Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FXR inhibition functions as a checkpoint blockade of the pathogenic Tfh cell response in lupus

A Comment to this article was published on 10 July 2025

Abstract

T follicular helper (Tfh) cells specialize in facilitating germinal center B-cell activation and high-affinity antibody generation, which are crucial in humoral immune responses. However, aberrant control of Tfh cells also contributes to the generation of self-reactive autoantibodies and promotes autoimmune diseases such as systemic lupus erythematosus (SLE). The mechanisms that control proper Tfh expansion remain unclear. Here, we show that farnesoid X receptor (FXR) is relatively upregulated in Tfh cells. Genetic deletion of Fxr restrains Tfh expansion both at steady state and in pristane-induced lupus. As a consequence of these defects, mice lacking Fxr manifested GC dysfunction and decreased plasma cell and autoantibody production, which alleviated nephritis progression in pristane-induced lupus. Mechanistically, FXR intrinsically regulates cholesterol homeostasis in Tfh cells, which subsequently controls Tfh cell proliferation. Preclinical treatment of wild-type (WT) mice with the clinically approved drug ursodeoxycholic acid (UDCA) to reduce FXR signaling mitigated lupus disease progression by repressing Tfh expansion, the GC reaction and autoantibody production. These findings provide a rationale for exploring FXR as a potential therapeutic target for SLE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Source sequencing data and supporting analytic code for this article will be made available upon reasonable request to the lead contact.

References

  1. Yu D, Rao S, Tsai LM, Lee SK, He Y, Sutcliffe EL, et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity. 2009;31:457–68.

    Article  CAS  PubMed  Google Scholar 

  2. Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science. 2009;325:1006–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, Matskevitch TD, et al. Bcl6 mediates the development of T follicular helper cells. Science. 2009;325:1001–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deenick EK, Chan A, Ma CS, Gatto D, Schwartzberg PL, Brink R, et al. Follicular helper T-cell differentiation requires continuous antigen presentation that is independent of unique B-cell signaling. Immunity. 2010;33:241–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vinuesa CG, Cyster JG. How T cells earn the follicular rite of passage. Immunity. 2011;35:671–80.

    Article  CAS  PubMed  Google Scholar 

  6. Choi YS, Kageyama R, Eto D, Escobar TC, Johnston RJ, Monticelli L, et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity. 2011;34:932–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harker JA, Lewis GM, Mack L, Zuniga EI. Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science. 2011;334:825–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ozaki K, Spolski R, Ettinger R, Kim H-P, Wang G, Qi C-F, et al. Regulation of B-cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol. 2004;173:5361–71.

    Article  CAS  PubMed  Google Scholar 

  9. Gensous N, Charrier M, Duluc D, Contin-Bordes C, Truchetet M-E, Lazaro E, et al. T follicular helper cells in autoimmune disorders. Front Immunol. 2018;9:1637.

    Article  PubMed  PubMed Central  Google Scholar 

  10. He J, Tsai LM, Leong YA, Hu X, Ma CS, Chevalier N, et al. Circulating precursor CCR7(lo)PD-1(hi) CXCR5+ CD4+ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity. 2013;39:770–81.

    Article  CAS  PubMed  Google Scholar 

  11. Linterman MA, Rigby RJ, Wong RK, Yu D, Brink R, Cannons JL, et al. Follicular helper T cells are required for systemic autoimmunity. J Exp Med. 2009;206:561–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mittereder N, Kuta E, Bhat G, Dacosta K, Cheng LI, Herbst R, et al. Loss of immune tolerance is controlled by ICOS in Sle1 mice. J Immunol. 2016;197:491–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim SJ, Schätzle S, Ahmed SS, Haap W, Jang SH, Gregersen PK, et al. Increased cathepsin S in Prdm1-/- dendritic cells alters the TFH cell repertoire and contributes to lupus. Nat Immunol. 2017;18:1016–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao X, Song Y, Du P, Yang S, Cui H, Lu S, et al. Administration of a microRNA-21 inhibitor improves the lupus-like phenotype in MRL/lpr mice by repressing Tfh cell-mediated autoimmune responses. Int Immunopharmacol. 2022;106:108578.

