Table 2 Comparison of the barocaloric properties of PEG/PET and other previously reported barocaloric materials.

From: Colossal barocaloric effect achieved by exploiting the amorphous high entropy of solidified polyethylene glycol

Materials

P (GPa)

Hysteresis (K)

|dTt/dp| (K/GPa)

|ΔSp| (J·kg−1·K−1)

|ΔSrev| (J·kg−1·K−1)

Ref.

PEG10000/PET15000

0.1

21.8

97

416

35.6

This work

PEG10000/PET15000

0.4

21.8

97

426

426

This work

MnCoGeB0.03

0.17

18

100

54.06

30

6

Mn3GaN

0.139

8

6.5

22.3

7

(NH4)2SO4

0.1

0.135

45

60

8

Fe3(bntrz)6(tcnset)6

0.26

2

250

120

11

TRIS((NH2)C(CH2OH)3)

0.25

75.6

15

600

0

14

AMP((NH2)(CH3)C(CH2OH)2)

0.25

51

85

690

0

14

NPA((CH3)3C(CH2OH))

0.1

20.3

119

246.6

0

14

NPG((CH3)2C(CH2OH)2)

0.57

14

93

510

510

15

C16H34a

0.152

~4.5

~18

~775.3

762

18

C18H38a

0.232

~4.2

~18.5

~725.3

711

18

AgI

0.25

25

128

60

38

Cu2Se

1

8.7

8.7

17.5

39

1-Cl-ada

0.1

9

274

175

150

40

  1. Applied hydrostatic pressure (p), thermal hysteresis, pressure sensitivity of Tt (dTt/dP), barocaloric entropy changes (ΔSp), and reversible barocaloric entropy change (ΔSrev). “||“ represents the absolute value.
  2. aSolid-liquid phase transition.