Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein N-myristoylation: functions and mechanisms in control of innate immunity

Abstract

Protein N-myristoylation is an important fatty acylation catalyzed by N-myristoyltransferases (NMTs), which are ubiquitous enzymes in eukaryotes. Specifically, attachment of a myristoyl group is vital for proteins participating in various biological functions, including signal transduction, cellular localization, and oncogenesis. Recent studies have revealed unexpected mechanisms indicating that protein N-myristoylation is involved in host defense against microbial and viral infections. In this review, we describe the current understanding of protein N-myristoylation (mainly focusing on myristoyl switches) and summarize its crucial roles in regulating innate immune responses, including TLR4-dependent inflammatory responses and demyristoylation-induced innate immunosuppression during Shigella flexneri infection. Furthermore, we examine the role of myristoylation in viral assembly, intracellular host interactions, and viral spread during human immunodeficiency virus-1 (HIV-1) infection. Deeper insight into the relationship between protein N-myristoylation and innate immunity might enable us to clarify the pathogenesis of certain infectious diseases and better harness protein N-myristoylation for new therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Casey, P. Protein lipidation in cell signaling. Science 268, 221–225 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, B., Sun, Y., Niu, J., Jarugumilli, G. K. & Wu, X. Protein lipidation in cell signaling and diseases: function, regulation, and therapeutic opportunities. Cell Chem. Biol. 25, 817–831 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nadolski, M. J. & Linder, M. E. Protein lipidation. FEBS J. 274, 5202–5210 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Jiang, H. et al. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem. Rev. 118, 919–988 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boutin, J. A. Myristoylation. Cell. Signal. 9, 15–35 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Farazi, T. A., Waksman, G. & Gordon, J. I. The biology and enzymology of protein N-myristoylation. J. Biol. Chem. 276, 39501–39504 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Zha, J., Weiler, S., Oh, K. J., Wei, M. C. & Korsmeyer, S. J. Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 290, 1761–1765 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Martin, D. D. O., Beauchamp, E. & Berthiaume, L. G. Post-translational myristoylation: fat matters in cellular life and death. Biochimie 93, 18–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Adam, R. M. et al. Cholesterol sensitivity of endogenous and myristoylated Akt. Cancer Res. 67, 6238–6246 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Hu, T. et al. Myristoylated Naked2 antagonizes Wnt-β-Catenin activity by degrading Dishevelled-1 at the plasma membrane. J. Biol. Chem. 285, 13561–13568 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schwertassek, U. et al. Myristoylation of the dual-specificity phosphatase c-JUN N-terminal kinase (JNK) stimulatory phosphatase 1 is necessary for its activation of JNK signaling and apoptosis. FEBS J. 277, 2463–2473 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tan, Y. W., Hong, W. J. & Chu, J. J. H. Inhibition of enterovirus VP4 myristoylation is a potential antiviral strategy for hand, foot and mouth disease. Antivir. Res. 133, 191–195 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Wright, M. H., Heal, W. P., Mann, D. J. & Tate, E. W. Protein myristoylation in health and disease. J. Chem. Biol. 3, 19–35 (2010).

