Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting necrotic lipid release in tumors enhances immunosurveillance and cancer immunotherapy of glioblastoma

Abstract

Tumors evolve to avoid immune destruction and establish an immunosuppressive microenvironment. Syngeneic mouse tumor models are critical for understanding tumor immune evasion and testing cancer immunotherapy. Derived from established mouse tumor cell lines that can already evade the immune system, these models cannot simulate early phases of immunoediting during initial tumorigenesis. We developed a syngeneic mouse teratoma model derived from noncancerous mouse embryonic stem cells and conducted a genome-wide CRISPR screen to identify genes that impact early phases of cancer immunoediting. We found that loss of pro-apoptotic tumor suppressor genes, including Trp53, increased necrosis in teratomas, releasing APOE lipid particles into the extracellular milieu. Infiltrating T cells drawn to tumor necrotic regions accumulated lipids and became dysfunctional. Blocking lipid uptake in T cells or reducing necrosis in teratomas by inactivating the mitochondrial permeability transition pore (mPTP) restored immunosurveillance. Because mouse teratomas were highly enriched for brain tissues, we next examined the tumor-immune interaction in human glioblastoma (GBM). Indeed, infiltrating T cells in TP53-mutated human GBM accumulated APOE and were dysfunctional. Anti-APOE and anti-PDCD1 antibodies synergistically boosted anti-GBM immunity and prolonged survival in mice. Our results link mPTP-mediated tumor necrosis to immune evasion and suggest that targeting the uptake of lipids released by necrotic tumor cells by infiltrating immune cells can enhance cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genome-wide CRISPR screen for immunosurveillance genes.
Fig. 2: Profiling infiltrating T cells in teratomas by scRNA-seq.
Fig. 3: Lipid accumulation and apoptosis of macrophages in Trp53–/– teratomas.
Fig. 4: Necrotic teratoma cells release APOE lipid particles into tumor microenvironment.
Fig. 5: Blocking necrosis abrogates immune evasion of Trp53–/– teratomas.
Fig. 6: Infiltrating T Cells in TP53-mutated human GBM uptake APOE lipid particles and undergo apoptosis.
Fig. 7: APOE and PD-1 antibodies boost anti-tumor immunity in mouse GBM model.

Similar content being viewed by others

Data availability

The omics data and analyses have been deposited to FigShare with the dataset collection identifier 6929467 or through the following link https://figshare.com/account/home#/collections/6929467, including datasets of CRISPR screening in mouse teratomas (https://doi.org/10.6084/m9.figshare.24559687); scRNA-seq datasets of mouse teratomas (https://doi.org/10.6084/m9.figshare.27314364), mouse GBM (https://doi.org/10.6084/m9.figshare.27314304), and lipidomics results of teratoma interstitial fluid (https://doi.org/10.6084/m9.figshare.28703174). The raw data of scRNA-seq for Chinese GBM patients have been uploaded to Genome Sequence Archive for Human (https://ngdc.cncb.ac.cn/gsa-human/browse/HRA012282).

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  PubMed  CAS  Google Scholar 

  2. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  PubMed  CAS  Google Scholar 

  3. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. Vesely, M. D., Kershaw, M. H., Schreiber, R. D. & Smyth, M. J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29, 235–271 (2011).

    Article  PubMed  CAS  Google Scholar 

  6. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  PubMed  CAS  Google Scholar 

  7. Gubin, M. M. & Vesely, M. D. Cancer immunoediting in the era of immuno-oncology. Clin. Cancer Res. 28, 3917–3928 (2022).

    Article  PubMed  CAS  Google Scholar 

  8. Jhunjhunwala, S., Hammer, C. & Delamarre, L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 21, 298–312 (2021).

    Article  PubMed  CAS  Google Scholar 

  9. McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271.e11 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. He, X. & Xu, C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 30, 660–669 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sharma, P. et al. Immune checkpoint therapy-current perspectives and future directions. Cell 186, 1652–1669 (2023).

    Article  PubMed  CAS  Google Scholar 

  12. Taylor, A., Verhagen, J., Blaser, K., Akdis, M. & Akdis, C. A. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells. Immunology 117, 433–442 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Seruga, B., Zhang, H., Bernstein, L. J. & Tannock, I. F. Cytokines and their relationship to the symptoms and outcome of cancer. Nat. Rev. Cancer 8, 887–899 (2008).

