell Stem Cell 30, 851–866.e7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nakamura, T. et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Tang, X. et al. Improved in situ sequencing for high-resolution targeted spatial transcriptomic analysis in tissue sections. J. Genet. Genom. 50, 652–660 (2023).

    Article  Google Scholar 

  49. Briscoe, J. & Thérond, P. P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14, 416–429 (2013).

    Article  PubMed  Google Scholar 

  50. Karzbrun, E. et al. Human neural tube morphogenesis in vitro by geometric constraints. Nature 599, 268–272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chiu, C. T., Wang, Z., Hunsberger, J. G. & Chuang, D. M. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol. Rev. 65, 105–142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Balaskas, N. et al. Gene regulatory logic for reading the Sonic Hedgehog signaling gradient in the vertebrate neural tube. Cell 148, 273–284 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gutierrez-Aranda, I. et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 28, 1568–1570 (2010).

    Article  PubMed  Google Scholar 

  54. Kanatsu-Shinohara, M. et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell 119, 1001–1012 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Guan, K. et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440, 1199–1203 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Xu, Y. et al. A single-cell transcriptome atlas profiles early organogenesis in human embryos. Nat. Cell Biol. 25, 604–615 (2023).

    Article  PubMed  Google Scholar 

  57. Hu, Y. et al. Dissecting the transcriptome landscape of the human fetal neural retina and retinal pigment epithelium by single-cell RNA-seq analysis. PLoS Biol. 17, e3000365 (2019).

  58. Shahbazi, M. N., Siggia, E. D. & Zernicka-Goetz, M. Self-organization of stem cells into embryos: a window on early mammalian development. Science 364, 948–951 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martyn, I., Kanno, T. Y., Ruzo, A., Siggia, E. D. & Brivanlou, A. H. Self-organization of a human organizer by combined Wnt and Nodal signalling. Nature 558, 132–135 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moris, N., Alev, C., Pera, M. & Martinez Arias, A. Biomedical and societal impacts of in vitro embryo models of mammalian development. Stem Cell Rep. 16, 1021–1030 (2021).

    Article  Google Scholar 

  61. Mantziou, V. et al. In vitro teratogenicity testing using a 3D, embryo-like gastruloid system. Reprod. Toxicol. 105, 72–90 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McDonald, D. et al. Defining the teratoma as a model for multi-lineage human development. Cell 183, 1402–1419.e18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, H. et al. To better generate organoids, What can we learn from teratomas? Front. Cell Dev. Biol. 9, 700482 (2021).

  64. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. He, Z., Brazovskaja, A., Ebert, S., Camp, J. G. & Treutlein, B. CSS: cluster similarity spectrum integration of single-cell genomics data. Genome Biol. 21, 224 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jin, S., Plikus, M. V. & Nie, Q. CellChat for systematic analysis of cell-cell communication from single-cell transcriptomics. Nat. Protoc. 20, 180–219 (2025).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dangsheng Li and Yan Liu (Nanjing Medical University) for their valuable discussions and comments on our manuscript. This work was supported by the National Key R&D Program grant 2021YFC2700302 (Y.Y.), the National Natural Science Foundation of China grant 82122025 (Y.Y.), and 82221005 (J.S.), the National Key R&D Program grant 2021YFC2700200 (Y.C.), and Jiangsu Province Excellent Postdoctoral Program 2023ZB725 (M.H.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: J.S., Y.Y.; methodology: M.H., H.Z., G.Y., M.C., Y.C., S.Q.; investigation: M.H, H.Z., G.Y., M.C., Z.L., D.C., B.S., L.Q., J.L., L.L., J.C., Y.F.Z.; visualization: M.H., H.Z., G.Y., M.C., B.Z., Y.Y., Y.C.Z.; funding acquisition: J.S., Y.Y., Y.C., M.H.; project administration: J.S., Y.Y., J.W.; supervision: J.S., Y.Y.; writing — original draft: J.S., Y.Y., M.H., H.Z., G.Y., M.C.; writing — review & editing: J.S., J.W., Y.Y.

Corresponding authors

Correspondence to Hao Zhang, Jun Wu, Yan Yuan or Jiahao Sha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Chen, M., Yuan, G. et al. Establishment of human gastrulating stem cells with the capacity of stable differentiation into multiple gastrulating cell types. Cell Res 35, 719–734 (2025). https://doi.org/10.1038/s41422-025-01146-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41422-025-01146-z

This article is cited by

Search

Quick links