Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Selectively sensing amines through aldehyde-functional conjugated microporous organic polymers via Pd-catalyzed direct arylation

Abstract

Incorporating functional groups along conjugated microporous polymer conjugated backbones (CMPs) is an effective strategy to tune optoelectronic properties and achieve superior application performance. However, due to the incompatibility of the functional groups with the polymerization reaction, introducing these functionalities into the polymeric framework is often highly challenging. Herein, we report a facile route to synthesize aldehyde-functional group flanked (and aldehyde-free) CMPs TCMP-A (and TCMP) through a Pd-catalyzed direct arylation polymerization of 1,1,2,2-tetrakis(4-bromophenyl)ethene with 2,5-di(thiophene-2-yl)terephthalaldehyde or 1,4-di(thiophen-2-yl)benzene in good yields. The methodology circumvents the preactivation of building blocks and tolerates the presence of aldehyde-functional groups during polymerization, significantly reducing the number of synthetic steps. In contrast, synthesizing these polymers via conventional coupling methods, such as Suzuki, Stille, and Sonogashira reactions, is laborious. TCMP and TCMP-A exhibit strong visible light absorption (red edge of λabs = ~605 nm) and solid-state fluorescence (λem = 620 nm; ϕf = ~5%). The pendant aldehyde-functional group in TCMP-A enables selective fluorescent chemosensing of aliphatic and aromatic amines by enhancing the fluorescence of aliphatic amines and performing fluorescence quenching for aromatic amines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu Y, Jin S, Xu H, Nagai A, Jiang D. Conjugated microporous polymers: design, synthesis and application. Chem Soc Rev. 2013;42:8012–31.

    Article  CAS  Google Scholar 

  2. Liu Q, Tang Z, Wu M, Zhou Z. Design, preparation and application of conjugated microporous polymers. Polym Int. 2014;63:381–92.

    Article  CAS  Google Scholar 

  3. Lee JSM, Cooper AI. Advances in Conjugated Microporous Polymers. Chem Rev. 2020;120:2171–214.

    Article  CAS  Google Scholar 

  4. Liao Y, Cheng Z, Zuo W, Thomas A, Faul CFJ. Nitrogen-Rich Conjugated Microporous Polymers: Facile Synthesis, Efficient Gas Storage, and Heterogeneous Catalysis. ACS Appl Mater Interfaces. 2017;9:38390–38400.

    Article  CAS  Google Scholar 

  5. Zhang T, Xing G, Chen W, Chen L. Porous organic polymers: a promising platform for efficient photocatalysis. Mater Chem Front. 2020;4:332–53.

    Article  CAS  Google Scholar 

  6. Babu HV, Bai MGM, Rao MR. Functional π-Conjugated Two-Dimensional Covalent Organic Frameworks. ACS Appl Mater Interfaces. 2019;11:11029–60.

    Article  CAS  Google Scholar 

  7. Zhou YB, Zhan ZP. Conjugated Microporous Polymers for Heterogeneous Catalysis. Chem Asian J. 2018;13:9–19.

    Article  Google Scholar 

  8. Dai C, Liu B. Conjugated polymers for visible-light-driven photocatalysis. Energy Environ Sci. 2020;13:24–52.

    Article  CAS  Google Scholar 

  9. Guillerm V, Weselinski LJ, Alkordi M, Mohideen MIH, Belmabkhout Y, Cairns AJ, et al. Porous organic polymers with anchored aldehydes: a new platform for post-synthetic amine functionalization en route for enhanced CO2 adsorption properties. Chem Commun. 2014;50:1937–40.

    Article  CAS  Google Scholar 

  10. Wisser FM, Eckhardt K, Wisser D, Böhlmann W, Grothe J, Brunner E, et al. The mechanochemical Scholl reaction as a versatile synthesis tool for the solvent-free generation of microporous polymers. Macromolecules. 2014;47:4210–6.