    Article  PubMed  Google Scholar 

  14. McIlhinney, R. A. J. Protein Targeting Protocols (ed. Clegg, R. A.) 211–225 (Humana Press, 1998).

  15. Maurer-Stroh, S. et al. MYRbase: analysis of genome-wide glycine myristoylation enlarges the functional spectrum of eukaryotic myristoylated proteins. Genome Biol. 5, R21 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Timms, R. T. et al. A glycine-specific N-degron pathway mediates the quality control of protein N-myristoylation. Science 365, eaaw4912 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ames, J. B., Tanaka, T., Stryer, L. & Ikura, M. Portrait of a myristoyl switch protein. Curr. Opin. Struct. Biol. 6, 432–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Towler, D. A. et al. Purification and characterization of yeast myristoyl CoA:protein N-myristoyltransferase. Proc. Natl Acad. Sci. 84, 2708–2712 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meinnel, T., Dian, C. & Giglione, C. Myristoylation, an ancient protein modification mirroring eukaryogenesis and evolution. Trends Biochem. Sci. 45, 619–632 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Ducker, C. E., Upson, J. J., French, K. J. & Smith, C. D. Two N-myristoyltransferase isozymes play unique roles in protein myristoylation, proliferation, and apoptosis. Mol. Cancer Res. 3, 463–476 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bouamr, F., Scarlata, S. & Carter, C. Role of myristylation in HIV-1 Gag assembly. Biochemistry 42, 6408–6417 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Resh, M. D. A myristoyl switch regulates membrane binding of HIV-1 Gag. Proc. Natl Acad. Sci. U. S. A. 101, 417–418 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, H., Dou, J., Ding, L. & Spearman, P. Myristoylation is required for human immunodeficiency virus type 1 Gag-Gag multimerization in mammalian cells. J. Virol. 81, 12899–12910 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takamune, N., Tanaka, T., Takeuchi, H., Misumi, S. & Shoji, S. Down-regulation of N-myristoyl transferase expression in human T-cell line CEM by human immunodeficiency virus type-1 infection. FEBS Lett. 506, 81–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Takamune, N., Hamada, H., Misumi, S. & Shoji, S. Novel strategy for anti-HIV-1 action: selective cytotoxic effect of N-myristoyltransferase inhibitor on HIV-1-infected cells. FEBS Lett. 527, 138–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Udenwobele, D. I. et al. Myristoylation: an important protein modification in the immune response. Front Immunol. 8, 751 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Muthamilarasan, M. & Prasad, M. Plant innate immunity: an updated insight into defense mechanism. J. Biosci. 38, 433–449 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Riera Romo, M., Pérez-Martínez, D. & Castillo Ferrer, C. Innate immunity in vertebrates: an overview. Immunology 148, 125–139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaur, B. P. & Secord, E. Innate immunity. Pediatr. Clin. North Am. 66, 905–911 (2019).

    Article  PubMed  Google Scholar 

  30. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Hornung, V. et al. 5’-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).

    Article  PubMed  Google Scholar 

  33. Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates. Science 314, 997–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Barrat, F. J., Elkon, K. B. & Fitzgerald, K. A. Importance of nucleic acid recognition in inflammation and autoimmunity. Annu. Rev. Med. 67, 323–336 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Hornung, V., Hartmann, R., Ablasser, A. & Hopfner, K.-P. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nat. Rev. Immunol. 14, 521–528 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Paludan, S. R., Bowie, A. G., Horan, K. A. & Fitzgerald, K. A. Recognition of herpesviruses by the innate immune system. Nat. Rev. Immunol. 11, 143–154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Takeuchi, O. & Akira, S. Innate immunity to virus infection. Immunol. Rev. 227, 75–86 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rowe, D. C. et al. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc. Natl Acad. Sci. U. S. A. 103, 6299–6304 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Burnaevskiy, N. et al. Proteolytic elimination of N-myristoyl modifications by the Shigella virulence factor IpaJ. Nature 496, 106–109 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vetting, M. W. et al. Structure and functions of the GNAT superfamily of acetyltransferases. Arch. Biochem. Biophys. 433, 212–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Raju, R. V. S., Magnuson, B. A. & Sharma, R. K. Mammalian myristoyl CoA: protein N-myristoyltransferase. Mol. Cell. Biochem. 149, 191–202 (1995).

    Article  PubMed  Google Scholar 

  46. The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

    Article  Google Scholar 

  47. Maurer-Stroh, S., Eisenhaber, B. & Eisenhaber, F. N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences11Edited by J. Thornton. J. Mol. Biol. 317, 523–540 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Šarić, M. et al. Dual acylation accounts for the localization of α19-Giardin in the ventral Flagellum pair of Giardia lamblia. Eukaryot. Cell 8, 1567–1574 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Qi, Q. et al. Molecular cloning, genomic organization, and biochemical characterization of myristoyl-CoA:ProteinN-Myristoyltransferase from Arabidopsis thaliana. J. Biol. Chem. 275, 9673–9683 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Podell, S. & Gribskov, M. Predicting N-terminal myristoylation sites in plant proteins. BMC Genom. 5, 37 (2004).

