Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-18 drives the Bhlhe40-mediated pathogenic Th17 cell response and exacerbates autoimmune disease progression

Abstract

Inflammatory cytokine overproduction is critically involved in immune dysregulation and tissue damage, but the role of interleukin-18 (IL-18), a cytokine associated with inflammasome activation, in modulating the T-cell response and autoimmune pathogenesis remains largely unclear. In this study, we detected high expression levels of the IL-18 receptor α chain (IL-18Rα) in murine and human Th17 cells. In culture, IL-18 markedly promoted Th17 cell differentiation with increased GM-CSF production, a phenotype of pathogenic Th17 (pTh17) cells. Transcriptomic profiling via RNA sequencing revealed that IL-18-induced pTh17 cells presented increased glycolytic flux and proinflammatory signatures. Mechanistically, IL-18 promoted Stat3 phosphorylation, which stabilized Bhlhe40 mRNA to potentiate Bhlhe40-dependent glycolysis and cytokine production. In patients with primary Sjögren’s syndrome (pSS) and systemic lupus erythematosus (SLE), IL-18 levels in plasma and inflamed tissues were significantly increased and positively correlated with disease activity. Moreover, the expression levels of IL-18 were markedly increased in the salivary glands of experimental Sjögren’s syndrome (ESS) model mice and the renal tissues of lupus model mice. Furthermore, adoptive transfer of IL-18-induced pTh17 cells profoundly exacerbated disease severity and tissue damage in recipient IL-17-deficient mice, whereas IL-18 neutralization with a monoclonal antibody effectively suppressed the pTh17 cell response and ameliorated tissue pathology in both ESS and lupus mice. Together, our findings reveal a novel function of IL-18 in driving the pTh17 cell response during autoimmune development, indicating that IL-18 blockade may serve as a promising therapeutic strategy for the treatment of autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Th17 cells express high levels of IL-18Rα, whereas IL-18 promotes the generation of pathogenic Th17 (pTh17) cells in culture.
Fig. 2: IL-18 promotes the pTh17 cell response via Stat3-mediated Bhlhe40 mRNA stabilization.
Fig. 3: IL-18 enhances Bhlhe40-dependent glycolysis in Th17 cells.
Fig. 4: Adoptive transfer of IL-18-pTh17 cells exacerbates ESS development.
Fig. 5: IL-18 expression is increased during the development of pSS and SLE.
Fig. 6: IL-18 neutralization attenuated hyposalivation and tissue pathology in ESS mice.
Fig. 7: IL-18 blockade ameliorates renal damage and suppresses pTh17 cell responses in chromatin-induced lupus and MRL/lpr lupus models.
Fig. 8: Schematic diagram of the IL-18-induced pTh17 response.

Data availability

The bulk RNA-sequencing data generated in this study have been deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database (BioProject accession: PRJNA1255399). All other relevant data are available from the corresponding author upon reasonable request.

References

  1. Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Sig Transduct Target Ther. 2024;9:1–40.

    Article  Google Scholar 

  2. Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol. 2019;15:612–32.

    Article  PubMed  Google Scholar 

  3. Chan AH, Schroder K. Inflammasome signaling and regulation of interleukin-1 family cytokines. Journal Exp Med. 2020;217:e20190314.

    Article  Google Scholar 

  4. Pan M, Yang J, Jiang Z. Inflammasomes and their roles in autoimmune diseases. Rheumatology Autoimmun. 2024;4:197–217.

    Article  Google Scholar 

  5. Takeda K, Tsutsui H, Yoshimoto T, Adachi O, Yoshida N, Kishimoto T, et al. Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity. 1998;8:383–90.

    Article  PubMed  Google Scholar 

  6. Harel M, Fauteux-Daniel S, Girard-Guyonvarc’h C, Gabay C. Balance between Interleukin-18 and Interleukin-18 binding protein in autoinflammatory diseases. Cytokine. 2022;150:155781.

    Article  PubMed  Google Scholar 

  7. Chen Y, Deng F, Zheng J, Yin J, Huang R, Liu W, et al. High circulating level of interleukin-18 in patients with primary Sjögren’s syndrome is associated with disease activity. Modern Rheumatol. 2016;26:156–8.