    Article  CAS  Google Scholar 

  11. Wu Y, Zang Y, Xu L, Wang J, Jia H, Miao F. Synthesis of functional conjugated microporous polymer/TiO2 nanocomposites and the mechanism of the photocatalytic degradation of organic pollutants. J Mater Sci. 2021;56:7936–50.

    Article  CAS  Google Scholar 

  12. Mu P, Sun H, Zang J, Zhu Z, Liang W, Yu F, et al. Facile tunning the morphology and porosity of a superwetting conjugated microporous polymers. React Funct Polym. 2016;106:105–11.

    Article  CAS  Google Scholar 

  13. Liu W, Wu S, Su Q, Guo B, Ju P, Li G, et al. Difluoroborate-based conjugated organic polymer: a high-performance heterogeneous photocatalyst for oxidative coupling reactions. J Mater Sci. 2019;54:1205–12.

    Article  CAS  Google Scholar 

  14. Ratvijitvech T, Dawson R, Laybourn A, Khimyak YZ, Adams DJ, Cooper AI. Post-synthetic modification of conjugated microporous polymers. Polymer. 2014;55:321–5.

    Article  CAS  Google Scholar 

  15. Segura JL, Royuela S, Mar Ramos M. Post-synthetic modification of covalent organic frameworks. Chem Soc Rev. 2019;48:3903–45.

    Article  CAS  Google Scholar 

  16. Song Y, Lan PC, Martin K, Ma S. Rational design of bifunctional conjugated microporous polymers. Nanoscale Adv. 2021;3:4891–906.

    Article  CAS  Google Scholar 

  17. Wang ZJ, Ghasimi S, Landfester K, Zhang KAI. Photocatalytic Suzuki coupling reaction using conjugated microporous polymer with immobilized palladium nanoparticles under visible light. Chem Mater. 2015;27:1921–4.

    Article  CAS  Google Scholar 

  18. Sun L, Zou Y, Liang Z, Yu J, Xu R. A one-pot synthetic strategy via tandem Suzuki–Heck reactions for the construction of luminescent microporous organic polymers. Polym Chem. 2013;5:471–8.

    Article  Google Scholar 

  19. Sun L, Liang Z, Yu J, Xu R. Luminescent microporous organic polymers containing the 1,3,5-tri(4-ethenylphenyl)benzene unit constructed by Heck coupling reaction. Chem. 2013;4:1932–8.

    CAS  Google Scholar 

  20. Bergman RG. C–H activation. Nature. 2007;446:391–3.

    Article  CAS  Google Scholar 

  21. Li J, Terec A, Yue W, Joshi H, Lu Y, Sun H, et al. π-Conjugated Discrete Oligomers Containing Planar and Nonplanar Aromatic Motifs. J Am Chem Soc. 2017;139:3089–94.

    Article  CAS  Google Scholar 

  22. Shimizu H, Fujimoto K, Furusyo M, Maeda H, Nanai Y, Mizuno K, et al. Highly emissive π-conjugated alkynylpyrene oligomers: Their synthesis and photophysical properties. J Org Chem. 2007;72:1530–3.

    Article  CAS  Google Scholar 

  23. Liu D-P, Chen Q, Zhao Y-C, Zhang L-M, Qi A-D, Han B-H. Fluorinated porous organic polymers via direct C-H arylation polycondensation. ACS Macro Lett. 2013;2:522–6.

    Article  CAS  Google Scholar 

  24. Bohra H, Wang M. ACS Appl Polym Mater. Direct Arylation Polymerization for Synthesizing a Library of Conjugated Porous Polymers Containing Thiophene-Flanked Building Blocks. 2019;1:1697–706.

    CAS  Google Scholar 

  25. Huang WY, Shen ZQ, Cheng JZ, Liu LL, Yang K, Chen X, et al. C – H activation derived CPPs for photocatalytic a DMF cosolvent. J Mater Chem A. 2019;7:24222–30.

