Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanisms of KCNQ1 gating modulation by KCNE1/3 for cell-specific function

Abstract

KCNQ1 potassium channels are essential for physiological processes such as cardiac rhythm and intestinal chloride secretion. KCNE family subunits (KCNE1–5) associate with KCNQ1, conferring distinct properties across various tissues. KCNQ1 activation requires membrane depolarization and phosphatidylinositol 4,5-bisphosphate (PIP2) whose cellular levels are controlled by Gαq-coupled GPCR activation. While modulation of KCNQ1’s voltage-dependent activation by KCNE1/3 is well-characterized, their effects on PIP2-dependent gating of KCNQ1 via GPCR signaling remain less understood. Here we resolved structures of KCNQ1–KCNE1 and reassessed the reported KCNQ1–KCNE3 structures with and without PIP2. We revealed that KCNQ1–KCNE1/3 complexes feature two PIP2-binding sites, with KCNE1/3 contributing to a previously overlooked, uncharacterized site involving residues critical for coupling voltage sensor and pore domains. Via this site, KCNE1 and KCNE3 distinctly modulate the PIP2-dependent gating, in addition to the voltage sensitivity, of KCNQ1. Consequently, KCNE3 converts KCNQ1 into a voltage-insensitive PIP2-gated channel governed by GPCR signaling to maintain ion homeostasis in non-excitable cells. KCNE1, by significantly enhancing KCNQ1’s PIP2 affinity and resistance to GPCR regulation, forms predominantly voltage-gated channels with KCNQ1 for conducting the slow-delayed rectifier current in excitable cardiac cells. Our study highlights how KCNE1/3 modulates KCNQ1 gating in different cellular contexts, providing insights into tissue-specifically targeting multi-functional channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural and functional characterization of KCNQ1 and KCNQ1–KCNEs.
Fig. 2: PIP2-binding sites in the KCNQ1–KCNE1 complex.
Fig. 3: PIP2-binding sites in KCNQ1 and KCNQ1–KCNE complexes.
Fig. 4: Sensitivity of KCNQ1 and KCNQ1–KCNE complexes to GqPCR pathway.
Fig. 5: Working model of the cell-specific regulation of KCNQ1.

Similar content being viewed by others

Data availability

Plasmids generated in this study are available upon request. All tpr files associated with MD simulations in this study are available through the link at Zenodo (https://zenodo.org/records/14632060). The cryo-EM maps of KCNQ1( + PIP2) and KCNQ1–KCNE1 ( + /–PIP2) have been deposited in the Electron Microscopy Data Bank under the accession codes: EMD-65013 (KCNQ1 with PIP2, bent), EMD-65014 (KCNQ1 with PIP2, straight), EMD-64997 (KCNQ1–KCNE1, bent) and EMD-65008 (KCNQ1–KCNE1 with PIP2, straight). The corresponding coordinates have been deposited in the Protein Data Bank under the accession codes: 9VEN, 9VEO, 9VEC, and 9VEI.

References

  1. Abbott, G. W. et al. KCNQ1, KCNE2, and Na+-coupled solute transporters form reciprocally regulating complexes that affect neuronal excitability. Sci. Signal 7, ra22 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Preston, P. et al. Disruption of the K+ channel beta-subunit KCNE3 reveals an important role in intestinal and tracheal Cl- transport. J. Biol. Chem. 285, 7165–7175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Manderfield, L. J. & George, A. L. Jr KCNE4 can co-associate with the I(Ks) (KCNQ1-KCNE1) channel complex. FEBS J. 275, 1336–1349 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Kunzelmann, K. et al. Expression and function of colonic epithelial KvLQT1 K+ channels. Clin. Exp. Pharm. Physiol. 28, 79–83 (2001).

