Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Specific ECM degradation potentiates the antitumor activity of CAR-T cells in solid tumors

Abstract

Although major progress has been made in the use of chimeric antigen receptor (CAR)-T-cell therapy for hematological malignancies, this method is ineffective against solid tumors largely because of the limited infiltration, activation and proliferation of CAR-T cells. To overcome this issue, we engineered CAR-T cells with synthetic Notch (synNotch) receptors, which induce local tumor-specific secretion of extracellular matrix (ECM)-degrading enzymes at the tumor site. SynNotch CAR-T cells achieve precise ECM recognition and robustly kill targeted tumors, with synNotch-induced enzyme production enabling the degradation of components of the tumor ECM. In addition, this regulation strongly increased the infiltration of CAR-T cells and the clearance of solid tumors, resulting in tumor regression without toxicity in vivo. Notably, synNotch CAR-T cells also promoted the persistent activation of CAR-T cells in patient-derived tumor organoids. Thus, we constructed a synthetic T-cell system that increases the infiltration and antitumor function of CAR-T cells, providing a strategy for targeting ECM-rich solid tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol. 2020;17:147–67.

    Article  PubMed  Google Scholar 

  2. Maus MV. A decade of CAR T-cell evolution. Nat Cancer. 2022;3:270–1.

    Article  PubMed  Google Scholar 

  3. Adachi K, Kano Y, Nagai T, Okuyama N, Sakoda Y, Tamada K. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T-cell survival in the tumor. Nat Biotechnol. 2018;36:346–51.

    Article  CAS  PubMed  Google Scholar 

  4. Tian Y, Li Y, Shao Y, Zhang Y. Gene modification strategies for next-generation CAR T cells against solid cancers. J Hematol Oncol. 2020;13:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao Z, Xiao X, Saw PE, Wu W, Huang H, Chen J, et al. Chimeric antigen receptor T cells in solid tumors: a war against the tumor microenvironment. Sci China Life Sci. 2020;63:180–205.

    Article  CAS  PubMed  Google Scholar 

  6. Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, et al. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther. 2021;6:153.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell. 2017;168:724–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sterner RC, Sterner RM. CAR-T-cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11:69.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer. 2022;21:208.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gordon-Weeks A, Yuzhalin AE. Cancer Extracellular Matrix Proteins Regulate Tumour Immunity. Cancers (Basel). 2020;12:3331.

  11. Kolesnikoff N, Chen CH, Samuel MS. Interrelationships between the extracellular matrix and the immune microenvironment that govern epithelial tumor progression. Clin Sci (Lond). 2022;136:361–77.

    Article  CAS  PubMed  Google Scholar 

  12. Kuczek DE, Larsen A, Thorseth ML, Carretta M, Kalvisa A, Siersbæk MS, et al. Collagen density regulates the activity of tumor-infiltrating T cells. J Immunother Cancer. 2019;7:68.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nicolas-Boluda A, Vaquero J, Vimeux L, Guilbert T, Barrin S, Kantari-Mimoun C, et al. Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. Elife. 2021;10:e58688.

  14. Wang LC, Lo A, Scholler J, Sun J, Majumdar RS, Kapoor V, et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol Res. 2014;2:154–66.

    Article  CAS  PubMed  Google Scholar 

  15. Lee IK, Noguera-Ortega E, Xiao Z, Todd L, Scholler J, Song D, et al. Monitoring therapeutic response to Anti-FAP CAR T cells using [18F]AlF-FAPI-74. Clin Cancer Res. 2022;28:5330–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Sun Y, Wang P, Li S, Dong Y, Zhou M, et al. FAP-targeted CAR-T suppresses MDSCs recruitment to improve the antitumor efficacy of claudin18.2-targeted CAR-T against pancreatic cancer. J Transl Med. 2023;21:255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee CC, Restifo NP, et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med. 2013;210:1125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Caruana I, Savoldo B, Hoyos V, Weber G, Liu H, Kim ES, et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med. 2015;21:524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramanathan RK, McDonough SL, Philip PA, Hingorani SR, Lacy J, Kortmansky JS, et al. Phase IB/II randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. J Clin Oncol. 2019;37:1062–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morsut L, Roybal KT, Xiong X, Gordley RM, Coyle SM, Thomson M, et al. Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell. 2016;164:780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roybal KT, Williams JZ, Morsut L, Rupp LJ, Kolinko I, Choe JH, et al. Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell. 2016;167:419–32.e416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang G, Zhang Z, Zhong K, Wang Z, Yang N, Tang X, et al. CXCL11-armed oncolytic adenoviruses enhance CAR-T-cell therapeutic efficacy and reprogram tumor microenvironment in glioblastoma. Mol Ther. 2023;31:134–53.

    Article  CAS  PubMed  Google Scholar 

  23. Dutta D, Heo I, Clevers H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med. 2017;23:393–410.

    Article  CAS  PubMed  Google Scholar 

  24. Hou AJ, Chen LC, Chen YY. Navigating CAR-T cells through the solid-tumor microenvironment. Nat Rev Drug Discov. 2021;20:531–50.

    Article  CAS  PubMed  Google Scholar 

  25. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21:418–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wen B, Xu LY, Li EM. LOXL2 in cancer: regulation, downstream effectors and novel roles. Biochim Biophys Acta Rev Cancer. 2020;1874:188435.

    Article  CAS  PubMed  Google Scholar 

  27. Lampi MC, Reinhart-King CA. Targeting extracellular matrix stiffness to attenuate disease: From molecular mechanisms to clinical trials. Sci Transl Med. 2018;10:eaao0475.