    Article  CAS  Google Scholar 

  26. Bohra H, Li P, Yang C, Zhao Y, Wang M. “greener” and modular synthesis of triazine-based conjugated porous polymers: Via direct arylation polymerization: Structure-function relationship and photocatalytic application. Polym Chem. 2018;9:1972–82.

    Article  CAS  Google Scholar 

  27. Hayashi S, Togawa Y, Yamamoto SI, Koizumi T, Nishi K, Asano A. Synthesis of π-conjugated network polymers based on fluoroarene and fluorescent units via direct arylation polycondensation and their porosity and fluorescent properties. J Polym Sci A Polym Chem. 2017;55:3862–7.

    Article  CAS  Google Scholar 

  28. Efrem A, Wang K, Amaniampong PN, Yang C, Gupta S, Bohra H, et al. Direct arylation polymerization towards narrow bandgap conjugated microporous polymers with hierarchical porosity. Polym Chem. 2016;7:4862–6.

    Article  CAS  Google Scholar 

  29. Bohra H, Tan SY, Shao J, Yang C, Efrem A, Zhao Y, et al. Narrow bandgap thienothiadiazole-based conjugated porous polymers: from facile direct arylation polymerization to tunable porosities and optoelectronic properties. Polym Chem. 2016;7:6413–21.

    Article  CAS  Google Scholar 

  30. Hayashi S, Togawa Y, Ashida J, Nishi K, Asano A, Koizumi T. Synthesis of p -conjugated porous polymers via direct arylation of fluoroarenes with three-arm triazine. Polymer. 2016;90:187–92.

    Article  CAS  Google Scholar 

  31. Feng LJ, Guo JW, Zhong X, Sun ZY. Fluorinated porous poly(spirobifluorene) via direct C-H arylation: Characterization, porosity, and gas uptake. J Macromol Sci A. 2014;51:604–9.

    Article  CAS  Google Scholar 

  32. Cao Q, Yin Q, Chen Q, Dong ZB, Han BH. Fluorinated Porous Conjugated Polyporphyrins through Direct C−H Arylation Polycondensation: Preparation, Porosity, and Use as Heterogeneous Catalysts for Baeyer–Villiger Oxidation. Chem Eur J. 2017;23:9831–7.

    Article  CAS  Google Scholar 

  33. Cheng JZ, Liu LL, Liao G, Shen ZQ, Tan ZR, Xing YQ, et al. Achieving an unprecedented hydrogen evolution rate by solvent-exfoliated CPP-based photocatalysts. J Mater Chem A. 2020;8:5890–9.

    Article  CAS  Google Scholar 

  34. Poste AE, Grung M, Wright RF. Amines and amine-related compounds in surface waters: A review of sources, concentrations and aquatic toxicity. Sci Total Environ. 2014;481:274–9.

    Article  CAS  Google Scholar 

  35. Pereira L, Mondal PK, Alves M. Book chapter: Pollutants in buildings, water and living organisms; 2015. p. 297–346.

  36. Liu FX, Bi XH, Ren ZF, Zhang GH, Wang XM, Peng PA, et al. Determination of Amines Associated with Particles by Gas Chromatography-mass Spectrometry. Chin J Anal Chem. 2017;45:477–82.

    Article  CAS  Google Scholar 

  37. Coulier L, Kaal ER, Tienstra M, Hankemeier T. Identification and quantification of (polymeric) hindered-amine light stabilizers in polymers using pyrolysis–gas chromatography–mass spectrometry and liquid chromatography–ultraviolet absorbance detection–evaporative light scattering detection. J Chromatogr A. 2005;1062:227–38.

    Article  CAS  Google Scholar 

  38. Łabudzińska A, Gorczyńska K. Ultraviolet spectrophotometric method for the determination of aromatic amines in chemical industry waste waters. Analyst. 1994;119:1195–8.

