Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Viscoelastic behaviors for optimizing self-healing of gels with host–guest inclusion complexes

Abstract

This research showed that the self-healing properties of reversible crosslinked gels with host–guest inclusion complexes depended on the mobility of network chains and the recombination behaviors of reversible complexes, which were affected by changes in the water–glycerol solvent composition. The sticky reptation behaviors of the polymer chains were delayed by the recombination behaviors of reversible bonds. These behavioral characteristics were observed based on a dynamic viscoelasticity. Increasing the glycerol concentration in the mixed solvent decreased the surface tension and increased the mobility of the network chains because the recombination of the complex was slowed by the weak hydrophobic interactions between the host and guest molecules. Consequently, self-healing properties, such as re-adhesion at the cutting surface, were improved by the interdiffusion of polymer chains at the reattached interface. The strong hydrophobic interactions in pure water promoted the formation of complexes within the same cutting surface, thus decreasing the self-healing rates of the mechanical properties. In this study, the solvent was found to be an important parameter for controlling the self-healing properties of reversible crosslinked gels. The competition between the mobility of polymer chains and the recombination behaviors of reversible bonds controlled the self-healing properties of the gels with host–guest inclusion complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kato T, Gupta M, Yamaguchi D, Gan KP, Nakayama M. Supramolecular association and nanostructure formation of liquid crystals and polymers for new functional materials. Bull Chem Soc Jpn. 2021;94:357–76.

    Article  CAS  Google Scholar 

  2. Wang S, Urban MW. Self-healing polymers. Nat Rev Mater. 2020;5:562–83.

    Article  CAS  Google Scholar 

  3. Li B, Cao P-F, Saito T, Sokolov AP. Intrinsically self-healing polymers: from mechanistic insight to current challenges. Chem Rev. 2023;123:701–35.

    Article  CAS  Google Scholar 

  4. Sinawang G, Osaki M, Takashima Y, Yamaguchi H, Harada A. Supramolecular self-healing materials from non-covalent cross-linking host–guest interactions. Chem Commun. 2020;56:4381–95.

    Article  CAS  Google Scholar 

  5. Noro A, Hayashi M, Matsushita Y. Design and properties of supramolecular polymer gels. Soft Matter. 2012;8:6416–29.

    Article  CAS  Google Scholar 

  6. Kim C, Yoshie N. Polymers healed autonomously and with the assistance of ubiquitous stimuli: how can we combine mechanical strength and a healing ability in polymers? Polym J. 2018;50:919–29.

    Article  CAS  Google Scholar 

  7. Kobayashi Y. Precise synthesis of polyrotaxane and preparation of supramolecular materials based on its mobility. Polym J. 2021;53:505–13.

    Article  CAS  Google Scholar 

  8. Kawai Y, Park J, Ishii Y, Urakawa O, Murayama S, Ikura R, et al. Preparation of dual-cross network polymers by the knitting method and evaluation of their mechanical properties. NPG Asia Mater. 2022;14:32.

    Article  CAS  Google Scholar 

  9. Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, et al. A thermally re-mendable cross-linked polymeric material. Science. 2002;295:1698–702.

    Article  CAS  Google Scholar 

  10. Montarnal D, Capelot M, Tournilhac F, Leibler L. Silica-like malleable materials from permanent organic networks. Science. 2011;334:965–8.

    Article  CAS  Google Scholar 

  11. Otsuka H. Reorganization of polymer structures based on dynamic covalent chemistry: polymer reactions by dynamic covalent exchanges of alkoxyamine units. Polym J. 2013;45:879–91.

    Article  CAS  Google Scholar 

  12. Hayashi M, Oba Y, Kimura T, Takasu A. Simple preparation, properties, and functions of vitrimer-like polyacrylate elastomers using trans-n-alkylation bond exchange. Polym J. 2021;53:835–40.

    Article  CAS  Google Scholar 

  13. Guo M, Pitet LM, Wyss HM, Vos M, Dankers PYW, Meijer EW. Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J Am Chem Soc. 2014;136:6969–77.

    Article  CAS  Google Scholar 

  14. Yanagisawa Y, Nan Y, Okuro K, Aida T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science. 2018;359:72–6.

    Article  CAS  Google Scholar 

  15. Li Z, Zhu Y-L, Niu W, Yang X, Jiang Z, Lu Z-Y, et al. Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability. Adv Mater. 2021;33:2101498.