    Article  PubMed  CAS  Google Scholar 

  14. Ma, X. et al. Cholesterol induces CD8(+) T cell exhaustion in the tumor microenvironment. Cell Metab. 30, 143–156.e5 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hicks, K. C., Tyurina, Y. Y., Kagan, V. E. & Gabrilovich, D. I. Myeloid cell-derived oxidized lipids and regulation of the tumor microenvironment. Cancer Res. 82, 187–194 (2022).

    Article  PubMed  CAS  Google Scholar 

  16. Allinen, M. et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6, 17–32 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  PubMed  CAS  Google Scholar 

  18. McAllister, S. S. & Weinberg, R. A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol. 16, 717–727 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Xia, A., Zhang, Y., Xu, J., Yin, T. & Lu, X. J. T Cell dysfunction in cancer immunity and immunotherapy. Front. Immunol. 10, 1719 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zeng, Z. et al. TISMO: syngeneic mouse tumor database to model tumor immunity and immunotherapy response. Nucleic Acids Res. 50, D1391–D1397 (2022).

    Article  PubMed  CAS  Google Scholar 

  21. Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Sun, Y. et al. Targeting TBK1 to overcome resistance to cancer immunotherapy. Nature 615, 158–167 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chow, R. D. et al. AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nat. Neurosci. 20, 1329–1341 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Martin, T. D. et al. The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. Science 373, 1327–1335 (2021).

    Article  PubMed  CAS  Google Scholar 

  25. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  PubMed  CAS  Google Scholar 

  26. McDonald, D. et al. Defining the teratoma as a model for multi-lineage human development. Cell 183, 1402–1419.e18 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Muller, F. J., Goldmann, J., Loser, P. & Loring, J. F. A call to standardize teratoma assays used to define human pluripotent cell lines. Cell Stem Cell 6, 412–414 (2010).

    Article  PubMed  CAS  Google Scholar 

  29. Wang, B. et al. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nat. Protoc. 14, 756–780 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhang, D., Zaugg, K., Mak, T. W. & Elledge, S. J. A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 126, 529–542 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. Cuella-Martin, R. et al. 53BP1 integrates DNA repair and p53-dependent cell fate decisions via distinct mechanisms. Mol. Cell 64, 51–64 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kastenhuber, E. R. & Lowe, S. W. Putting p53 in Context. Cell 170, 1062–1078 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  PubMed  CAS  Google Scholar 

  34. Nakano, K. & Vousden, K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683–694 (2001).

    Article  PubMed  CAS  Google Scholar 

  35. Aubrey, B. J., Kelly, G. L., Janic, A., Herold, M. J. & Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?. Cell Death Differ. 25, 104–113 (2018).

    Article  PubMed  CAS  Google Scholar 

  36. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018).

  37. Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Vandenabeele, P., Bultynck, G. & Savvides, S. N. Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat. Rev. Mol. Cell Biol. 24, 312–333 (2023).

    Article  PubMed  CAS  Google Scholar 

  39. Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998).

    Article  PubMed  CAS  Google Scholar 

  40. Lee, Y. R., Chen, M. & Pandolfi, P. P. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat. Rev. Mol. Cell Biol. 19, 547–562 (2018).

    Article  PubMed  CAS  Google Scholar 

  41. Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W. & Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Blagih, J., Buck, M. D. & Vousden, K. H. p53, cancer and the immune response. J. Cell Sci. 133, jcs237453 (2020).

  43. Kather, J. N. et al. Topography of cancer-associated immune cells in human solid tumors. eLife 7, e36967 (2018).

  44. Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Philip, M. & Schietinger, A. CD8(+) T cell differentiation and dysfunction in cancer. Nat. Rev. Immunol. 22, 209–223 (2022).

    Article  PubMed  CAS  Google Scholar 

  46. Wang, M. & Kaufman, R. J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529, 326–335 (2016).

    Article  PubMed  CAS  Google Scholar 

  47. Han, J. et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481–490 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Han, J. & Kaufman, R. J. The role of ER stress in lipid metabolism and lipotoxicity. J. Lipid Res. 57, 1329–1338 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8(+) T cells in tumors. Immunity 54, 1561–1577.e7 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Manzo, T. et al. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J. Exp. Med. 217, e20191920 (2017).