    Article  CAS  Google Scholar 

  5. Grahammer, F. et al. The cardiac K+ channel KCNQ1 is essential for gastric acid secretion. Gastroenterology 120, 1363–1371 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Schroeder, B. C. et al. A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 403, 196–199 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Barhanin, J. et al. K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384, 78–80 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Sanguinetti, M. C. et al. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384, 80–83 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Jespersen, T., Grunnet, M. & Olesen, S. P. The KCNQ1 potassium channel: from gene to physiological function. Physiology 20, 408–416 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Yu, X. X. et al. Associations of KCNQ1 polymorphisms with the risk of type 2 diabetes mellitus: an updated meta-analysis with trial sequential analysis. J. Diabetes Res. 2020, 7145139 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lubberding, A. F. et al. Celebrities in the heart, strangers in the pancreatic beta cell: voltage-gated potassium channels K(v) 7.1 and K(v) 11.1 bridge long QT syndrome with hyperinsulinaemia as well as type 2 diabetes. Acta Physiol. 234, e13781 (2022).

    Article  CAS  Google Scholar 

  12. Nakano, Y. & Shimizu, W. Genetics of long-QT syndrome. J. Hum. Genet. 61, 51–55 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. McCrossan, Z. A. & Abbott, G. W. The MinK-related peptides. Neuropharmacology 47, 787–821 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Roura-Ferrer, M. et al. Impact of KCNE subunits on KCNQ1 (Kv7.1) channel membrane surface targeting. J. Cell Physiol. 225, 692–700 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Van Horn, W. D., Vanoye, C. G. & Sanders, C. R. Working model for the structural basis for KCNE1 modulation of the KCNQ1 potassium channel. Curr. Opin. Struct. Biol. 21, 283–291 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sesti, F. & Goldstein, S. A. Single-channel characteristics of wild-type IKs channels and channels formed with two minK mutants that cause long QT syndrome. J. Gen. Physiol. 112, 651–663 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang, Y. & Sigworth, F. J. Single-channel properties of IKs potassium channels. J. Gen. Physiol. 112, 665–678 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barro-Soria, R., Perez, M. E. & Larsson, H. P. KCNE3 acts by promoting voltage sensor activation in KCNQ1. Proc. Natl. Acad. Sci. USA 112, E7286–E7292 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barro-Soria, R. et al. KCNE1 and KCNE3 modulate KCNQ1 channels by affecting different gating transitions. Proc. Natl. Acad. Sci. USA 114, E7367–E7376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abbott, G. W. KCNE1 and KCNE3: The yin and yang of voltage-gated K(+) channel regulation. Gene. 576, 1–13 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Al-Hazza, A., Linley, J., Aziz, Q., Hunter, M. & Sandle, G. Upregulation of basolateral small conductance potassium channels (KCNQ1/KCNE3) in ulcerative colitis. Biochem Biophys. Res Commun. 470, 473–478 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Angelo, K. et al. KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current. Biophys. J. 83, 1997–2006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grunnet, M. et al. KCNE4 is an inhibitory subunit to the KCNQ1 channel. J. Physiol. 542, 119–130 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tinel, N., Diochot, S., Borsotto, M., Lazdunski, M. & Barhanin, J. KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel. EMBO J. 19, 6326–6330 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Loussouarn, G. et al. Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels. EMBO J. 22, 5412–5421 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zaydman, M. A. et al. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. Proc. Natl. Acad. Sci. USA 110, 13180–13185 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zaydman, M. A. & Cui, J. PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating. Front Physiol. 5, 195 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sun, J. & MacKinnon, R. Cryo-EM structure of a KCNQ1/CaM complex reveals insights into congenital long QT syndrome. Cell 169, 1042–1050.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun, J. & MacKinnon, R. Structural basis of human KCNQ1 modulation and gating. Cell 180, 340–347.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Ma, D. et al. Structural mechanisms for the activation of human cardiac KCNQ1 channel by electro-mechanical coupling enhancers. Proc. Natl. Acad. Sci. USA 119, e2207067119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sanchez-Fernandez, G. et al. Galphaq signalling: the new and the old. Cell Signal 26, 833–848 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Brown, D. A. & Adams, P. R. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283, 673–676 (1980).

