Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modeling post-gastrula development via bidirectional pluripotent stem cells

Abstract

The absence of stem cells capable of efficiently generating both trophoblast and epiblast lineages has hindered precise recapitulation of embryonic development. Through high-content chemical screening, we established an (AS and LY) AL medium to generate mouse bidirectional pluripotent stem cells (BPSCs) characterized by concurrent expression of OCT4 and CDX2. Mouse BPSCs demonstrated highly plastic differentiation into trophoblast, epiblast and primitive endoderm (PrE) lineages in vitro within 48 h without exogenous inducing factors and efficiently contributed to embryonic and extraembryonic tissues in vivo. Mechanistically, hyperactivation of the Wnt signaling pathway breaks the early lineage differentiation barrier by initiating a Lef1-dependent bypass. Remarkably, integration of BPSCs with PrE induction system enables high-efficiency generation of E8.5-stage embryo models. These advanced models complete gastrulation and recapitulate definitive developmental milestones including brain morphogenesis, neural tube closure, cardiac contraction, somite patterning, and primordial germ cell specification. Moreover, human cells cultured under AL conditions acquire an OCT4 and CDX2 double-positive state and corresponding gene expression profiles, revealing conserved functionality of this culturing platform across species. These findings highlight BPSCs as a powerful tool for investigating early lineage specification and post-gastrulation embryonic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical induction of BPSCs with co-expression of OCT4 and CDX2.
Fig. 2: BPSCs possess high potential toward embryonic and extraembryonic lineages.
Fig. 3: BPSCs exhibit a unique pluripotency state.
Fig. 4: Wnt signaling pathway expands developmental boundaries of PSCs.
Fig. 5: Construction of embryo model by BPSCs.
Fig. 6: Induction of human double-positive (Oct4+Cdx2+) state cell.

Similar content being viewed by others

Data availability

The bulk RNA-seq, ChIP-seq, scRNA-seq and scATAC-seq data generated during this study are available at Genome Sequence Archive of the National Genomics Data Center (https://ngdc.cncb.ac.cn/gsa/): PRJCA027661. All other data used in this study are available from the corresponding authors upon request.

References

  1. Fleming, T. P. A quantitative analysis of cell allocation to trophectoderm and inner cell mass in the mouse blastocyst. Dev. Biol. 119, 520–531 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Dyce, J., George, M., Goodall, H. & Fleming, T. P. Do trophectoderm and inner cell mass cells in the mouse blastocyst maintain discrete lineages. Development 100, 685–698 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Johnson, M. H. & McConnell, J. M. Lineage allocation and cell polarity during mouse embryogenesis. Semin Cell Dev. Biol. 15, 583–597 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Rossant, J. & Tam, P. P. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136, 701–713 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Baker, C. L. & Pera, M. F. Capturing totipotent stem cells. Cell Stem Cell 22, 25–34 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Boroviak, T. & Nichols, J. Primate embryogenesis predicts the hallmarks of human naive pluripotency. Development 144, 175–186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kunath, T. et al. Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 132, 1649–1661 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Niwa, H. et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917–929 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Blij, S., Parenti, A., Tabatabai-Yazdi, N. & Ralston, A. Cdx2 efficiently induces trophoblast stem-like cells in naive, but not primed, pluripotent stem cells. Stem Cells Dev. 24, 1352–1365 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang, B. et al. Inhibition of HDAC activity directly reprograms murine embryonic stem cells to trophoblast stem cells. Dev. Cell 59, 2101–2117.e8 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Gao, Y. et al. Efficient reprogramming of mouse embryonic stem cells into trophoblast stem-like cells via lats kinase inhibition. Biology 13, 71 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, W. et al. Haploid-genetic screening of trophectoderm specification identifies Dyrk1a as a repressor of totipotent-like status. Sci. Adv. 9, eadi5683 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jana, D. et al. Derivation of trophoblast stem cells unveils unrestrained potential of mouse ESCs and epiblast. Preprint at bioRxiv https://doi.org/10.1101/2023.04.19.537518 (2023).

  17. Yang, J. et al. Establishment of mouse expanded potential stem cells. Nature 550, 393–397 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hu, Y. et al. Induction of mouse totipotent stem cells by a defined chemical cocktail. Nature 617, 792–797 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Xu, Y. et al. Derivation of totipotent-like stem cells with blastocyst-like structure forming potential. Cell Res. 32, 513–529 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen, H. et al. Mouse totipotent stem cells captured and maintained through spliceosomal repression. Cell 184, 2843–2859.e20 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Peng, B., Wang, Q., Zhang, F., Shen, H. & Du, P. Mouse totipotent blastomere-like cells model embryogenesis from zygotic genome activation to post implantation. Cell Stem Cell 32, 391–408.e11 (2025).