    Article  Google Scholar 

  51. King, M. J. & Sharma, R. K. Demonstration of multiple forms of bovine brain myristoyl CoA: protein N-myristoyl transferase. Mol. Cell. Biochem. 113, 77–81 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Glover, C. J., Goddard, C. & Felsted, R. L. N-myristoylation of p60src. Identification of a myristoyl-CoA:glycylpeptide N-myristoyltransferase in rat tissues. Biochem. J. 250, 485–491 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Giang, D. K. & Cravatt, B. F. A second mammalian N-Myristoyltransferase. J. Biol. Chem. 273, 6595–6598 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Selvakumar, P. et al. Potential role of N-myristoyltransferase in cancer. Prog. Lipid Res. 46, 1–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Zhou, H. et al. Toward a comprehensive characterization of a human cancer cell phosphoproteome. J. Proteome Res. 12, 260–271 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Bian, Y. et al. An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J. Proteom. 96, 253–262 (2014).

    Article  CAS  Google Scholar 

  57. Beausoleil, S. A., Villén, J., Gerber, S. A., Rush, J. & Gygi, S. P. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 24, 1285–1292 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Dephoure, N. et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl Acad. Sci. 105, 10762–10767 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rigbolt, K. T. G. et al. System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci. Signal. 4, rs3 (2011).

    Article  PubMed  Google Scholar 

  60. Olsen, J. V. et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3, ra3 (2010).

    Article  PubMed  Google Scholar 

  61. Wang, D. et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol. Syst. Biol. 15, e8503 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yang, S. H. et al. N-myristoyltransferase 1 is essential in early mouse development. J. Biol. Chem. 280, 18990–18995 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Shrivastav, A. et al. Requirement of N-myristoyltransferase 1 in the development of monocytic lineage. J. Immunol. 180, 1019–1028 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Johnson, D. R., Bhatnagar, R. S., Knoll, L. J. & Gordon, J. I. Genetic and biochemical studies of protein N-myristoylation. Annu. Rev. Biochem. 63, 869–914 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Rudnick, D. A. et al. Kinetic and structural evidence for a sequential ordered Bi Bi mechanism of catalysis by Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase. J. Biol. Chem. 266, 9732–9739 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Peitzsch, R. M. & McLaughlin, S. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins. Biochemistry 32, 10436–10443 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Resh, M. D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta 1451, 1–16 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. McLaughlin, S. & Aderem, A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem. Sci. 20, 272–276 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Braun, T., McIlhinney, R. A. & Vergères, G. Myristoylation-dependent N-terminal cleavage of the myristoylated alanine-rich C kinase substrate (MARCKS) by cellular extracts. Biochimie 82, 705–715 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Tanaka, T., Ames, J. B., Harvey, T. S., Stryer, L. & Ikura, M. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature 376, 444–447 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Ames, J. B., Porumb, T., Tanaka, T., Ikura, M. & Stryer, L. Amino-terminal myristoylation induces cooperative calcium binding to recoverin. J. Biol. Chem. 270, 4526–4533 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Goldberg, J. Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95, 237–248 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Liu, Y., Kahn, R. A. & Prestegard, J. H. Structure and membrane interaction of myristoylated ARF1. Structure 17, 79–87 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Linder, M. E. & Deschenes, R. J. Palmitoylation: policing protein stability and traffic. Nat. Rev. Mol. Cell Biol. 8, 74–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Cadwallader, K. A., Paterson, H., Macdonald, S. G. & Hancock, J. F. N-terminally myristoylated Ras proteins require palmitoylation or a polybasic domain for plasma membrane localization. Mol. Cell Biol. 14, 4722–4730 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Martín, M. L. & Busconi, L. Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J. 24, 429–435 (2000).

    Article  PubMed  Google Scholar 

  77. Barylko, B. et al. Myristoylation-dependent palmitoylation of the receptor tyrosine kinase adaptor FRS2α. Biochemistry 58, 2809–2813 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Cao, J. et al. HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. Proc. Natl Acad. Sci. U. S. A. 116, 5487–5492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dian, C. et al. High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation. Nat. Commun. 11, 1132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Adams, N. M., Grassmann, S. & Sun, J. C. Clonal expansion of innate and adaptive lymphocytes. Nat. Rev. Immunol. 20, 694–707 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Medzhitov, R. & Janeway, C. A. Jr Decoding the patterns of self and nonself by the innate immune system. Science 296, 298–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Roers, A., Hiller, B. & Hornung, V. Recognition of endogenous nucleic acids by the innate immune system. Immunity 44, 739–754 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Chen, W. et al. Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation. Cell 152, 467–478 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Ran, Y. et al. SENP2 negatively regulates cellular antiviral response by deSUMOylating IRF3 and conditioning it for ubiquitination and degradation. J. Mol. Cell Biol. 3, 283–292 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Levy, D. E., Marié, I. J. & Durbin, J. E. Induction and function of type I and III interferon in response to viral infection. Curr. Opin. Virol. 1, 476–486 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Goubau, D., Deddouche, S. & Reis e Sousa, C. Cytosolic sensing of viruses. Immunity 38, 855–869 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dambuza, I. M. & Brown, G. D. C-type lectins in immunity: recent developments. Curr. Opin. Immunol. 32, 21–27 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gay, N. J. & Keith, F. J. Drosophila Toll and IL-1 receptor. Nature 351, 355–356 (1991).