    Article  Google Scholar 

  8. Esfandiari E, McInnes IB, Lindop G, Huang FP, Field M, Komai-Koma M, et al. A Proinflammatory Role of IL-18 in the Development of Spontaneous Autoimmune Disease1. J Immunol. 2001;167:5338–47.

    Article  PubMed  Google Scholar 

  9. Xiang M, Feng Y, Wang Y, Wang J, Zhang Z, Liang J, et al. Correlation between circulating interleukin-18 level and systemic lupus erythematosus: a meta-analysis. Sci Rep. 2021;11:4707.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dong C. Defining the TH17 cell lineage. Nat Rev Immunol. 2021;21:618.

    Article  PubMed  Google Scholar 

  11. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–41.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schnell A, Littman DR, Kuchroo VK. TH17 cell heterogeneity and its role in tissue inflammation. Nat Immunol. 2023;24:19–29.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lin X, Rui K, Deng J, Tian J, Wang X, Wang S, et al. Th17 cells play a critical role in the development of experimental Sjögren’s syndrome. Ann Rheum Dis. 2015;74:1302–10.

    Article  PubMed  Google Scholar 

  14. Nguyen CQ, Yin H, Lee BH, Carcamo WC, Chiorini JA, Peck AB. Pathogenic effect of interleukin-17A in induction of Sjögren’s syndrome-like disease using adenovirus-mediated gene transfer. Arthritis Res Ther. 2010;12:R220.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xiao F, Du W, Zhu X, Tang Y, Liu L, Huang E, et al. IL-17 drives salivary gland dysfunction by inhibiting TRPC1-mediated calcium movement in Sjögren’s syndrome. Clin Transl Immunol. 2021;10:e1277.

    Article  Google Scholar 

  16. Ma K, Du W, Xiao F, Han M, Huang E, Peng N, et al. IL-17 sustains the plasma cell response via p38-mediated Bcl-xL RNA stability in lupus pathogenesis. Cell Mol Immunol. 2021;18:1739–50.

    Article  PubMed  Google Scholar 

  17. Cerboni S, Gehrmann U, Preite S, Mitra S. Cytokine-regulated Th17 plasticity in human health and diseases. Immunology. 2021;163:3–18.

    Article  PubMed  Google Scholar 

  18. Jain R, Chen Y, Kanno Y, Joyce-Shaikh B, Vahedi G, Hirahara K, et al. Interleukin-23-Induced Transcription Factor Blimp-1 Promotes Pathogenicity of T Helper 17 Cells. Immunity. 2016;44:131–42.

    Article  PubMed  Google Scholar 

  19. Toghi M, Bitarafan S, Ghafouri-Fard S. Pathogenic Th17 cells in autoimmunity with regard to rheumatoid arthritis. Pathology - Res Pract. 2023;250:154818.

    Article  Google Scholar 

  20. Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, et al. Generation of pathogenic T(H)17 cells in the absence of TGF-β signaling. Nature. 2010;467:967–71.

    Article  PubMed  PubMed Central  Google Scholar 

  21. McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol. 2007;8:1390–7.

    Article  PubMed  Google Scholar 

  22. Gaublomme JT, Yosef N, Lee Y, Gertner RS, Yang LV, Wu C, et al. Single-Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity. Cell. 2015;163:1400–12.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, et al. Induction and molecular signature of pathogenic TH17 cells. Nat Immunol. 2012;13:991–9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G, et al. Effects of AIN457, a Fully Human Antibody to Interleukin-17A, on Psoriasis, Rheumatoid Arthritis, and Uveitis. Science Transl Med. 2010;2:52ra72.

    Article  Google Scholar 

  25. Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CEM, Papp K, et al. Secukinumab in plaque psoriasis-results of two phase 3 trials. N Engl J Med. 2014;371:326–38.

    Article  PubMed  Google Scholar 

  26. Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PDR, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomized, double-blind placebo-controlled trial. Gut. 2012;61:1693–700.

    Article  PubMed  Google Scholar 

  27. Wu B, Wan Y. Molecular control of pathogenic Th17 cells in autoimmune diseases. Int Immunopharmacol. 2020;80:106187.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wagner A, Wang C, Fessler J, DeTomaso D, Avila-Pacheco J, Kaminski J, et al. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell. 2021;184:4168–4185.e21.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Huang TY, Hirota M, Sasaki D, Kalra RS, Chien HC, Tamai M, et al. Phosphoenolpyruvate regulates the Th17 transcriptional program and inhibits autoimmunity. Cell Rep. 2023;42:112205.