    Article  CAS  PubMed  Google Scholar 

  22. Posfai, E. et al. Evaluating totipotency using criteria of increasing stringency. Nat. Cell Biol. 23, 49–60 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Tarazi, S. et al. Post-gastrulation synthetic embryos generated ex utero from mouse naive ESCs. Cell 185, 3290–3306.e25 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amadei, G. et al. Embryo model completes gastrulation to neurulation and organogenesis. Nature 610, 143–153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sozen, B. et al. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nat. Cell Biol. 20, 979–989 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Rivron, N. C. et al. Blastocyst-like structures generated solely from stem cells. Nature 557, 106–111 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Li, R. et al. Generation of blastocyst-like structures from mouse embryonic and adult cell cultures. Cell 179, 687–702.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sozen, B. et al. Self-organization of mouse stem cells into an extended potential blastoid. Dev. Cell 51, 698–712.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sozen, B. et al. Self-assembly of embryonic and two extra- embryonic stem cell types into gastrulating embryo-like structures. Nat. Cell Biol. 20, 979–989 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Veenvliet, J. V. et al. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science 370, eaba4937 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Harrison, S. E., Sozen, B., Christodoulou, N., Kyprianou, C. & Zernicka-Goetz, M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science 356, eaal1810 (2017).

    Article  PubMed  Google Scholar 

  32. Beccari, L. et al. Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature 562, 272–276 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Dietrich, J. E. & Hiiragi, T. Stochastic patterning in the mouse pre-implantation embryo. Development 134, 4219–4231 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Suwinska, A., Czolowska, R., Ozdzenski, W. & Tarkowski, A. K. Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos. Dev. Biol. 322, 133–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Mihajlovic, A. I. & Bruce, A. W. The first cell-fate decision of mouse preimplantation embryo development: integrating cell position and polarity. Open Biol. 7, 170210 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tarkowski, A. K., Suwinska, A., Czolowska, R. & Ozdzenski, W. Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice. Dev. Biol. 348, 190–198 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Gao, X. et al. Establishment of porcine and human expanded potential stem cells. Nat. Cell Biol. 21, 687–699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nowotschin, S. et al. The emergent landscape of the mouse gut endoderm at single-cell resolution. Nature 569, 361–367 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Atlasi, Y. et al. Wnt signaling regulates the lineage differentiation potential of mouse embryonic stem cells through Tcf3 down-regulation. PLoS Genet. 9, e1003424 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shy, B. R. et al. Regulation of Tcf7l1 DNA binding and protein stability as principal mechanisms of Wnt/beta-catenin signaling. Cell Rep. 4, 1–9 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He, S., Pant, D., Schiffmacher, A., Meece, A. & Keefer, C. L. Lymphoid enhancer factor 1-mediated Wnt signaling promotes the initiation of trophoblast lineage differentiation in mouse embryonic stem cells. Stem Cells 26, 842–849 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Ma, H. et al. In vitro culture of cynomolgus monkey embryos beyond early gastrulation. Science 366, eaax7890 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Aguilera-Castrejon, A. et al. Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis. Nature 593, 119–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yan, L. et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131–1139 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 167, 285 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xiang, L. et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 577, 537–542 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Tyser, R. C. V. et al. Single-cell transcriptomic characterization of a gastrulating human embryo. Nature 600, 285–289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meistermann, D. et al. Integrated pseudotime analysis of human pre-implantation embryo single-cell transcriptomes reveals the dynamics of lineage specification. Cell Stem Cell 28, 1625–1640.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Yanagida, A. et al. Naive stem cell blastocyst model captures human embryo lineage segregation. Cell Stem Cell 28, 1016–1022.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ziomek, C. A., Johnson, M. H. & Handyside, A. H. The developmental potential of mouse 16-cell blastomeres. J. Exp. Zool. 221, 345–355 (1982).

    Article  CAS  PubMed  Google Scholar 

  52. Chen, Y., Blair, K. & Smith, A. Robust self-renewal of rat embryonic stem cells requires fine-tuning of glycogen synthase kinase-3 inhibition. Stem Cell Rep. 1, 209–217 (2013).