    Article  CAS  PubMed  Google Scholar 

  15. Gao X, Song Y, Wu J, Lu S, Min X, Liu L, et al. Iron-dependent epigenetic modulation promotes pathogenic T-cell differentiation in lupus. J Clin Invest. 2022;132:e152345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362–5.

    Article  CAS  PubMed  Google Scholar 

  17. Edwards PA, Kast HR, Anisfeld AM. BAREing it all: the adoption of LXR and FXR and their roles in lipid homeostasis. J Lipid Res. 2002;43:2–12.

    Article  CAS  PubMed  Google Scholar 

  18. Yang F, Huang X, Yi T, Yen Y, Moore DD, Huang W. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res. 2007;67:863–7.

    Article  CAS  PubMed  Google Scholar 

  19. Inagaki T, Moschetta A, Lee Y-K, Peng L, Zhao G, Downes M, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA. 2006;103:3920–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen ECL, Renooij W, Murzilli S, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut. 2011;60:463–72.

    Article  CAS  PubMed  Google Scholar 

  21. Fu T, Coulter S, Yoshihara E, Oh TG, Fang S, Cayabyab F, et al. FXR regulates intestinal cancer stem cell proliferation. Cell. 2019;176:1098–1112.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sarkissian T, Beyenne J, Feldman B, Adeli K, Silverman E. The complex nature of the interaction between disease activity and therapy on the lipid profile in patients with pediatric systemic lupus erythematosus. Arthritis Rheum. 2006;54:1283–90.

    Article  CAS  PubMed  Google Scholar 

  23. Hu J-Q, Yan Y-H, Xie H, Feng X-B, Ge W-H, Zhou H, et al. Targeting abnormal lipid metabolism of T cells for systemic lupus erythematosus treatment. Biomed Pharmacother. 2023;165:115198.

    Article  CAS  PubMed  Google Scholar 

  24. Lee SK, Rigby RJ, Zotos D, Tsai LM, Kawamoto S, Marshall JL, et al. B-cell priming for extrafollicular antibody responses requires Bcl-6 expression by T cells. J Exp Med. 2011;208:1377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo J, Jiang L-Y, Yang H, Song B-L. Intracellular cholesterol transport by sterol transfer proteins at membrane contact sites. Trends Biochem Sci. 2019;44:273–92.

    Article  CAS  PubMed  Google Scholar 

  26. Luo J, Yang H, Song B-L. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21:225–45.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y-D, Chen W-D, Moore DD, Huang W. FXR: a metabolic regulator and cell protector. Cell Res. 2008;18:1087–95.

    Article  CAS  PubMed  Google Scholar 

  28. Rawlings DJ, Metzler G, Wray-Dutra M, Jackson SW. Altered B-cell signaling in autoimmunity. Nat Rev Immunol. 2017;17:421–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gatto D, Brink R. The germinal center reaction. J Allergy Clin Immunol. 2010;126:898–907.

    Article  CAS  PubMed  Google Scholar 

  30. Sage PT, Sharpe AH. T follicular regulatory cells in the regulation of B-cell responses. Trends Immunol. 2015;36:410–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crotty S. T follicular helper cell biology: a decade of discovery and diseases. Immunity. 2019;50:1132–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suwannaroj S, Lagoo A, McMurray RW. Suppression of renal disease and mortality in the female NZB x NZW F1 mouse model of systemic lupus erythematosus (SLE) by chenodeoxycholic acid. Lupus. 2001;10:562–7.