  28. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bourboulia D, Stetler-Stevenson WG. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin Cancer Biol. 2010;20:161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang W, Liu L, Su H, Liu Q, Shen J, Dai H, et al. Chimeric antigen receptor macrophage therapy for breast tumors mediated by targeting the tumor extracellular matrix. Br J Cancer. 2019;121:837–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chiriaco C, Donini C, Cortese M, Ughetto S, Modica C, Martinelli I, et al. Efficacy of CAR-T immunotherapy in MET overexpressing tumors not eligible for anti-MET targeted therapy. J Exp Clin Cancer Res. 2022;41:309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu J, Wang Z, Liao C, Chen Z, Kang F, Lin C, et al. Induced expression of CCL19 promotes the anti-tumor ability of CAR-T cells by increasing their infiltration ability. Front Immunol. 2022;13:958960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peng DH, Rodriguez BL, Diao L, Chen L, Wang J, Byers LA, et al. Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8(+) T-cell exhaustion. Nat Commun. 2020;11:4520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T-cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21:581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramakrishna S, Barsan V, Mackall C. Prospects and challenges for use of CAR T-cell therapies in solid tumors. Expert Opin Biol Ther. 2020;20:503–16.

    Article  CAS  PubMed  Google Scholar 

  36. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl J Med. 2013;368:1509–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression - implications for anticancer therapy. Nat Rev Clin Oncol. 2019;16:356–71.

    Article  CAS  PubMed  Google Scholar 

  38. Li G, Zhang Q, Han Z, Zhu Y, Shen H, Liu Z, et al. IL-7 and CCR2b co-expression-mediated enhanced CAR-T survival and infiltration in solid tumors. Front Oncol. 2021;11:734593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tousley AM, Rotiroti MC, Labanieh L, Rysavy LW, Kim WJ, Lareau C, et al. Co-opting signaling molecules enables logic-gated control of CAR T cells. Nature. 2023;615:507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu L, Qu Y, Cheng L, Yoon CW, He P, Monther A, et al. Engineering chimeric antigen receptor T cells for solid tumor therapy. Clin Transl Med. 2022;12:e1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu Y, Zhang M, Ramos CA, Durett A, Liu E, Dakhova O, et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood. 2014;123:3750–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schomer NT, Jiang ZK, Lloyd MI, Klingemann H, Boissel L. CCR7 expression in CD19 chimeric antigen receptor-engineered natural killer cells improves migration toward CCL19-expressing lymphoma cells and increases tumor control in mice with human lymphoma. Cytotherapy. 2022;24:827–34.

    Article  CAS  PubMed  Google Scholar 

  43. Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401:708–12.

    Article  CAS  PubMed  Google Scholar 

  44. Mittra S, Harding SM, Kaech SM. Memory T cells in the immunoprevention of cancer: a switch from therapeutic to prophylactic approaches. J Immunol. 2023;211:907–16.

    Article  CAS  PubMed  Google Scholar 

  45. Matsuda M, Koga M, Nishida E, Ebisuya M. Synthetic signal propagation through direct cell‒cell interaction. Sci Signal. 2012;5:ra31.

    Article  PubMed  Google Scholar 

  46. Xu Y, Li S, Wang Y, Liu J, Mao X, Xing H, et al. Induced CD20 expression on B-cell malignant cells heightened the cytotoxic activity of chimeric antigen receptor engineered T cells. Hum Gene Ther. 2019;30:497–510.

    Article  CAS  PubMed  Google Scholar 

  47. Li S, Tao Z, Xu Y, Liu J, An N, Wang Y, et al. CD33-specific chimeric antigen receptor T cells with different co-stimulators showed potent anti-leukemia efficacy and different phenotype. Hum Gene Ther. 2018;29:626–39.

    Article  CAS  PubMed  Google Scholar 

  48. Kopper O, de Witte CJ, Lõhmussaar K, Valle-Inclan JE, Hami N, Kester L, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med. 2019;25:838–49.

    Article  CAS  PubMed  Google Scholar 

  49. Maenhoudt N, Defraye C, Boretto M, Jan Z, Heremans R, Boeckx B, et al. Developing organoids from ovarian cancer as experimental and preclinical models. Stem Cell Rep. 2020;14:717–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a grant from the National Natural Science Foundation of China (No. 81972870), the Independent Research Topic of State Key Laboratory of Cancer Biology of Fourth Military Medical University (CBSKL2022ZZ20), Tangdu Hospital-key research project (2022TDGS007).

Author information

Authors and Affiliations

Authors

Contributions

RZ, BY, AGY and JL conceived the idea of the study and designed experiments; RZ and BY designed the project of the study; RZ, KS, SXL and YHL performed the majority of the experiments and SYZ, HD, YJH, XJZ, YTZ, PJW, RTM and SKB performed the part of the experiments and acquired data; RZ, KS analyzed data and interpreted results; BY, JL advised on the design of human primary organoid; JL performed the surgery to obtain the tissue of ovarian cancer patients, FYL cultured the organoid and RZ, KS, YHL and SXL performed the further experiments of CAR-T; JL, RZ, KS, SXL and FYL wrote the manuscript with feedback from all authors. RZ, BY, JXY and GFL revised the manuscript. BY and AGY supervised the work.

Corresponding authors

Correspondence to Jia Li, Angang Yang, Rui Zhang or Bo Yan.

Ethics declarations

Competing interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflicts of interest.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, R., Shen, K., Liang, S. et al. Specific ECM degradation potentiates the antitumor activity of CAR-T cells in solid tumors. Cell Mol Immunol 21, 1491–1504 (2024). https://doi.org/10.1038/s41423-024-01228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-024-01228-9

Keywords

This article is cited by

Search

Quick links