Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MYO1F regulates T-cell activation and glycolytic metabolism by promoting the acetylation of GAPDH

Abstract

Proper cellular metabolism in T cells is critical for a productive immune response. However, when dysregulated by intrinsic or extrinsic metabolic factors, T cells may contribute to a wide spectrum of diseases, such as cancers and autoimmune diseases. However, the metabolic regulation of T cells remains incompletely understood. Here, we show that MYO1F is required for human and mouse T-cell activation after TCR stimulation and that T-cell-specific Myo1f knockout mice exhibit an increased tumor burden and attenuated EAE severity due to impaired T-cell activation in vivo. Mechanistically, after TCR stimulation, MYO1F is phosphorylated by LCK at tyrosines 607 and 634, which is critical for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) acetylation at Lys84, 86 and 227 mediated by α-TAT1, which is an acetyltransferase, and these processes are important for its activation, cellular glycolysis and thus the effector function of T cells. Importantly, we show that a fusion protein of VAV1-MYO1F, a recurrent peripheral T-cell lymphoma (PTCL)-associated oncogenic protein, promotes hyperacetylation of GAPDH and its activation, which leads to aberrant glycolysis and T-cell proliferation, and that inhibition of the activity of GAPDH significantly limits T-cell activation and proliferation and extends the survival of hVAV1-MYO1F knock-in mice. Moreover, hyperacetylation of GAPDH was confirmed in human PTCL patient samples containing the VAV1-MYO1F gene fusion. Overall, this study revealed not only the mechanisms by which MYO1F regulates T-cell metabolism and VAV1-MYO1F fusion-induced PTCL but also promising therapeutic targets for the treatment of PTCL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bantug GR, et al. The spectrum of T-cell metabolism in health and disease. Nat Rev Immunol. 2018;18:19–34.

    Article  CAS  PubMed  Google Scholar 

  2. Finlay D, Cantrell DA. Metabolism, migration and memory in cytotoxic T cells. Nat Rev Immunol. 2011;11:109–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Geltink RIK, et al. Unraveling the complex interplay between T-cell metabolism and function. Annu Rev Immunol. 2018;36:461–88.

    Article  CAS  PubMed  Google Scholar 

  4. O’Sullivan D, Pearce EL. Targeting T-cell metabolism for therapy. Trends Immunol. 2015;36:71–80.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Reina-Campos M, et al. CD8(+) T-cell metabolism in infection and cancer. Nat Rev Immunol. 2021;21:718–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chapman NM, et al. Metabolic coordination of T-cell quiescence and activation. Nat Rev Immunol. 2020;20:55–70.

    Article  CAS  PubMed  Google Scholar 

  7. O’Neill LA, et al. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16:553–65.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pearce EL, et al. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013;342:1242454.

    Article  PubMed  PubMed Central  Google Scholar 

  9. MacIver NJ, et al. Metabolic regulation of T lymphocytes. Annu Rev Immunol. 2013;31:259–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shyer JA, et al. Metabolic signaling in T cells. Cell Res. 2020;30:649–59.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chi H. Regulation and function of mTOR signaling in T-cell fate decisions. Nat Rev Immunol. 2012;12:325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Delgoffe GM, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011;12:295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rao RR, et al. The mTOR kinase determines effector versus memory CD8+ T-cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity. 2010;32:67–78.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ray JP, et al. The Interleukin-2-mTORc1 Kinase axis defines the signaling, differentiation, and metabolism of T Helper 1 and follicular B helper T cells. Immunity. 2015;43:690–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Verbist KC, et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature. 2016;532:389–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blagih J, et al. The energy sensor AMPK regulates T-cell metabolic adaptation and effector responses in vivo. Immunity. 2015;42:41–54.

    Article  CAS  PubMed  Google Scholar 

  17. Dang EV, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 2011;146:772–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shi LZ, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 2011;208:1367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang JQ, et al. RhoA orchestrates glycolysis for TH2 cell differentiation and allergic airway inflammation. J Allergy Clin Immunol. 2016;137:231–45 e234.

    Article  CAS  PubMed  Google Scholar 

  20. Kishton RJ, et al. AMPK is essential to balance glycolysis and mitochondrial metabolism to control T-ALL cell stress and survival. Cell Metab. 2016;23:649–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Elia I, et al. Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8(+) T cells. Cell Metab. 2022;34:1137–50 e1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fischer K, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 2007;109:3812–9.

    Article  CAS  PubMed  Google Scholar 

  23. Macintyre AN, et al. The glucose transporter Glut1 is selectively essential for CD4 T-cell activation and effector function. Cell Metab. 2014;20:61–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Piotrowski JT, et al. WASH knockout T cells demonstrate defective receptor trafficking, proliferation, and effector function. Mol Cell Biol. 2013;33:958–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Berod L, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med. 2014;20:1327–33.