    Article  CAS  PubMed  Google Scholar 

  33. Li, Y. et al. KCNE1 enhances phosphatidylinositol 4,5-bisphosphate (PIP2) sensitivity of IKs to modulate channel activity. Proc. Natl. Acad. Sci. USA 108, 9095–9100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chung, D. Y. et al. Location of KCNE1 relative to KCNQ1 in the I(KS) potassium channel by disulfide cross-linking of substituted cysteines. Proc. Natl. Acad. Sci. USA 106, 743–748 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nath, A., Atkins, W. M. & Sligar, S. G. Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46, 2059–2069 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Denisov, I. G. & Sligar, S. G. Nanodiscs for structural and functional studies of membrane proteins. Nat. Struct. Mol. Biol. 23, 481–486 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Willegems, K. et al. Structural and electrophysiological basis for the modulation of KCNQ1 channel currents by ML277. Nat. Commun. 13, 3760 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, K. W. & Goldstein, S. A. Subunit composition of minK potassium channels. Neuron 14, 1303–1309 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, W., Xia, J. & Kass, R. S. MinK-KvLQT1 fusion proteins, evidence for multiple stoichiometries of the assembled IsK channel. J. Biol. Chem. 273, 34069–34074 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, H., Kim, L. A., Rajan, S., Xu, S. & Goldstein, S. A. Charybdotoxin binding in the I(Ks) pore demonstrates two MinK subunits in each channel complex. Neuron 40, 15–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Morin, T. J. & Kobertz, W. R. Counting membrane-embedded KCNE beta-subunits in functioning K+ channel complexes. Proc. Natl. Acad. Sci. USA 105, 1478–1482 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakajo, K., Ulbrich, M. H., Kubo, Y. & Isacoff, E. Y. Stoichiometry of the KCNQ1 - KCNE1 ion channel complex. Proc. Natl. Acad. Sci. USA 107, 18862–18867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Murray, C. I. et al. Unnatural amino acid photo-crosslinking of the IKs channel complex demonstrates a KCNE1:KCNQ1 stoichiometry of up to 4:4. Elife 5, e11815 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Long, S. B., Campbell, E. B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Zheng, Y. et al. Structural insights into the lipid and ligand regulation of a human neuronal KCNQ channel. Neuron 110, 237–247.e4 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Ishii, M. & Kurachi, Y. Muscarinic acetylcholine receptors. Curr. Pharm. Des. 12, 3573–3581 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Tang, C., Castoldi, A. F. & Costa, L. G. Effects of the muscarinic agonist oxotremorine on membrane fluidity in rat lymphocytes. Biochem Mol. Biol. Int. 29, 1047–1054 (1993).

    CAS  PubMed  Google Scholar 

  48. Sabbir, M. G., Calcutt, N. A. & Fernyhough, P. Muscarinic acetylcholine type 1 receptor activity constrains neurite outgrowth by inhibiting microtubule polymerization and mitochondrial trafficking in adult sensory neurons. Front Neurosci. 12, 402 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bae, Y. S. et al. Identification of a compound that directly stimulates phospholipase C activity. Mol. Pharm. 63, 1043–1050 (2003).

