Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcription factor YY1 is essential for iNKT cell development

Abstract

Invariant natural killer T (iNKT) cells develop from CD4+CD8+ double-positive (DP) thymocytes and express an invariant Vα14–Jα18 T-cell receptor (TCR) α-chain. Generation of these cells requires the prolonged survival of DP thymocytes to allow for Vα14–Jα18 gene rearrangements and strong TCR signaling to induce the expression of the iNKT lineage-specific transcription factor PLZF. Here, we report that the transcription factor Yin Yang 1 (YY1) is essential for iNKT cell formation. Thymocytes lacking YY1 displayed a block in iNKT cell development at the earliest progenitor stage. YY1-deficient thymocytes underwent normal Vα14–Jα18 gene rearrangements, but exhibited impaired cell survival. Deletion of the apoptotic protein BIM failed to rescue the defect in iNKT cell generation. Chromatin immunoprecipitation and deep-sequencing experiments demonstrated that YY1 directly binds and activates the promoter of the Plzf gene. Thus, YY1 plays essential roles in iNKT cell development by coordinately regulating cell survival and PLZF expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lack of iNKT cells in Yy1f/fCd4Cre/+ (YY1-TKO) mice.
Fig. 2: YY1-TKO thymocytes manifest T-cell-intrinsic defect in iNKT cell development.
Fig. 3: Analysis of Vα14–Jα18 TCRα rearrangements in YY1-TKO thymocytes.
Fig. 4: Impaired thymocyte survival in YY1-TKO mice.
Fig. 5: BIM deletion fails to restore iNKT cell development in YY1-TKO mice.
Fig. 6: YY1 binds and transactivates the Plzf promoter.

Similar content being viewed by others

References

  1. Makino, Y., Kanno, R., Ito, T., Higashino, K. & Taniguchi, M. Predominant expression of invariant V alpha 14+ TCR alpha chain in NK1.1+ T cell populations. Int. Immunol. 7, 1157–1161 (1995).

    Article  CAS  Google Scholar 

  2. Fowlkes, B. J. et al. A novel population of T-cell receptor alpha beta-bearing thymocytes which predominantly expresses a single V beta gene family. Nature 329, 251–254 (1987).

    Article  CAS  Google Scholar 

  3. Ceredig, R., Lynch, F. & Newman, P. Phenotypic properties, interleukin 2 production, and developmental origin of a “mature” subpopulation of Lyt-2- L3T4- mouse thymocytes. Proc. Natl Acad. Sci. USA 84, 8578–8582 (1987).

    Article  CAS  Google Scholar 

  4. Budd, R. C. et al. Developmentally regulated expression of T cell receptor beta chain variable domains in immature thymocytes. J. Exp. Med. 166, 577–582 (1987).

    Article  CAS  Google Scholar 

  5. Salio, M., Silk, J. D., Jones, E. Y. & Cerundolo, V. Biology of CD1- and MR1-restricted T cells. Annu. Rev. Immunol. 32, 323–366 (2014).

    Article  CAS  Google Scholar 

  6. Godfrey, D. I. & Berzins, S. P. Control points in NKT-cell development. Nat. Rev. Immunol. 7, 505–518 (2007).

    Article  CAS  Google Scholar 

  7. Guo, J. et al. Regulation of the TCRalpha repertoire by the survival window of CD4(+)CD8(+) thymocytes. Nat. Immunol. 3, 469–476 (2002).

    Article  Google Scholar 

  8. Hu, T., Simmons, A., Yuan, J., Bender, T. P. & Alberola-Ila, J. The transcription factor c-Myb primes CD4+CD8+ immature thymocytes for selection into the iNKT lineage. Nat. Immunol. 11, 435–441 (2010).

    Article  CAS  Google Scholar 

  9. Callen, E. et al. The DNA damage- and transcription-associated protein paxip1 controls thymocyte development and emigration. Immunity 37, 971–985 (2012).

    Article  CAS  Google Scholar 

  10. D’Cruz, L. M., Knell, J., Fujimoto, J. K. & Goldrath, A. W. An essential role for the transcription factor HEB in thymocyte survival, Tcra rearrangement and the development of natural killer T cells. Nat. Immunol. 11, 240–249 (2010).

    Article  Google Scholar 

  11. Egawa, T. et al. Genetic evidence supporting selection of the Valpha14i NKT cell lineage from double-positive thymocyte precursors. Immunity 22, 705–716 (2005).