    Article  CAS  Google Scholar 

  53. Zhang, X. et al. FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nat. Cell Biol. 13, 1092–1099 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jeon, J. H., Suh, H. N., Kim, M. O., Ryu, J. M. & Han, H. J. Glucosamine-induced OGT activation mediates glucose production through cleaved Notch1 and FoxO1, which coordinately contributed to the regulation of maintenance of self-renewal in mouse embryonic stem cells. Stem Cells Dev. 23, 2067–2079 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Szabo, P. E., Hubner, K., Scholer, H. & Mann, J. R. Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech. Dev. 115, 157–160 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, W. et al. A high-throughput small molecule screen identifies farrerol as a potentiator of CRISPR/Cas9-mediated genome editing. Elife 9, e56008 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bi, Y. et al. Identification of ALPPL2 as a naive pluripotent state-specific surface protein essential for human naive pluripotency regulation. Cell Rep. 30, 3917–3931.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Bi, Y. et al. Cell fate roadmap of human primed-to-naive transition reveals preimplantation cell lineage signatures. Nat. Commun. 13, 3147 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pastor, W. A. et al. Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory. Cell Stem Cell 18, 323–329 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mazid, M. A. et al. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage. Nature 605, 315–324 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Yang, Y. et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell 169, 243–257.e25 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhou, Y. Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac. Nat. Methods 18, 1333–1341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakato, R. & Sakata, T. Methods for ChIP-seq analysis: a practical workflow and advanced applications. Methods 187, 44–53 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Bailey, T. et al. Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput. Biol. 9, e1003326 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv https://doi.org/10.48550/arXiv.1303.3997 (2013).

  71. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu, J. et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652–657 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Wu, Y. et al. N(6)-methyladenosine regulates maternal RNA maintenance in oocytes and timely RNA decay during mouse maternal-to-zygotic transition. Nat. Cell Biol. 24, 917–927 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Deng, Q., Ramskold, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Posfai, E. et al. Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. Elife 6, e22906 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Li, M. et al. Chromatin accessibility landscape of mouse early embryos revealed by single-cell NanoATAC-seq2. Science 387, eadp4319 (2025).

    Article  CAS  PubMed  Google Scholar 

  79. Imaz-Rosshandler, I. et al. Tracking early mammalian organogenesis - prediction and validation of differentiation trajectories at whole organism scale. Development 151, dev201867 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Liu, K. et al. Bilineage embryo-like structure from EPS cells can produce live mice with tetraploid trophectoderm. Protein Cell 14, 262–278 (2023).

    CAS  PubMed  Google Scholar 

  81. Wu, K. et al. Dynamics of histone acetylation during human early embryogenesis. Cell Discov. 9, 29 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the National Key R&D Program of China (2021YFA1102900) and the National Natural Science Foundation of China (32488101). This work was also supported by the National Key R&D Program of China (2022YFC2702200 and 2024YFA1107000) and the National Natural Science Foundation of China (32330030, 82301921, 32070823, 92168205, 32270909, 82201881, 92168205, 31871448, 31820103009, 82022027, 32300684, 32400677 and 32370842). This work was also supported by the Key Project of the Science and Technology of Shanghai Municipality (19JC1415300 and 21JC1405500), the Natural Science Foundation of Shanghai (21ZR1450700), China Postdoctoral Science Foundation (2023M732660, 2023M732661), the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (GZB20230523), Shanghai Pilot Program for Basic Research, Shanghai Post-doctoral Excellence Program (2022521, 2022551), Shenzhen Medical Research Fund (B2402013), the Fundamental Research Funds for the Central Universities (22120250374), Peak Disciplines (Type IV) of Institutions of Higher Learning in Shanghai and Ministry of Education. We thank Rongrong Le (Tongji University), leader of the ethical approval project (2024tjdxsy026), to provide the human cell lines in this study.

Author information

Authors and Affiliations

Authors

Contributions

S.G., W.L. and Y.W. conceived the project and provided mentoring; K.L., D.B., Y.B. and X.M. designed and performed most of the experiments; Z.Y. provided bioinformatics support; R.J. and K.W. performed compound library screening; K.L., D.B. and Z.Y. wrote the original draft; K.L., D.B., Z.Y., W.L., J.Y. and S.G. reviewed and edited the manuscript; J.X., Y.S., B.D., Z.N., S.Y., Y.D.L., X.L., Y.J., Y.Z., Y.L.Z., Y.H.L., T.W., C.X., Shanyao L., Shuyi L., J.C., J.Y., X.K., Y.H.Z. and H.W. assisted with the experiments.

Corresponding authors

Correspondence to Yixuan Wang, Ke Wei, Shaorong Gao or Wenqiang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Yan, Z., Bai, D. et al. Modeling post-gastrula development via bidirectional pluripotent stem cells. Cell Res (2025). https://doi.org/10.1038/s41422-025-01172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41422-025-01172-x

Search

Quick links