    Article  CAS  Google Scholar 

  50. Mandala, V. S. & MacKinnon, R. The membrane electric field regulates the PIP(2)-binding site to gate the KCNQ1 channel. Proc. Natl. Acad. Sci. USA 120, e2301985120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Matavel, A. & Lopes, C. M. PKC activation and PIP(2) depletion underlie biphasic regulation of IKs by Gq-coupled receptors. J. Mol. Cell Cardiol. 46, 704–712 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jensen, B. C., O’Connell, T. D. & Simpson, P. C. Alpha-1-adrenergic receptors: targets for agonist drugs to treat heart failure. J. Mol. Cell Cardiol. 51, 518–528 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Kienitz, M. C., Vladimirova, D., Muller, C., Pott, L. & Rinne, A. Receptor species-dependent desensitization controls KCNQ1/KCNE1 K+ channels as downstream effectors of Gq protein-coupled receptors. J. Biol. Chem. 291, 26410–26426 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Daleau, P. & Turgeon, J. Angiotensin II modulates the delayed rectifier potassium current of guinea pig ventricular myocytes. Pflug. Arch. 427, 553–555 (1994).

    Article  CAS  Google Scholar 

  55. Matsumoto, Y. et al. Histamine H1-receptor-mediated modulation of the delayed rectifier K+ current in guinea-pig atrial cells: opposite effects on IKs and IKr. Br. J. Pharm. 128, 1545–1553 (1999).

    Article  CAS  Google Scholar 

  56. Julio-Kalajzic, F. et al. K(2P) TASK-2 and KCNQ1-KCNE3 K(+) channels are major players contributing to intestinal anion and fluid secretion. J. Physiol. 596, 393–407 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Abbott, G. W. et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97, 175–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Bian, J., Cui, J. & McDonald, T. V. HERG K(+) channel activity is regulated by changes in phosphatidyl inositol 4,5-bisphosphate. Circ. Res. 89, 1168–1176 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Lussier, Y. et al. Disease-linked mutations alter the stoichiometries of HCN-KCNE2 complexes. Sci. Rep. 9, 9113 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. McCrossan, Z. A. et al. MinK-related peptide 2 modulates Kv2.1 and Kv3.1 potassium channels in mammalian brain. J. Neurosci. 23, 8077–8091 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Abbott, G. W. Beta subunits control the effects of human Kv4.3 potassium channel phosphorylation. Front Physiol. 8, 646 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Avalos Prado, P. et al. KCNE1 is an auxiliary subunit of two distinct ion channel superfamilies. Cell 184, 534–544.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Talbi, K., Ousingsawat, J., Centeio, R., Schreiber, R. & Kunzelmann, K. KCNE1 does not shift TMEM16A from a Ca(2+) dependent to a voltage dependent Cl(-) channel and is not expressed in renal proximal tubule. Pflug. Arch. 475, 995–1007 (2023).

    Article  CAS  Google Scholar 

  64. Gada, K. D. & Logothetis, D. E. PKC regulation of ion channels: the involvement of PIP(2). J. Biol. Chem. 298, 102035 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem J. 478, 4169–4185 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Asarnow, D., Palovcak, E., Cheng, Y. UCSF pyem v0.5, <https://doi.org/10.5281/zenodo.3576630 > (2019).

  71. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  72. Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D Biol. Crystallogr. 65, 1074–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph 14, 354–360, 376 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ye, W. et al. Activation and closed-state inactivation mechanisms of the human voltage-gated K(V)4 channel complexes. Mol. Cell 82, 2427–2442.e4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P. & de Vries, A. H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B. 111, 7812–7824 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Wassenaar, T. A., Ingolfsson, H. I., Bockmann, R. A., Tieleman, D. P. & Marrink, S. J. Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J. Chem. Theory Comput. 11, 2144–2155 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Pronk, S. et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29, 845–854 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article  PubMed  Google Scholar 

  84. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Article  CAS  Google Scholar 