    Article  CAS  PubMed  Google Scholar 

  26. Galluzzi L, et al. Metabolic targets for cancer therapy. Nat Rev Drug Discov. 2013;12:829–46.

    Article  CAS  PubMed  Google Scholar 

  27. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13:472–82.

    Article  CAS  PubMed  Google Scholar 

  28. Chang CH, et al. Posttranscriptional control of T-cell effector function by aerobic glycolysis. Cell. 2013;153:1239–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Colell A, et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell. 2007;129:983–97.

    Article  CAS  PubMed  Google Scholar 

  30. Liberti MV, et al. A predictive model for selective targeting of the warburg effect through GAPDH inhibition with a natural product. Cell Metab. 2017;26:648–659 e648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Colell A, et al. Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ. 2009;16:1573–81.

    Article  CAS  PubMed  Google Scholar 

  32. Balmer ML, et al. Memory CD8(+) T cells require increased concentrations of acetate induced by stress for optimal function. Immunity. 2016;44:1312–24.

    Article  CAS  PubMed  Google Scholar 

  33. Xu Y, et al. Glycolysis determines dichotomous regulation of T-cell subsets in hypoxia. J Clin Invest. 2016;126:2678–88.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gubser PM, et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat Immunol. 2013;14:1064–72.

    Article  CAS  PubMed  Google Scholar 

  35. Mondragon L, et al. GAPDH overexpression in the T-cell lineage promotes angioimmunoblastic T-cell Lymphoma through an NF-kappaB-dependent mechanism. Cancer Cell. 2019;36:268–87 e210.

    Article  CAS  PubMed  Google Scholar 

  36. Barger SR, et al. Membrane-cytoskeletal crosstalk mediated by myosin-I regulates adhesion turnover during phagocytosis. Nat Commun. 2019;10:1249.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim SV, et al. Modulation of cell adhesion and motility in the immune system by Myo1f. Science. 2006;314:136–9.

    Article  CAS  PubMed  Google Scholar 

  38. Salvermoser M, et al. Myosin 1f is specifically required for neutrophil migration in 3D environments during acute inflammation. Blood. 2018;131:1887–98.

    Article  CAS  PubMed  Google Scholar 

  39. Sun W, et al. MYO1F regulates antifungal immunity by regulating acetylation of microtubules. Proc Natl Acad Sci USA. 2021;118:e2100230118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jerby-Arnon L, et al. A cancer cell program promotes T-cell exclusion and resistance to checkpoint blockade. Cell. 2018;175:984–97 e924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Song WM, et al. Network models of primary melanoma microenvironments identify key melanoma regulators underlying prognosis. Nat Commun. 2021;12:1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Abate F, et al. Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T-cell lymphomas. Proc Natl Acad Sci USA. 2017;114:764–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cortes JR, et al. Oncogenic Vav1-Myo1f induces therapeutically targetable macrophage-rich tumor microenvironment in peripheral T-cell lymphoma. Cell Rep. 2022;39:110695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morrish E, et al. The fusion oncogene VAV1-MYO1F triggers aberrant T-cell receptor signaling in vivo and drives peripheral T-cell lymphoma in mice. Eur J Immunol. 2023;53:e2250147.

    Article  PubMed  Google Scholar 

  45. Panagopoulos I, et al. Germline MYOF1::WNK4 and VPS25::MYOF1 chimeras generated by the constitutional translocation t(17;19)(q21;p13) in two siblings with Myelodysplastic Syndrome. Cancer Genomics Proteom. 2024;21:272–84.

    Article  CAS  Google Scholar 

  46. Kuchroo VK, et al. T-cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T-cell repertoire. Annu Rev Immunol. 2002;20:101–23.

    Article  CAS  PubMed  Google Scholar 

  47. Chen J, et al. TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response. Nat Commun. 2020;11:1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abramson J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630:493–500.

  49. Choi W, et al. Efficient tagging of endogenous proteins in human cell lines for structural studies by single-particle cryo-EM. Proc Natl Acad Sci USA. 2023;120:e2302471120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Menk AV, et al. Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T-cell effector functions. Cell Rep. 2018;22:1509–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Frauwirth KA, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity. 2002;16:769–77.

    Article  CAS  PubMed  Google Scholar 

  52. Wei Q, et al. Lck bound to coreceptor is less active than free Lck. Proc Natl Acad Sci USA. 2020;117:15809–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moldovan MC, et al. CD4 dimers constitute the functional component required for T-cell activation. J Immunol. 2002;169:6261–8.

    Article  CAS  PubMed  Google Scholar 

  54. Holdorf AD, et al. Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nat Immunol. 2002;3:259–64.

    Article  CAS  PubMed  Google Scholar 

  55. Nolz JC, et al. TCR/CD28-stimulated actin dynamics are required for NFAT1-mediated transcription of c-rel leading to CD28 response element activation. J Immunol. 2007;179:1104–12.