    Article  PubMed  Google Scholar 

  30. Ma K, Li J, Wang X, Lin X, Du W, Yang X, et al. TLR4+ CXCR4+ plasma cells drive nephritis development in systemic lupus erythematosus. Ann Rheum Dis. 2018;77:1498–506.

    Article  PubMed  Google Scholar 

  31. Kuriki Y, Liu Y, Xia D, Gjerde EM, Khalili S, Mui B, et al. Cannulation of the mouse submandibular salivary gland via the Wharton’s duct. J Vis Exp. 2011;51:3074.

  32. Fakhfakh R, Zian Z, Elloumi N, Abida O, Bouallegui E, Houssaini H, et al. Th17 and Th1 cells in systemic lupus erythematosus with focus on lupus nephritis. Immunol Res. 2022;70:644–53.

    Article  PubMed  Google Scholar 

  33. Verstappen GM, Corneth OBJ, Bootsma H, Kroese FGM. Th17 cells in primary Sjögren’s syndrome: pathogenicity and plasticity. J Autoimmun. 2018;87:16–25.

    Article  PubMed  Google Scholar 

  34. Dinarello CA. IL-18: A TH1 -inducing, proinflammatory cytokine and new member of the IL-1 family. Journal Allergy Clin Immunol. 1999;103:11–24.

    Article  Google Scholar 

  35. Bae JY, Lee SW, Shin YH, Lee JH, Jahng JW, Park K. P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer. Oncotarget. 2017;8:48972–82.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu C, Li K, Yu C, Hsieh S. Autoantibodies from Sjögren’s syndrome enhance NLRP3 inflammasome activation and il-18 production in human salivary gland cell line A-253 [abstract]. Arthritis Rheumatol. 2019;71(suppl 10).

  37. Afonina IS, Müller C, Martin SJ, Beyaert R. Proteolytic Processing of Interleukin-1 Family Cytokines: Variations on a Common Theme. Immunity. 2015;42:991–1004.

    Article  PubMed  Google Scholar 

  38. Omoto Y, Yamanaka K, Tokime K, Kitano S, Kakeda M, Akeda T, et al. Granzyme B is a novel interleukin-18 converting enzyme. J Dermatol Sci. 2010;59:129–35.

    Article  PubMed  Google Scholar 

  39. Sugawara S, Uehara A, Nochi T, Yamaguchi T, Ueda H, Sugiyama A, et al. Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J Immunol. 2001;167:6568–75.

    Article  PubMed  Google Scholar 

  40. Bossaller L, Chiang PI, Schmidt-Lauber C, Ganesan S, Kaiser WJ, Rathinam VAK, et al. Cutting Edge: FAS (CD95) Mediates Noncanonical IL-1β and IL-18 Maturation via Caspase-8 in an RIP3-Independent Manner. J Immunol. 2012;189:5508–12.

    Article  PubMed  Google Scholar 

  41. Wang C, Yosef N, Gaublomme J, Wu C, Lee Y, Clish CB, et al. CD5L/AIM regulates lipid biosythesis and restrains Th17 cell pathogenicity. Cell. 2015;163:1413–27.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T-cell population that induces autoimmune inflammation. Journal Exp Med. 2005;201:233–40.

    Article  Google Scholar 

  43. Harrison OJ, Srinivasan N, Pott J, Schiering C, Krausgruber T, Ilott NE, et al. Epithelial-derived IL-18 regulates Th17 cell differentiation and Foxp3+ Treg cell function in the intestine. Mucosal Immunol. 2015;8:1226–36.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tominaga K, Yoshimoto T, Torigoe K, Kurimoto M, Matsui K, Hada T, et al. IL-12 synergizes with IL-18 or IL-1β for IFN-γ production from human T cells. Int Immunol. 2000;12:151–60.

    Article  PubMed  Google Scholar 

  45. Codarri L, Gyülvészi G, Tosevski V, Hesske L, Fontana A, Magnenat L, et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol. 2011;12:560–7.