    Article  CAS  PubMed  Google Scholar 

  33. Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res. 2015;56:1085–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ahmad TR, Haeusler RA. Bile acids in glucose metabolism and insulin signaling - mechanisms and research needs. Nat Rev Endocrinol. 2019;15:701–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Clifford BL, Sedgeman LR, Williams KJ, Morand P, Cheng A, Jarrett KE, et al. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab. 2021;33:1671–84.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu H, Fang F, Wu K, Song J, Li Y, Lu X, et al. Gut microbiota-bile acid crosstalk regulates murine lipid metabolism via the intestinal FXR-FGF19 axis in diet-induced humanized dyslipidemia. Microbiome. 2023;11:262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li T, Matozel M, Boehme S, Kong B, Nilsson L-M, Guo G, et al. Overexpression of cholesterol 7α-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis. Hepatology. 2011;53:996–1006.

    Article  CAS  PubMed  Google Scholar 

  38. Fu G, Guy CS, Chapman NM, Palacios G, Wei J, Zhou P, et al. Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine. Nature. 2021;595:724–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725.

    Article  CAS  PubMed  Google Scholar 

  40. Cao Y, Yang Q, Deng H, Tang J, Hu J, Liu H, et al. Transcription factor ATF3 protects against colitis by regulating follicular helper T cells in Peyer’s patches. Proc Natl Acad Sci USA. 2019;116:6286–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao Y, Li Y, Wang X, Liu S, Zhang Y, Liu G, et al. Dopamine inhibits group 2 innate lymphoid cell-driven allergic lung inflammation by dampening mitochondrial activity. Immunity. 2023;56:320–35.e9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82271866, 82471853 and 82402127), the Guangzhou Key Research and Development Program (02A004999000186), and the Guangdong Basic and Applied Basic Research Foundation (2024B1515020039, 2021A1515011451, 2017B030314120 and 202201011028).

Author information

Authors and Affiliations

Authors

Contributions

XW and LY conceptualized and investigated the studies; XW, SL, and YZ analyzed the data and interpreted the results. XW, LY, SF, SL, YZ, LZ, WH, JS (Jiawei Song), JS (Jingxuan Shao) and FW performed the experiments. CZ, XL, SZ and YX collected and analyzed the clinical samples. XW conducted the analysis and interpretation of the RNA-seq data. XW, XC and YC wrote the manuscript. YC, JZ and LY conceived the studies, interpreted the data, directed the studies, and revised the manuscript. XW, LY, SL and YZ share co-first authorship, and the order in which they are listed is determined by their workload.

Corresponding authors

Correspondence to Shunjun Fu, Lilin Ye, Jie Zhou or Yingjiao Cao.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests. JZ is an editorial board member of Cellular & Molecular Immunology, but she has not been involved in peer review or decision-making related to the article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figure1. FXR is highly expressed in both human and mice Tfh cells

Supplementary Figure2. FXR signaling specifically modulates Tfh cells, but not other CD4+ T cell subsets

41423_2025_1309_MOESM3_ESM.jpg

Supplementary Figure3. CD4creFxrfl/fl mice exhibits increased serum autoantibodies and splenic plasma cells in the pristane-induced lupus model

Supplementary Figure4. Increased Tfh cells in peripheral blood and kidney of lupus CD4creFxrfl/fl mice

Supplementary Figure5. The GC defect in FXR-deficient mice is T cell intrinsic

Supplementary Figure6. FXR deletion impairs the process of cholesterol homeostasis and cell proliferation in Tfh cells

41423_2025_1309_MOESM7_ESM.jpg

Supplementary Figure7. FXR signaling specifically modulated Tfh cell development by controlling the intracellular cholesterol metabolism

Supplementary Figure8. FXR antagonist UDCA reliefs lupus-like autoimmune disease in mice

Supplementary figure legends

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ye, L., Liu, S. et al. FXR inhibition functions as a checkpoint blockade of the pathogenic Tfh cell response in lupus. Cell Mol Immunol 22, 889–900 (2025). https://doi.org/10.1038/s41423-025-01309-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-025-01309-3

Keywords

This article is cited by

Search

Quick links