    Article  CAS  PubMed  Google Scholar 

  90. Steward, R. Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science 238, 692–694 (1987).

    Article  CAS  PubMed  Google Scholar 

  91. Schneider, D. S., Hudson, K. L., Lin, T. Y. & Anderson, K. V. Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal-ventral polarity in the Drosophila embryo. Genes Dev. 5, 797–807 (1991).

    Article  CAS  PubMed  Google Scholar 

  92. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Brubaker, S. W., Bonham, K. S., Zanoni, I. & Kagan, J. C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257–290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J. & Madara, J. L. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–1885 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Kang, J. Y. et al. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31, 873–884 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Takeuchi, O. et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol. 13, 933–940 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Takeuchi, O. et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Greulich, W. et al. TLR8 is a sensor of RNase T2 degradation products. Cell 179, 1264–1275.e13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Hidmark, A., von Saint Paul, A. & Dalpke, A. H. Cutting edge: TLR13 is a receptor for bacterial RNA. J. Immunol. 189, 2717–2721 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Raetz, C. R. H. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Vogel, S. N. & Fenton, M. Toll-like receptor 4 signalling: new perspectives on a complex signal-transduction problem. Biochem Soc. Trans. 31, 664–668 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Muzio, M., Ni, J., Feng, P. & Dixit, V. M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278, 1612–1615 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Fitzgerald, K. A. et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413, 78–83 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Horng, T., Barton, G. M., Flavell, R. A. & Medzhitov, R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420, 329–333 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Yamamoto, M. et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Hoebe, K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T. & Seya, T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat. Immunol. 4, 161–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Fitzgerald, K. A. et al. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J. Exp. Med. 198, 1043–1055 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yamamoto, M. et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol. 4, 1144–1150 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. McGettrick, A. F. et al. Trif-related adapter molecule is phosphorylated by PKC{epsilon} during Toll-like receptor 4 signaling. Proc. Natl Acad. Sci. U. S. A. 103, 9196–9201 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Huai, W. et al. Phosphatase PTPN4 preferentially inhibits TRIF-dependent TLR4 pathway by dephosphorylating TRAM. J. Immunol. 194, 4458–4465 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Noguchi, M., Yoshida, T. & Kikuchi, G. Specific requirement of NADPH-cytochrome c reductase for the microsomal heme oxygenase reaction yielding biliverdin IX alpha. FEBS Lett. 98, 281–284 (1979).

    Article  CAS  PubMed  Google Scholar 

  122. Maines, M. D., Trakshel, G. M. & Kutty, R. K. Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible. J. Biol. Chem. 261, 411–419 (1986).

    Article  CAS  PubMed  Google Scholar 

  123. Prawan, A., Kundu, J. K. & Surh, Y. J. Molecular basis of heme oxygenase-1 induction: implications for chemoprevention and chemoprotection. Antioxid. Redox Signal 7, 1688–1703 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Seta, F. et al. Heme oxygenase-2 is a critical determinant for execution of an acute inflammatory and reparative response. Am. J. Pathol. 169, 1612–1623 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bellner, L. et al. Heme oxygenase-2 deletion impairs macrophage function: implication in wound healing. Faseb j. 29, 105–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Chen, R. J. et al. Heme oxygenase-2 suppress TNF-α and IL6 expression via TLR4/MyD88-dependent signaling pathway in mouse cerebral vascular endothelial cells. Mol. Neurobiol. 50, 971–978 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Zhu, Y. et al. Heme oxygenase 2 binds myristate to regulate retrovirus assembly and TLR4 signaling. Cell Host Microbe 21, 220–230 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Alto, N. M. & Orth, K. Subversion of cell signaling by pathogens. Cold Spring Harb. Perspect. Biol. 4, a006114 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hayes, C. S., Aoki, S. K. & Low, D. A. Bacterial contact-dependent delivery systems. Annu. Rev. Genet. 44, 71–90 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Cabezón, E., Ripoll-Rozada, J., Peña, A., de la Cruz, F. & Arechaga, I. Towards an integrated model of bacterial conjugation. FEMS Microbiol. Rev. 39, 81–95 (2014).