    Article  PubMed  Google Scholar 

  46. Yang Y, Weiner J, Liu Y, Smith AJ, Huss DJ, Winger R, et al. T-bet is essential for encephalitogenicity of both Th1 and Th17 cells. Journal Exp Med. 2009;206:1549–64.

    Article  Google Scholar 

  47. Nechanitzky R, Nechanitzky D, Ramachandran P, Duncan GS, Zheng C, Göbl C, et al. Cholinergic control of Th17 cell pathogenicity in experimental autoimmune encephalomyelitis. Cell Death Differ. 2023;30:407–16.

    Article  PubMed  Google Scholar 

  48. Carr TM, Wheaton JD, Houtz GM, Ciofani M. JunB promotes Th17 cell identity and restrains alternative CD4+ T-cell programs during inflammation. Nat Commun. 2017;8:301.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zafar A, Ng HP, Kim GD, Chan ER, Mahabeleshwar GH. BHLHE40 promotes macrophage pro-inflammatory gene expression and functions. FASEB J. 2021;35:e21940.

    Article  PubMed  Google Scholar 

  50. Wang L, Liu Y, Dai Y, Tang X, Yin T, Wang C, et al. Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumor neutrophils with hyperactivated glycolysis in pancreatic tumor microenvironment. Gut. 2023;72:958–71.

    Article  PubMed  Google Scholar 

  51. Piper C, Zhou V, Komorowski R, Szabo A, Vincent B, Serody J, et al. Pathogenic Bhlhe40+ GM-CSF+ CD4+ T cells promote indirect alloantigen presentation in the GI tract during GVHD. Blood. 2020;135:568–81.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lin CC, Bradstreet TR, Schwarzkopf EA, Sim J, Carrero JA, Chou C, et al. Bhlhe40 controls cytokine production by T cells and is essential for pathogenicity in autoimmune neuroinflammation. Nature Commun. 2014;5:3551.

    Article  Google Scholar 

  53. Li W, Deng X, Chen J. RNA-binding Proteins in Regulating mRNA Stability and Translation: Roles and Mechanisms in Cancer. Semin Cancer Biol. 2022;86:664–77.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Masuda K, Ripley B, Nyati KK, Dubey PK, Zaman MMU, Hanieh H, et al. Arid5a regulates naïve CD4+ T-cell fate through selective stabilization of Stat3 mRNA. J Exp Med. 2016;213:605–19.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Long J, Zhao W, Xiang Y, Wang Y, Xiang W, Liu X, et al. STAT3 promotes cytoplasmic-nuclear translocation of RNA-binding protein HuR to inhibit IL-1β-induced IL-8 production. Int Immunopharmacol. 2024;133:112065.

    Article  PubMed  Google Scholar 

  56. Fernando CD, Jayasekara WSN, Inampudi C, Kohonen-Corish MRJ, Cooper WA, Beilharz TH, et al. A STAT3 protein complex required for mitochondrial mRNA stability and cancer. Cell Rep. 2023;42:113033.

    Article  PubMed  Google Scholar 

  57. Liu S, Li W, Liang L, Zhou Y, Li Y. The regulatory relationship between transcription factor STAT3 and noncoding RNA. Cell Mol Biol Lett. 2024;29:4.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li S, Ni Y, Li C, Xiang Q, Zhao Y, Xu H, et al. Long noncoding RNA SNHG1 alleviates high glucose-induced vascular smooth muscle cells calcification/senescence by posttranscriptionally regulating Bhlhe40 and autophagy via Atg10. J Physiol Biochem. 2023;79:83–105.

    Article  PubMed  Google Scholar 

  59. Haghikia A, Hoch M, Stapel B, Hilfiker-Kleiner D. STAT3 regulation of and by microRNAs in development and disease. JAKSTAT. 2012;1:143–50.

    PubMed  PubMed Central  Google Scholar 

  60. Qi W, Liu Q, Fu W, Shi J, Shi M, Duan S, et al. BHLHE40, a potential immune therapy target, regulated by FGD5-AS1/miR-15a-5p in pancreatic cancer. Sci Rep. 2023;13:16400.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 2011;146:772–84.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med. 2014;20:1327–33.