    Article  CAS  PubMed  Google Scholar 

  56. Bunnell SC, et al. Dynamic Actin polymerization drives T-cell receptor–induced spreading: a role for the signal transduction adaptor LAT. Immunity. 2001;14:315–29.

    Article  CAS  PubMed  Google Scholar 

  57. Krendel M, Mooseker MS. Myosins: Tails (and Heads) of functional diversity. Physiology 2005;20:239–51.

    Article  CAS  PubMed  Google Scholar 

  58. Foss FM, et al. Peripheral T-cell lymphoma. Blood. 2011;117:6756–67.

    Article  CAS  PubMed  Google Scholar 

  59. Boddicker RL, et al. Integrated mate-pair and RNA sequencing identifies novel, targetable gene fusions in peripheral T-cell lymphoma. Blood. 2016;128:1234–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tybulewicz VL. Vav-family proteins in T-cell signaling. Curr Opin Immunol. 2005;17:267–74.

    Article  CAS  PubMed  Google Scholar 

  61. Tybulewicz VL, et al. Vav1: a key signal transducer downstream of the TCR. Immunol Rev. 2003;192:42–52.

    Article  CAS  PubMed  Google Scholar 

  62. Wang X, et al. A GAPDH serotonylation system couples CD8(+) T-cell glycolytic metabolism to antitumor immunity. Mol Cell. 2024;84:760–75 e767.

    Article  CAS  PubMed  Google Scholar 

  63. Chang C, et al. AMPK-dependent phosphorylation of GAPDH triggers Sirt1 activation and is necessary for autophagy upon glucose starvation. Mol Cell. 2015;60:930–40.

    Article  CAS  PubMed  Google Scholar 

  64. Sun Young L, et al. Glyceraldehyde-3-Phosphate, a glycolytic intermediate, prevents cells from apoptosis by lowering S-Nitrosylation of Glyceraldehyde-3-Phosphate Dehydrogenase. J Microbiol Biotechnol 2012;22:571–3.

    Article  Google Scholar 

  65. Hara MR, Snyder SH. Nitric oxide–GAPDH–Siah: A novel cell death cascade. Cell Mol Neurobiol. 2006;26:525–36.

    Article  Google Scholar 

  66. Ventura M, et al. Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation. Int J Biochem Cell Biol. 2010;42:1672–80.

    Article  CAS  PubMed  Google Scholar 

  67. Ganapathy-Kanniappan S. Evolution of GAPDH as a druggable target of tumor glycolysis? Expert Opin Ther Targets. 2018;22:295–8.

    Article  CAS  PubMed  Google Scholar 

  68. Yun J, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science. 2015;350:1391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liberti MV, et al. Evolved resistance to partial GAPDH inhibition results in loss of the Warburg effect and in a different state of glycolysis. J Biol Chem. 2020;295:111–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation was supported by grants from the National Science Fund for Distinguished Young Scholars (82225029, to C.H.W.); the Youth Fund of the National Natural Science Foundation of China (82302628, to Y.Y.D., 82301989, to R.R.H., 82301987 to B.Z. and 82402704 to Y.Y.L.); the Original Exploration Program of the National Natural Science Foundation of China (82150102, to C.H.W.); the National Key Research and Development Program of China (2020YFA0710700, to C.H.W.); the Postdoctoral Foundation of China (2022M720658, to Y.Y.D., and 2022M720659 to R.R.H.); the Sichuan Postdoctoral Innovation Plan (BX202202, to Y.Y.D.); the Postdoctoral Foundation of Sichuan Provincial People’s Hospital (2022BH01, to R.R.H. and 2022BH07, to M.Y.); and the Postdoctoral Foundation of Sichuan Province (TB2022086, to R.R.H., TB2023092, to L.Y.F.).

Author information

Authors and Affiliations

Contributions

ZHC and HPW performed the experiments with the assistance of XF, YYD, MY, RRH, TP, RG, LYF, BZ, GLH, and YW; CYW, and CJZ helped to perform the EAE experiments; XX helped to obtain the human PTCL samples and scored the acetylation level of GAPDH in the samples. ZHC and CHW designed the experiments and analyzed the data; CHW wrote the manuscript and supervised the project with YYD, CJZ, and XX.

Corresponding authors

Correspondence to Yanyun Du, Cun-jin Zhang, Xue Xiao or Chenhui Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Wang, H., Feng, X. et al. MYO1F regulates T-cell activation and glycolytic metabolism by promoting the acetylation of GAPDH. Cell Mol Immunol 22, 176–190 (2025). https://doi.org/10.1038/s41423-024-01247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-024-01247-6

Keywords

Search

Quick links