    Article  Google Scholar 

  39. Kannan SK, Ambrose B, Sudalaimani S, Pandiaraj M, Giribabu K, Kathiresan M. A review on chemical and electrochemical methodologies for the sensing of biogenic amines. Anal Methods. 2020;12:3438–53.

    Article  CAS  Google Scholar 

  40. Leng PQ, Zhao FL, Yin BC, Ye BC. A novel, colorimetric method for biogenic amine detection based on arylalkylamine N-acetyltransferase. Chem Commun. 2015;51:8712–4.

    Article  CAS  Google Scholar 

  41. Klockow JL, Hettie KS, Glass TE. Fluorescent Sensors for Amines. Supramol Chem, II. 2017;8:447–67.

    CAS  Google Scholar 

  42. Gao M, Li S, Lin Y, Geng Y, Ling X, Wang L, et al. Fluorescent Light-Up Detection of Amine Vapors Based on Aggregation-Induced Emission. ACS Sens. 2016;1:179–84.

    Article  CAS  Google Scholar 

  43. Schwaebel T, Schäfer V, Wenz J, Coombs BA, Tolosa J, Bunz UHF. Imine formation as a simple reaction to construct copper-reactive cruciform fluorophores. J Org Chem. 2013;78:960–5.

    Article  CAS  Google Scholar 

  44. Freudenberg J, Kumpf J, Schäfer V, Sauter E, Wörner SJ, Brödner K, et al. Water-soluble cruciforms and distyrylbenzenes: Synthesis, characterization, and pH-dependent amine-sensing properties. J Org Chem. 2013;78:4949–59.

    Article  CAS  Google Scholar 

  45. McGrier PL, Solntsev KM, Miao S, Tolbert LM, Miranda OR, Rotello VM, et al. Hydroxycruciforms: Amine-Responsive Fluorophores. Chem Eur J. 2008;14:4503–10.

    Article  CAS  Google Scholar 

  46. Patze C, Broedner K, Rominger F, Trapp O, Bunz UHF. Aldehyde Cruciforms: Dosimeters for Primary and Secondary Amines. Chem Eur J. 2011;17:13720–5.

    Article  CAS  Google Scholar 

  47. Cao X, Li Y, Gao A, Yu Y, Chang X, Hei X. Sensing Organic Amines and Quantitative Monitoring of Intracellular pH Change Using a Fluorescent Self-Assembly System. ACS Appl Polym Mater. 2019;1:1485–95.

    Article  CAS  Google Scholar 

  48. Mallya AN, Ramamurthy PC. Investigation of selective sensing of a diamine for aldehyde by experimental and simulation studies. Analyst. 2014;139:6456–66.

    Article  CAS  Google Scholar 

  49. Fu Y, Yao J, Xu W, Fan T, He Q, Zhu D, et al. Reversible and "fingerprint" fluorescence differentiation of organic amine vapours using a single conjugated polymer probe. Polym Chem. 2015;6:2179–82.

    Article  CAS  Google Scholar 

  50. Yu J, Zhang C. J. Fluorescent sensing for amines with a low detection limit based on conjugated porous polymers. Mater Chem C. 2020;8:16463–9.

    Article  CAS  Google Scholar 

  51. Bai MGM, Babu HV, Lakshmi V, Rao MR. Structure–property–function relationship of fluorescent conjugated microporous polymers. Mater Chem Front. 2021;5:2506–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MRR thanks the science and engineering research board (SERB), India, for partially supporting this research through its early career research award scheme (ECR/2018/002285). In addition, the authors are grateful to the sophisticated central instrumentation facility (SCIF), IIT Dharwad, and its staff members for assisting us with the material characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rajeswara Rao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai M. G, M., Nipate, A.B. & Rao, M.R. Selectively sensing amines through aldehyde-functional conjugated microporous organic polymers via Pd-catalyzed direct arylation. Polym J 55, 133–140 (2023). https://doi.org/10.1038/s41428-022-00736-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-022-00736-7

Search

Quick links