    Article  PubMed  Google Scholar 

  63. Qiu R, Yu X, Wang L, Han Z, Yao C, Cui Y, et al. Inhibition of Glycolysis in Pathogenic TH17 Cells through Targeting a miR-21–Peli1–c-Rel Pathway Prevents Autoimmunity. J Immunol. 2020;204:3160–70.

    Article  PubMed  Google Scholar 

  64. Xiao F, Rui K, Han M, Zou L, Huang E, Tian J, et al. Artesunate suppresses Th17 response by inhibiting IRF4-mediated glycolysis and ameliorates Sjogren’s syndrome. Sig Transduct Target Ther. 2022;7:1–3.

    Article  Google Scholar 

  65. Hochrein SM, Wu H, Eckstein M, Arrigoni L, Herman JS, Schumacher F, et al. The glucose transporter GLUT3 controls T helper 17 cell responses through glycolytic-epigenetic reprogramming. Cell Metab. 2022;34:516–532.e11.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liu J, Du D, Huang Y, Tian J, Wang X, Chen L, et al. CCDC86-BHLHE40-ATF3 axis promotes aerobic glycolysis and tumor development in glioma. Genes & Diseases 2025;101643.

  67. Shiboski CH, Shiboski SC, Seror R, Criswell LA, Labetoulle M, Lietman TM, et al. 2016 American College of Rheumatology/European League Against Rheumatism Classification Criteria for Primary Sjögren’s Syndrome: A Consensus and Data-Driven Methodology Involving Three International Patient Cohorts. Arthritis Rheumatol. 2017;69:35–45.

    Article  PubMed  Google Scholar 

  68. Petri M, Orbai AM, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64:2677–86.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Weening JJ, D’Agati VD, Schwartz MM, Seshan SV, Alpers CE, Appel GB, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol. 2004;15:241–50.

    Article  PubMed  Google Scholar 

  70. Ma K, Du W, Wang S, Xiao F, Li J, Tian J, et al. B1-cell-produced anti-phosphatidylserine antibodies contribute to lupus nephritis development via TLR-mediated Syk activation. Cell Mol Immunol. 2023;20:881–94.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tilsed CM, Sadiq BA, Papp TE, Areesawangkit P, Kimura K, Noguera-Ortega E, et al. IL7 increases targeted lipid nanoparticle–mediated mRNA expression in T cells in vitro and in vivo by enhancing T-cell protein translation. Proceedings Natl Acad Sci. 2024;121:e2319856121.

    Article  Google Scholar 

  72. Alawar N, Schirra C, Hohmann M, Becherer U. A solution for highly efficient electroporation of primary cytotoxic T lymphocytes. BMC Biotechnol. 2024;24:16.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Scardina GA, Spanó G, Carini F, Spicola M, Valenza V, Messina P, et al. Diagnostic evaluation of serial sections of labial salivary gland biopsies in Sjögren’s syndrome. Med Oral Patol Oral Cir Bucal. 2007;12:E565–568.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hong Kong Research Grants Council (17116424, 17111222, 17103821); the National Natural Science Foundation of China (82471821, 82171771, 82572073 and 82572074); the Sanming Project of Medicine in Shenzhen (No. SZSM202111006); and the Center for Oncology and Immunology under the Health@InnoHK Initiative funded by the Innovation and Technology Commission, Government of Hong Kong SAR, China. We thank the professional service provided by the Imaging and Flow Cytometry Core of the Center for PanorOmic Sciences and the Center for Comparative Medicine Research at The University of Hong Kong.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: YT, LL, KR, and JT; acquisition of data: YT, YZ, XS, ZC, YZ, LL and FX; analysis and interpretation of data: YT, YZ, XS, YQ, YM, XH, DL, and LL; manuscript preparation: YT, YZ, KR, JT, and LL; funding acquisition: KR, JT, and LL; resources: KR, JT, and LL; supervision: KR, JT, and LL; all authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Ke Rui, Jie Tian or Liwei Lu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests. LL is an editorial board member of Cellular & Molecular Immunology, but he has not been involved in the peer review or the decision-making of the article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Zhao, Y., Chen, Z. et al. IL-18 drives the Bhlhe40-mediated pathogenic Th17 cell response and exacerbates autoimmune disease progression. Cell Mol Immunol (2025). https://doi.org/10.1038/s41423-025-01356-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41423-025-01356-w

Keywords

Search

Quick links