  51. Yang, W. et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature 531, 651–655 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Seimon, T. A. et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab. 12, 467–482 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Di Conza, G. et al. Tumor-induced reshuffling of lipid composition on the endoplasmic reticulum membrane sustains macrophage survival and pro-tumorigenic activity. Nat. Immunol. 22, 1403–1415 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Goldstein, I. et al. p53, a novel regulator of lipid metabolism pathways. J. Hepatol. 56, 656–662 (2012).

    Article  PubMed  CAS  Google Scholar 

  56. Freed-Pastor, W. A. et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148, 244–258 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. DeBose-Boyd, R. A. & Ye, J. SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem. Sci. 43, 358–368 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Infante, R. E. et al. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc. Natl. Acad. Sci. USA 105, 15287–15292 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C. C. & Bu, G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol. 15, 501–518 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Yang, Y., Lee, M. & Fairn, G. D. Phospholipid subcellular localization and dynamics. J. Biol. Chem. 293, 6230–6240 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ioannou, M. S. et al. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177, 1522–1535.e14 (2019).

    Article  PubMed  CAS  Google Scholar 

  62. Estes, R. E., Lin, B., Khera, A. & Davis, M. Y. Lipid metabolism influence on neurodegenerative disease progression: is the vehicle as important as the cargo?. Front. Mol. Neurosci. 14, 788695 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Wahrle, S. E. et al. ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J. Biol. Chem. 279, 40987–40993 (2004).

    Article  PubMed  CAS  Google Scholar 

  64. Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Hotamisligil, G. S. Endoplasmic reticulum stress and atherosclerosis. Nat. Med. 16, 396–399 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Golstein, P. & Kroemer, G. Cell death by necrosis: towards a molecular definition. Trends Biochem. Sci. 32, 37–43 (2007).

    Article  PubMed  CAS  Google Scholar 

  67. Zong, W. X. & Thompson, C. B. Necrotic death as a cell fate. Genes Dev. 20, 1–15 (2006).

    Article  PubMed  CAS  Google Scholar 

  68. Zhang, Y., Chen, X., Gueydan, C. & Han, J. Plasma membrane changes during programmed cell deaths. Cell Res. 28, 9–21 (2018).

    Article  PubMed  CAS  Google Scholar 

  69. Vanden Berghe, T. et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ. 17, 922–930 (2010).

    Article  PubMed  CAS  Google Scholar 

  70. Dondelinger, Y. et al. NINJ1 is activated by cell swelling to regulate plasma membrane permeabilization during regulated necrosis. Cell Death Dis. 14, 755 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. David, L. et al. NINJ1 mediates plasma membrane rupture by cutting and releasing membrane disks. Cell 187, 2224–2235.e16 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Sahoo, B., Mou, Z., Liu, W., Dubyak, G. & Dai, X. How NINJ1 mediates plasma membrane rupture and why NINJ2 cannot. Cell 188, 292–302.e11 (2025).

    Article  PubMed  CAS  Google Scholar 

  73. Linkermann, A. et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA 110, 12024–12029 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Zhang, T. et al. Prolonged hypoxia alleviates prolyl hydroxylation-mediated suppression of RIPK1 to promote necroptosis and inflammation. Nat. Cell Biol. 25, 950–962 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Bonora, M., Giorgi, C. & Pinton, P. Molecular mechanisms and consequences of mitochondrial permeability transition. Nat. Rev. Mol. Cell Biol. 23, 266–285 (2022).

    Article  PubMed  CAS  Google Scholar 

  76. Nakagawa, T. et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652–658 (2005).

    Article  PubMed  CAS  Google Scholar 

  77. Zorov, D. B., Juhaszova, M. & Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909–950 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Karch, J. et al. Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD. Sci. Adv. 5, eaaw4597 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Baines, C. P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658–662 (2005).

    Article  PubMed  CAS  Google Scholar 

  80. Ma, X. et al. CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability. Cell Metab. 33, 1001–1012.e5 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Liao, F. et al. Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation. J. Clin. Invest. 128, 2144–2155 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Xiong, M. et al. APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function. Sci. Transl. Med. 13, eabd7522 (2021).

