Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Liver X receptor β is required for the survival of single-positive thymocytes by regulating IL-7Rα expression

Abstract

Liver X receptors (LXRs) are known as key transcription factors in lipid metabolism and have been reported to play an important role in T-cell proliferation. However, whether LXRs play a role in thymocyte development remains largely unknown. Here, we demonstrated that LXRβ deficiency caused a reduction in single-positive (SP) thymocytes, whereas the transitions from the double-negative to SP stage were normal. Meanwhile, LXRβ-null SP thymocytes exhibited increased apoptosis and impairment of the IL-7Rα-Bcl2 axis. In addition, the LXR agonist T0901317 promoted the survival of SP thymocytes with enhanced IL-7Rα expression in wild-type mice but not in LXRβ-deficient mice. Mechanistically, LXRβ positively regulated the expression of IL-7Rα via direct binding to the Il7r allele in SP thymocytes, and forced expression of IL-7Rα or Bcl2 restored the survival of LXRβ-defective SP thymocytes. Thus, our results indicate that LXRβ functions as an important transcription factor upstream of IL-7Rα to promote the survival of SP thymocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Taniuchi, I. CD4 helper and CD8 cytotoxic T cell differentiation. Annu. Rev. Immunol. 36, 579–601 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Vacchio, M. S., Ciucci, T. & Bosselut, R. 200 million thymocytes and I: a beginner’s survival guide to T cell development. Methods Mol. Biol. 1323, 3–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Famili, F., Wiekmeijer, A. S. & Staal, F. J. The development of T cells from stem cells in mice and humans. Future Sci. OA 3, FSO186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gascoigne, N. R., Rybakin, V., Acuto, O. & Brzostek, J. TCR signal strength and T cell development. Annu. Rev. Cell Dev. Biol. 32, 327–348 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Barata, J. T., Durum, S. K. & Seddon, B. Flip the coin: IL-7 and IL-7R in health and disease. Nat. Immunol. 20, 1584–1593 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Hong, C., Luckey, M. A. & Park, J. H. Intrathymic IL-7: the where, when, and why of IL-7 signaling during T cell development. Semin Immunol. 24, 151–158 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Niu, N. & Qin, X. New insights into IL-7 signaling pathways during early and late T cell development. Cell Mol. Immunol. 10, 187–189 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zaunders, J. J., Levy, Y. & Seddiki, N. Exploiting differential expression of the IL-7 receptor on memory T cells to modulate immune responses. Cytokine Growth Factor Rev. 25, 391–401 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Tani-ichi, S. et al. Interleukin-7 receptor controls development and maturation of late stages of thymocyte subpopulations. Proc. Natl Acad. Sci. USA 110, 612–617 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Kimura, M. Y. et al. IL-7 signaling must be intermittent, not continuous, during CD8(+) T cell homeostasis to promote cell survival instead of cell death. Nat. Immunol. 14, 143–151 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Mazzucchelli, R. & Durum, S. K. Interleukin-7 receptor expression: intelligent design. Nat. Rev. Immunol. 7, 144–154 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Carrette, F. & Surh, C. D. IL-7 signaling and CD127 receptor regulation in the control of T cell homeostasis. Semin Immunol. 24, 209–217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luo, H. et al. Ephrinb1 and Ephrinb2 are associated with interleukin-7 receptor alpha and retard its internalization from the cell surface. J. Biol. Chem. 286, 44976–44987 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Henriques, C. M., Rino, J., Nibbs, R. J., Graham, G. J. & Barata, J. T. IL-7 induces rapid clathrin-mediated internalization and JAK3-dependent degradation of IL-7Ralpha in T cells. Blood 115, 3269–3277 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. McLeod, I. X., Zhou, X., Li, Q. J., Wang, F. & He, Y. W. The class III kinase Vps34 promotes T lymphocyte survival through regulating IL-7Ralpha surface expression. J. Immunol. 187, 5051–5061 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Kerdiles, Y. M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10, 176–184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi, L. Z. et al. Gfi1-Foxo1 axis controls the fidelity of effector gene expression and developmental maturation of thymocytes. Proc. Natl Acad. Sci. USA 114, E67–E74 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Feng, X. et al. Transcription factor Foxp1 exerts essential cell-intrinsic regulation of the quiescence of naive T cells. Nat. Immunol. 12, 544–550 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xue, H. H. et al. GA binding protein regulates interleukin 7 receptor alpha-chain gene expression in T cells. Nat. Immunol. 5, 1036–1044 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, B. & Tontonoz, P. Liver X receptors in lipid signalling and membrane homeostasis. Nat. Rev. Endocrinol. 14, 452–463 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Repa, J. J. et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 14, 2819–2830 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hong, C. & Tontonoz, P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat. Rev. Drug Disco. 13, 433–444 (2014).