    PubMed  Google Scholar 

  131. Kahn, R. A. Toward a model for Arf GTPases as regulators of traffic at the Golgi. FEBS Lett. 583, 3872–3879 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Burnaevskiy, N., Peng, T., Reddick, L. E., Hang, H. C. & Alto, N. M. Myristoylome profiling reveals a concerted mechanism of ARF GTPase deacylation by the bacterial protease IpaJ. Mol. Cell 58, 110–122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Donaldson, J. G. & Jackson, C. L. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat. Rev. Mol. Cell Biol. 12, 362–375 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kosciuk, T. et al. NMT1 and NMT2 are lysine myristoyltransferases regulating the ARF6 GTPase cycle. Nat. Commun. 11, 1067 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Maurer-Stroh, S. & Eisenhaber, F. Myristoylation of viral and bacterial proteins. Trends Microbiol. 12, 178–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Palmiter, R. D., Gagnon, J., Vogt, V. M., Ripley, S. & Eisenman, R. N. The NH2-terminal sequence of the avian oncovirus gag precursor polyprotein (Pr76gag). Virology 91, 423–433 (1978).

    Article  CAS  PubMed  Google Scholar 

  137. Pepinsky, R. B., Papayannopoulos, I. A., Campbell, S. & Vogt, V. M. Analysis of Rous sarcoma virus Gag protein by mass spectrometry indicates trimming by host exopeptidase. J. Virol. 70, 3313–3318 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Henderson, L. E., Krutzsch, H. C. & Oroszlan, S. Myristyl amino-terminal acylation of murine retrovirus proteins: an unusual post-translational proteins modification. Proc. Natl Acad. Sci. U. S. A. 80, 339–343 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pal, R. et al. Myristoylation of gag proteins of HIV-1 plays an important role in virus assembly. AIDS Res Hum. Retroviruses 6, 721–730 (1990).

    Article  CAS  PubMed  Google Scholar 

  140. Göttlinger, H. G., Sodroski, J. G. & Haseltine, W. A. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc. Natl Acad. Sci. U. S. A. 86, 5781–5785 (1989).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Bryant, M. & Ratner, L. Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proc. Natl Acad. Sci. U. S. A. 87, 523–527 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Freed, E. O. HIV-1 assembly, release and maturation. Nat. Rev. Microbiol. 13, 484–496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tang, C. et al. Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proc. Natl Acad. Sci. U. S. A. 101, 517–522 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Hermida-Matsumoto, L. & Resh, M. D. Human immunodeficiency virus type 1 protease triggers a myristoyl switch that modulates membrane binding of Pr55(gag) and p17MA. J. Virol. 73, 1902–1908 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cheng-Mayer, C., Iannello, P., Shaw, K., Luciw, P. A. & Levy, J. A. Differential effects of nef on HIV replication: implications for viral pathogenesis in the host. Science 246, 1629–1632 (1989).

    Article  CAS  PubMed  Google Scholar 

  146. Miller, M. D., Feinberg, M. B. & Greene, W. C. The HIV-1 nef gene acts as a positive viral infectivity factor. Trends Microbiol. 2, 294–298 (1994).

    Article  CAS  PubMed  Google Scholar 

  147. Miller, M. D., Warmerdam, M. T., Gaston, I., Greene, W. C. & Feinberg, M. B. The human immunodeficiency virus-1 nef gene product: a positive factor for viral infection and replication in primary lymphocytes and macrophages. J. Exp. Med. 179, 101–113 (1994).

    Article  CAS  PubMed  Google Scholar 

  148. Fackler, O. T. et al. Association of human immunodeficiency virus Nef protein with actin is myristoylation dependent and influences its subcellular localization. Eur. J. Biochem. 247, 843–851 (1997).