  85. Corey, R. A., Vickery, O. N., Sansom, M. S. P. & Stansfeld, P. J. Insights into membrane protein-lipid interactions from free energy calculations. J. Chem. Theory Comput. 15, 5727–5736 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Klimovich, P. V., Shirts, M. R. & Mobley, D. L. Guidelines for the analysis of free energy calculations. J. Comput. Aided Mol. Des. 29, 397–411 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vickery, O. N. & Stansfeld, P. J. CG2AT2: an enhanced fragment-based approach for serial multi-scale molecular dynamics simulations. J. Chem. Theory Comput. 17, 6472–6482 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bernetti, M. & Bussi, G. Pressure control using stochastic cell rescaling. J. Chem. Phys. 153, 114107 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff at the cryo-EM facility at St Jude Children’s Research Hospital for help with data collection, Ines Chen for constructive feedback on manuscript writing and members from Sun lab, including Xiao Chen, Patricia Hixson and Hanwen Zhu for helpful discussions and support. This research is funded by American Lebanese Syrian Associated Charities (ALSAC), President Young Professorship (PYP) from National University of Singapore, MOE Tier 1 grant A-8002958-00-00 and NIH R00HL143037 (to J.S.); US-Israel BSF research grant 2019159, NIH R01 HL155398 and R01 HL166628 (to J.C.); the Knut and Alice Wallenberg Foundation, the Science for Life Laboratory, the Swedish eScience Research Center and Swedish Research Council grants VR 2019-02433 and 2022-04305 (to L.D.); the National Academic Infrastructure for Supercomputing in Sweden (NAISS) and the Swedish Research Council through grant agreement no. 2022-06725 (to L.D.) funded the MD simulations; Ministry of Education Tier 1 and 2 grants A-8000037-00-00, A-8002962-00-00, T2EP30222-0042, National University of Singapore PYP A-0008405-00-00, A-0008405-01-00 and National Research Foundation Fellowship grant NRFF15-2023-0005 (to Y.Z.T.).

Author information

Authors and Affiliations

Authors

Contributions

J.S. and J.C. conceived, designed and supervised the study. A.A.K. and S.C. collected cryo-EM data. C.C. and A.A.K. performed cryo-EM data processing and analyzed the structures under the supervision of J.S. C.C., A.A.K. and M.J. did model building. L.Z. and S.D. conducted the electrophysical experiments and related data analysis under the supervision of J.C. T.P. performed the MD simulations and analysis under supervision of L.D. Y.Z.T. and Jingyi S. provided intellectual and technical support during the project. J.S. prepared the manuscript draft with input from all authors.

Corresponding authors

Correspondence to Jianmin Cui or Ji Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information, Fig. S1: Structural determination of KCNQ1–KCNE1 in the presence of PIP2

Supplementary information, Fig. S2: Structural determination of KCNQ1 in the presence of PIP2

Supplementary information, Fig. S3: Structural determination of KCNQ1–KCNE1 in the absence of PIP2

Supplementary information, Fig. S4: Structural comparison between KCNQ1 and KCNQ1–KCNE1/3

Supplementary information, Fig. S5: Structural comparison between KCNQ1–KCNE1 and KCNQ1–KCNE3

Supplementary information, Fig. S6: PIP2-binding sites in KCNQ1 and KCNQ1–KCNE complexes

Supplementary information, Fig. S7: Structural and functional characterization of mutations at Site 2

Supplementary information, Fig. S8: MD simulation of PIP2 binding

Supplementary information, Fig. S9: GPCR activation and KCNQ1–KCNE1 current

Supplementary information, Fig. S10: Representative traces of PLC titration and channel inhibition

Supplementary information, Table S1: Cryo-EM data collection, refinement and validation statistics

Supplementary information, Video S1: Site 2 PIP2-induced conformational change of KCNQ1 at the protomer level

Supplementary information, Video S2: Site 2 PIP2-induced conformational change of KCNQ1 at the pore region

Supplementary information, Video S3: PIP2-binding site remodeling by KCNE1

Supplementary information, Video S4: PIP2-binding site remodeling by KCNE3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, C., Zhao, L., Kermani, A.A. et al. Mechanisms of KCNQ1 gating modulation by KCNE1/3 for cell-specific function. Cell Res (2025). https://doi.org/10.1038/s41422-025-01152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41422-025-01152-1

Search

Quick links