    Article  CAS  Google Scholar 

  12. Kovalovsky, D. et al. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 9, 1055–1064 (2008).

    Article  CAS  Google Scholar 

  13. Savage, A. K. et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29, 391–403 (2008).

    Article  CAS  Google Scholar 

  14. Lazarevic, V. et al. The gene encoding early growth response 2, a target of the transcription factor NFAT, is required for the development and maturation of natural killer T cells. Nat. Immunol. 10, 306–313 (2009).

    Article  CAS  Google Scholar 

  15. Seiler, M. P. et al. Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling. Nat. Immunol. 13, 264–271 (2012).

    Article  CAS  Google Scholar 

  16. Dose, M. et al. Intrathymic proliferation wave essential for Valpha14+ natural killer T cell development depends on c-Myc. Proc. Natl Acad. Sci. USA 106, 8641–8646 (2009).

    Article  CAS  Google Scholar 

  17. Mycko, M. P. et al. Selective requirement for c-Myc at an early stage of V(alpha)14i NKT cell development. J. Immunol. 182, 4641–4648 (2009).

    Article  CAS  Google Scholar 

  18. Walunas, T. L., Wang, B., Wang, C. R. & Leiden, J. M. Cutting edge: the Ets1 transcription factor is required for the development of NK T cells in mice. J. Immunol. 164, 2857–2860 (2000).

    Article  CAS  Google Scholar 

  19. Townsend, M. J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity 20, 477–494 (2004).

    Article  CAS  Google Scholar 

  20. Monticelli, L. A. et al. Transcriptional regulator Id2 controls survival of hepatic NKT cells. Proc. Natl Acad. Sci. USA 106, 19461–19466 (2009).

    Article  CAS  Google Scholar 

  21. van Gisbergen, K. P. et al. Mouse Hobit is a homolog of the transcriptional repressor Blimp-1 that regulates NKT cell effector differentiation. Nat. Immunol. 13, 864–871 (2012).

    Article  Google Scholar 

  22. Kim, P. J. et al. GATA-3 regulates the development and function of invariant NKT cells. J. Immunol. 177, 6650–6659 (2006).

    Article  CAS  Google Scholar 

  23. Lacorazza, H. D. et al. The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells. Immunity 17, 437–449 (2002).

    Article  CAS  Google Scholar 

  24. Stanic, A. K. et al. Cutting edge: the ontogeny and function of Va14Ja18 natural T lymphocytes require signal processing by protein kinase C theta and NF-kappa B. J. Immunol. 172, 4667–4671 (2004).

    Article  CAS  Google Scholar 

  25. Flanagan, J. R. et al. Cloning of a negative transcription factor that binds to the upstream conserved region of Moloney murine leukemia virus. Mol. Cell. Biol. 12, 38–44 (1992).

    Article  CAS  Google Scholar 

  26. Shi, Y., Seto, E., Chang, L. S. & Shenk, T. Transcriptional repression by YY1, a human GLI-Kruppel-related protein, and relief of repression by adenovirus E1A protein. Cell 67, 377–388 (1991).

    Article  CAS  Google Scholar 

  27. Park, K. & Atchison, M. L. Isolation of a candidate repressor/activator, NF-E1 (YY-1, delta), that binds to the immunoglobulin kappa 3’ enhancer and the immunoglobulin heavy-chain mu E1 site. Proc. Natl Acad. Sci. USA 88, 9804–9808 (1991).

    Article  CAS  Google Scholar 

  28. Hariharan, N., Kelley, D. E. & Perry, R. P. Delta, a transcription factor that binds to downstream elements in several polymerase II promoters, is a functionally versatile zinc finger protein. Proc. Natl Acad. Sci. USA 88, 9799–9803 (1991).

    Article  CAS  Google Scholar 

  29. Kleiman, E., Jia, H., Loguercio, S., Su, A. I. & Feeney, A. J. YY1 plays an essential role at all stages of B-cell differentiation. Proc. Natl Acad. Sci. USA 113, E3911–E3920 (2016).

    Article  CAS  Google Scholar 

  30. Liu, H. et al. Yin Yang 1 is a critical regulator of B-cell development. Genes Dev. 21, 1179–1189 (2007).

    Article  CAS  Google Scholar 

  31. Trabucco, S. E., Gerstein, R. M. & Zhang, H. YY1 regulates the germinal center reaction by inhibiting apoptosis. J. Immunol. 197, 1699–1707 (2016).