    Article  CAS  PubMed  Google Scholar 

  149. Bentham, M., Mazaleyrat, S. & Harris, M. Role of myristoylation and N-terminal basic residues in membrane association of the human immunodeficiency virus type 1 Nef protein. J. Gen. Virol. 87, 563–571 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Skowronski, J., Parks, D. & Mariani, R. Altered T cell activation and development in transgenic mice expressing the HIV-1 nef gene. EMBO J. 12, 703–713 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Badley, A. D. et al. Macrophage-dependent apoptosis of CD4+ T lymphocytes from HIV-infected individuals is mediated by FasL and tumor necrosis factor. J. Exp. Med. 185, 55–64 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Geleziunas, R., Xu, W., Takeda, K., Ichijo, H. & Greene, W. C. HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell. Nature 410, 834–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Hung, C. H. et al. HIV-1 Nef assembles a Src family kinase-ZAP-70/Syk-PI3K cascade to downregulate cell-surface MHC-I. Cell Host Microbe 1, 121–133 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Goldsmith, M. A., Warmerdam, M. T., Atchison, R. E., Miller, M. D. & Greene, W. C. Dissociation of the CD4 downregulation and viral infectivity enhancement functions of human immunodeficiency virus type 1 Nef. J. Virol. 69, 4112–4121 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sol-Foulon, N. et al. HIV-1 Nef-induced upregulation of DC-SIGN in dendritic cells promotes lymphocyte clustering and viral spread. Immunity 16, 145–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Swingler, S. et al. HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nat. Med. 5, 997–103 (1999).

    Article  CAS  PubMed  Google Scholar 

  157. Swingler, S. et al. HIV-1 Nef intersects the macrophage CD40L signalling pathway to promote resting-cell infection. Nature 424, 213–219 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Yuan, M. et al. N-myristoylation: from cell biology to translational medicine. Acta Pharmacol. Sin. 41, 1005–1015 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Shrivastav, A. et al. Expression and activity of N-myristoyltransferase in lung inflammation of cattle and its role in neutrophil apoptosis. Vet. Res 41, 9 (2010).

    Article  PubMed  Google Scholar 

  160. Romagnoli, S., Peris, A., De Gaudio, A. R. & Geppetti, P. SARS-CoV-2 and COVID-19: from the bench to the bedside. Physiol. Rev. 100, 1455–1466 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Nkengasong, J. China’s response to a novel coronavirus stands in stark contrast to the 2002 SARS outbreak response. Nat. Med. 26, 310–311 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Cai, Y. et al. Distinct conformational states of SARS-CoV-2 spike protein. Science 369, 1586–1592 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Turoňová, B. et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science 370, 203–208 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Plante, J. A. et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature (2020). https://doi.org/10.1038/s41586-020-2895-3.

  166. Wu, A. et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 27, 325–328 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Cao, L. et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science 370, 426–431 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rogers, T. F. et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science 369, 956–963 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chi, X. et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science 369, 650–655 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Barnes, C. O. et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682–687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Monteil, V. et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181, 905–913.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Schoeman, D. & Fielding, B. C. Coronavirus envelope protein: current knowledge. Virol. J. 16, 69 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Ono, A. & Freed, E. O. Binding of human immunodeficiency virus type 1 Gag to membrane: role of the matrix amino terminus. J. Virol. 73, 4136–4144 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Yu, G. & Felsted, R. L. Effect of myristoylation on p27 nef subcellular distribution and suppression of HIV-LTR transcription. Virology 187, 46–55 (1992).

    Article  CAS  PubMed  Google Scholar 

  176. Resh, M. D. Myristylation and palmitylation of Src family members: the fats of the matter. Cell 76, 411–413 (1994).

    Article  CAS  PubMed  Google Scholar 

  177. Streuli, C. H. & Griffin, B. E. Myristic acid is coupled to a structural protein of polyoma virus and SV40. Nature 326, 619–622 (1987).

    Article  CAS  PubMed  Google Scholar 

  178. Moscufo, N., Simons, J. & Chow, M. Myristoylation is important at multiple stages in poliovirus assembly. J. Virol. 65, 2372–2380 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Gripon, P., Le Seyec, J., Rumin, S. & Guguen-Guillouzo, C. Myristylation of the hepatitis B virus large surface protein is essential for viral infectivity. Virology 213, 292–299 (1995).