  83. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Cillo, A. R. et al. Blockade of LAG-3 and PD-1 leads to co-expression of cytotoxic and exhaustion gene modules in CD8(+) T cells to promote antitumor immunity. Cell 187, 4373–4388.e15 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Singh, R., Letai, A. & Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20, 175–193 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Carneiro, B. A. & El-Deiry, W. S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 17, 395–417 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).

    Article  PubMed  CAS  Google Scholar 

  88. Zhang, X. D., Wu, J. J., Gillespie, S., Borrow, J. & Hersey, P. Human melanoma cells selected for resistance to apoptosis by prolonged exposure to tumor necrosis factor-related apoptosis-inducing ligand are more vulnerable to necrotic cell death induced by cisplatin. Clin. Cancer Res. 12, 1355–1364 (2006).

    Article  PubMed  CAS  Google Scholar 

  89. White, E. Autophagic cell death unraveled: pharmacological inhibition of apoptosis and autophagy enables necrosis. Autophagy 4, 399–401 (2008).

    Article  PubMed  CAS  Google Scholar 

  90. Nikoletopoulou, V., Markaki, M., Palikaras, K. & Tavernarakis, N. Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta 1833, 3448–3459 (2013).

    Article  PubMed  CAS  Google Scholar 

  91. Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    Article  PubMed  CAS  Google Scholar 

  92. Iyer, S. S. et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl. Acad. Sci. USA 106, 20388–20393 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Yang, L. G., March, Z. M., Stephenson, R. A. & Narayan, P. S. Apolipoprotein E in lipid metabolism and neurodegenerative disease. Trends Endocrinol. Metab. 34, 430–445 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Cantuti-Castelvetri, L. et al. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science 359, 684–688 (2018).

    Article  PubMed  CAS  Google Scholar 

  95. Liu, L., MacKenzie, K. R., Putluri, N., Maletic-Savatic, M. & Bellen, H. J. The glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metab. 26, 719–737.e6 (2017). 

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Chen, Y. et al. Cholesterol inhibits TCR signaling by directly restricting TCR-CD3 core tunnel motility. Mol. Cell 82, 1278–1287.e5 (2022).

  97. Molnar, E. et al. Cholesterol and sphingomyelin drive ligand-independent T-cell antigen receptor nanoclustering. J. Biol. Chem. 287, 42664–42674 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Lim, M. et al. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro. Oncol. 24, 1935–1949 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Suva, M. L. et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157, 580–594 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Jiang, S. et al. Cell Taxonomy: a curated repository of cell types with multifaceted characterization. Nucleic Acids Res. 51, D853–D860 (2023).

    Article  PubMed  CAS  Google Scholar 

  104. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Wen, B., Mei, Z., Zeng, C. & Liu, S. metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinform. 18, 183 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Yang Yang and Bing Li for their help with the amplification of the Brie mouse CRISPR knockout library and Eunhee Choi, Sushama Sivakumar, and the staff at the Animal Resource Center at UT Southwestern Medical Center for technical assistance with the teratoma assay. We are grateful to the Histo Pathology Core at UT Southwestern Medical Center for assistance with teratoma sectioning and to the McDermott Sequencing Core for next-generation sequencing. We thank Yang-Xin Fu for reading the manuscript critically.

Funding

This study was supported by the National Natural Science Foundation of China (Project 32130053 to H.Y., 82303354 to Yapeng J., and 82273493 to Z.Z.). H.Y. is supported by the New Cornerstone Science Foundation through the New Cornerstone Investigator Program.

Author information

Authors and Affiliations

Authors

Contributions

Yapeng J. designed and performed all experiments and analyzed the data. A.A.S. and C.X. analyzed the CRISPR screen. A.A.S., C.X., J.J., L.H., and W.P. analyzed the whole-exome and scRNA-seq data. B.M.E. performed histopathological analysis of mouse teratomas. P.L., M.Z., S.H., M.W., Yuchen J., X. Liu, D.Y., Y.G., Q.X., and Z.Z. performed histopathological analysis of human and mouse GBM. H.Y., X. Luo, and Z.Z. supervised this research. Yapeng J. and H.Y. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Zhenyu Zhang or Hongtao Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Jiang, J., Hu, L. et al. Targeting necrotic lipid release in tumors enhances immunosurveillance and cancer immunotherapy of glioblastoma. Cell Res (2025). https://doi.org/10.1038/s41422-025-01155-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41422-025-01155-y

Search

Quick links