    Article  CAS  Google Scholar 

  32. Banerjee, A. et al. YY1 is required for germinal center B cell development. PLoS ONE 11, e0155311 (2016).

    Article  Google Scholar 

  33. Green, M. R. et al. Signatures of murine B-cell development implicate Yy1 as a regulator of the germinal center-specific program. Proc. Natl Acad. Sci. USA 108, 2873–2878 (2011).

    Article  CAS  Google Scholar 

  34. Hwang, S. S. et al. Transcription factor YY1 is essential for regulation of the Th2 cytokine locus and for Th2 cell differentiation. Proc. Natl Acad. Sci. USA 110, 276–281 (2013).

    Article  CAS  Google Scholar 

  35. Yu, B. et al. Epigenetic landscapes reveal transcription factors that regulate CD8(+) T cell differentiation. Nat. Immunol. 18, 573–582 (2017).

    Article  CAS  Google Scholar 

  36. Hwang, S. S. et al. YY1 inhibits differentiation and function of regulatory T cells by blocking Foxp3 expression and activity. Nat. Commun. 7, 10789 (2016).

    Article  CAS  Google Scholar 

  37. Kwon, H. K., Chen, H. M., Mathis, D. & Benoist, C. Different molecular complexes that mediate transcriptional induction and repression by FoxP3. Nat. Immunol. 18, 1238–1248 (2017).

    Article  CAS  Google Scholar 

  38. Wang, G. Z. & Goff, S. P. Regulation of Yin Yang 1 by tyrosine phosphorylation. J. Biol. Chem. 290, 21890–21900 (2015).

    Article  CAS  Google Scholar 

  39. Ou, X., Xu, S., Li, Y. F. & Lam, K. P. Adaptor protein DOK3 promotes plasma cell differentiation by regulating the expression of programmed cell death 1 ligands. Proc. Natl Acad. Sci. USA 111, 11431–11436 (2014).

    Article  CAS  Google Scholar 

  40. Potluri, V. et al. Transcriptional repression of Bim by a novel YY1-RelA complex is essential for the survival and growth of multiple myeloma. PLoS ONE 8, e66121 (2013).

    Article  CAS  Google Scholar 

  41. He, Y. et al. Yy1 as a molecular link between neuregulin and transcriptional modulation of peripheral myelination. Nat. Neurosci. 13, 1472–1480 (2010).

    Article  CAS  Google Scholar 

  42. Lu, L. et al. Genome-wide survey by ChIP-seq reveals YY1 regulation of lincRNAs in skeletal myogenesis. EMBO J. 32, 2575–2588 (2013).

    Article  CAS  Google Scholar 

  43. Chen, L. et al. Genome-wide analysis of YY2 versus YY1 target genes. Nucleic Acids Res. 38, 4011–4026 (2010).

    Article  CAS  Google Scholar 

  44. Chen, L., Foreman, D. P., Sant’Angelo, D. B. & Krangel, M. S. Yin Yang 1 promotes thymocyte survival by downregulating p53. J. Immunol. 196, 2572–2582 (2016).

    Article  CAS  Google Scholar 

  45. Bezbradica, J. S., Hill, T., Stanic, A. K., Van Kaer, L. & Joyce, S. Commitment toward the natural T (iNKT) cell lineage occurs at the CD4+8+ stage of thymic ontogeny. Proc. Natl Acad. Sci. USA 102, 5114–5119 (2005).

    Article  CAS  Google Scholar 

  46. Gapin, L., Matsuda, J. L., Surh, C. D. & Kronenberg, M. NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat. Immunol. 2, 971–978 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms Lim Wei Lee for sample processing and plasmid construction. We also thank other members of the laboratory for insightful discussion and the A*STAR Biomedical Research Council for grant support.

Author information

Authors and Affiliations

Authors

Contributions

X.O., S.X., and K.-P.L. designed the experiments and wrote the paper. X.O., J.H., Y.H., and Y.-F.L. conducted the experiments.

Corresponding authors

Correspondence to Xijun Ou, Shengli Xu or Kong-Peng Lam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, X., Huo, J., Huang, Y. et al. Transcription factor YY1 is essential for iNKT cell development. Cell Mol Immunol 16, 547–556 (2019). https://doi.org/10.1038/s41423-018-0002-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-018-0002-6

Keywords

This article is cited by

Search

Quick links