    Article  CAS  Google Scholar 

  23. Pascual-Garcia, M. & Valledor, A. F. Biological roles of liver X receptors in immune cells. Arch. Immunol. Ther. Exp. 60, 235–249 (2012).

    Article  CAS  Google Scholar 

  24. Joseph, S. B. et al. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 119, 299–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Bensinger, S. J. et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134, 97–111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alberti, S. et al. Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice. J. Clin. Invest. 107, 565–573 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, Z. et al. Cutting edge: transcription factor BCL6 is required for the generation, but not maintenance, of memory CD8(+) T cells in acute viral infection. J. Immunol. 203, 323–327 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Xu, L. et al. The transcription factor TCF-1 initiates the differentiation of TFH cells during acute viral infection. Nat. Immunol. 16, 991–999 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Yang, W. et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature 531, 651–655 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guo, X. et al. Lipid-dependent conformational dynamics underlie the functional versatility of T-cell receptor. Cell Res. 27, 505–525 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fink, P. J. The biology of recent thymic emigrants. Annu. Rev. Immunol. 31, 31–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Li, C. S. et al. Trap1a is an X-linked and cell-intrinsic regulator of thymocyte development. Cell Mol. Immunol. 14, 685–692 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Repa, J. J. et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 289, 1524–1529 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Houck, K. A. et al. T0901317 is a dual LXR/FXR agonist. Mol. Genet. Metab. 83, 184–187 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Bock, F. J. & Tait, S. W. G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 21, 85–100 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, Y., Viscarra, J., Kim, S. J. & Sul, H. S. Transcriptional regulation of hepatic lipogenesis. Nat. Rev. Mol. Cell Biol. 16, 678–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de la Rosa, J. V., Ramon-Vazquez, A., Tabraue, C. & Castrillo, A. Analysis of LXR nuclear receptor cistrome through ChIP-seq data bioinformatics. Methods Mol. Biol. 1951, 99–109 (2019).

    Article  PubMed  CAS  Google Scholar 

  38. Ito, A. et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. eLife 4, e08009 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pehkonen, P. et al. Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages. BMC Genomics 13, 50 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Park, J. H. et al. Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat. Immunol. 11, 257–264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park, J. H. et al. Suppression of IL7Ralpha transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. Immunity 21, 289–302 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Ligons, D. L. et al. CD8 lineage-specific regulation of interleukin-7 receptor expression by the transcriptional repressor Gfi1. J. Biol. Chem. 287, 34386–34399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr J.Å. Gustafsson (Karolinska Institutet) for providing LXRα- and LXRβ-deficient mice. We thank Dr H.H. Xue (University of Iowa) for providing retroviral vectors. We thank the core facility center of Third Military Medical University for cell sorting. This work was supported by grants from the National Key Research and Development Program of China (No. 2016YFA0502203 to X.Z. and No. 2016YFA0502204 to Y.W.), the National Natural Science Foundation of China (No. 81571537 to T.Z., No. 31770949 to X.Z., No. 31770972 to Z.X., and No. 81571604 to J.Z.), and the Chongqing Basic and Frontier Research Project (No. cstc2015jcyjBX0086 to H.He.).

Author information

Authors and Affiliations

Authors

Contributions

H.Hu., X.W., and D.M. performed the experiments and analyzed the data with assistance from Y.F., L.Z., Z.L., S.T., X.L., and Y.Ca. X.Z., Y.W., T.Z., H.He., Z.X., and J.Z. procured several grants. Y.Ch. provided LXRα- and LXRβ-deficient mice. X.Z., H.Hu., and T.Z. designed the study. X.Z. and H.Hu. wrote the paper. X.Z., Y.W., and T.Z. supervised the study.

Corresponding authors

Correspondence to Tingting Zhao, Yuzhang Wu or Xinyuan Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Wu, X., Meng, D. et al. Liver X receptor β is required for the survival of single-positive thymocytes by regulating IL-7Rα expression. Cell Mol Immunol 18, 1969–1980 (2021). https://doi.org/10.1038/s41423-020-00546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-020-00546-y

Keywords

Search

Quick links