    Article  CAS  PubMed  Google Scholar 

  180. Tillotson, L. & Shatkin, A. J. Reovirus polypeptide sigma 3 and N-terminal myristoylation of polypeptide mu 1 are required for site-specific cleavage to mu 1C in transfected cells. J. Virol. 66, 2180–2186 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Martin, K. H., Grosenbach, D. W., Franke, C. A. & Hruby, D. E. Identification and analysis of three myristylated vaccinia virus late proteins. J. Virol. 71, 5218–5226 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Lang, M. L. et al. IgA Fc receptor (FcalphaR) cross-linking recruits tyrosine kinases, phosphoinositide kinases and serine/threonine kinases to glycolipid rafts. Biochem. J. 364, 517–525 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. O’Callaghan, D. W. et al. Differential use of myristoyl groups on neuronal calcium sensor proteins as a determinant of spatio-temporal aspects of Ca2+ signal transduction. J. Biol. Chem. 277, 14227–14237 (2002).

    Article  PubMed  Google Scholar 

  184. Spilker, C., Dresbach, T. & Braunewell, K. H. Reversible translocation and activity-dependent localization of the calcium-myristoyl switch protein VILIP-1 to different membrane compartments in living hippocampal neurons. J. Neurosci. 22, 7331–7339 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Perrino, B. A. & Martin, B. A. Ca(2+)- and myristoylation-dependent association of calcineurin with phosphatidylserine. J. Biochem. 129, 835–841 (2001).

    Article  CAS  PubMed  Google Scholar 

  186. Timm, S., Titus, B., Bernd, K. & Barroso, M. The EF-hand Ca(2+)-binding protein p22 associates with microtubules in an N-myristoylation-dependent manner. Mol. Biol. Cell 10, 3473–3488 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hwang, J. Y. & Koch, K. W. Calcium- and myristoyl-dependent properties of guanylate cyclase-activating protein-1 and protein-2. Biochemistry 41, 13021–13028 (2002).

    Article  CAS  PubMed  Google Scholar 

  188. Ueda, T., Yamaguchi, M., Uchimiya, H. & Nakano, A. Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J. 20, 4730–4741 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Chen, C. A. & Manning, D. R. Regulation of G proteins by covalent modification. Oncogene 20, 1643–1652 (2001).

    Article  CAS  PubMed  Google Scholar 

  190. Moffett, S., Brown, D. A. & Linder, M. E. Lipid-dependent targeting of G proteins into rafts. J. Biol. Chem. 275, 2191–2198 (2000).

    Article  CAS  PubMed  Google Scholar 

  191. Martin, G. B., Bogdanove, A. J. & Sessa, G. Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant Biol. 54, 23–61 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Pepperkok, R. et al. Intracellular distribution of mammalian protein kinase A catalytic subunit altered by conserved Asn2 deamidation. J. Cell Biol. 148, 715–726 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Fraser, I. D. et al. A novel lipid-anchored A-kinase Anchoring Protein facilitates cAMP-responsive membrane events. EMBO J. 17, 2261–2272 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Vaandrager, A. B. et al. Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl- channel activation. Proc. Natl Acad. Sci. U. S. A. 95, 1466–1471 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lu, S. X. & Hrabak, E. M. An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiol. 128, 1008–1021 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Michel, T. Targeting and translocation of endothelial nitric oxide synthase. Braz. J. Med. Biol. Res. 32, 1361–1366 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to apologize to those researchers whose related work we were not able to cite in this review. This work was supported by a special program from the Ministry of Science and Technology of China (2016YFA0502500 to L.Z.), the Chinese National Natural Science Funds (U20A20393, 82041009, 31925013, 31671457, and 91753139 to L.Z.; 31871405 and 31571460 to F.Z.), Jiangsu National Science Foundation (BK20180043 and 19KJA550003 to F.Z.), the Zhejiang Natural Science Fund (LD19C070001 to L.Z.), the Key Project of University Natural Science Foundation of Jiangsu Province (19KJA550003), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

B.W., T.D., W.S., and Y.W. contributed equally to this work. B.W., T.D., W.S., and Y.W. conceived and drafted the manuscript. W.B. prepared the figures. M.Z. and R.J. discussed the concepts of the manuscript. F.Z. and L.Z. provided valuable discussion and revised the manuscript.

Corresponding author

Correspondence to Fangfang Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Dai, T., Sun, W. et al. Protein N-myristoylation: functions and mechanisms in control of innate immunity. Cell Mol Immunol 18, 878–888 (2021). https://doi.org/10.1038/s41423-021-00663-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-021-00663-2

Keywords

This article is cited by

Search

Quick links