    Article  CAS  Google Scholar 

  16. Kuo D, Sakamoto T, Torii S, Liu M, Katayama H, Kato T. Removal of viruses from their cocktail solution by liquid-crystalline water-treatment membranes. Polym J. 2022;54:821–5.

    Article  PubMed Central  CAS  Google Scholar 

  17. Uchida J, Yoshio M, Kato T. Self-Healing and shape memory functions exhibited by supramolecular liquid-crystalline networks formed by combination of hydrogen bonding interactions and coordination bonding. Chem Sci. 2021;12:6091–8.

    Article  PubMed Central  CAS  Google Scholar 

  18. Li C-H, Wang C, Keplinger C, Zuo J-L, Jin L, Sun Y, et al. A highly stretchable autonomous self-healing elastomer. Nat Chem. 2016;8:618–24.

    Article  CAS  Google Scholar 

  19. Filippidi E, Cristiani TR, Eisenbach CD, Waite JH, Israelachvili JN, Ahn BK, et al. Toughening elastomers using mussel-inspired iron-catechol complexes. Science. 2017;358:502–5.

    Article  PubMed Central  CAS  Google Scholar 

  20. Miwa Y, Taira K, Kurachi J, Udagawa T, Kutsumizu S. A gas-plastic elastomer that quickly self-heals damage with the aid of Co2 gas. Nat Commun. 2019;10:1828.

    Article  PubMed Central  Google Scholar 

  21. Brézault A, Perrin P, Sanson N. Multiresponsive supramolecular Poly(N-Isopropylacrylamide) microgels. Macromolecules. 2024;57:2651–60.

    Article  Google Scholar 

  22. Takahashi R, Udagawa T, Hashimoto K, Kutsumizu S, Miwa Y. Effect of the Mg2+ ratio on the mechanical and self-healing properties of polyisoprene ionomers co-neutralized with Na+ and Mg2 + . Polym J. 2024;56:699-704.

  23. Scott Lokey R, Iverson BL. Synthetic molecules that fold into a pleated secondary structure in solution. Nature. 1995;375:303–5.

    Article  Google Scholar 

  24. Wang W, Li L-S, Helms G, Zhou H-H, Li ADQ. To Fold or to Assemble. ? J Am Chem Soc. 2003;125:1120–1.

  25. Burattini S, Colquhoun HM, Fox JD, Friedmann D, Greenland BW, Harris PJF, et al. A self-repairing, supramolecular polymer system: healability as a consequence of donor–acceptor π–π stacking interactions. Chem Commun. 2009;28:6717–9.

  26. Urban MW, Davydovich D, Yang Y, Demir T, Zhang Y, Casabianca L. Key-and-lock commodity self-healing copolymers. Science. 2018;362:220–5.

    Article  CAS  Google Scholar 

  27. Gaikwad S, Urban MW. Ring-and-lock interactions in self-healable styrenic copolymers. J Am Chem Soc. 2023;145:9693–9.

    Article  CAS  Google Scholar 

  28. Lai H, Jin C, Park J, Ikura R, Takashima Y, Ouchi M. A transformable and bulky methacrylate monomer that enables the synthesis of an Mma-Nba alternating copolymer: sequence-dependent self-healing properties. Angew Chem Int Ed. 2023;62:e202218597.

    Article  CAS  Google Scholar 

  29. Zhao Y, Yin R, Wu H, Wang Z, Zhai Y, Kim K, et al. Sequence-enhanced self-healing in “lock-and-key” copolymers. ACS Macro Lett. 2023;12:475–80.

    Article  PubMed Central  CAS  Google Scholar 

  30. Nghiem TT, Nguyen BL, Huyen LT, Kawahara S. A novel approach to prepare self-healing vulcanized natural rubber using tetramethylthiuram disulfide. Polym J. 2023;55:1097–1102.

    Article  CAS  Google Scholar 

  31. Schmidt BVKJ, Barner-Kowollik C. Dynamic macromolecular material design—the versatility of cyclodextrin-based host–guest. Chem Angew Chem Int Ed. 2017;56:8350–69.

    Article  CAS  Google Scholar 

  32. Takashima Y, Sawa Y, Iwaso K, Nakahata M, Yamaguchi H, Harada A. Supramolecular materials cross-linked by host–guest inclusion complexes: the effect of side chain molecules on mechanical properties. Macromolecules. 2017;50:3254–61.

    Article  CAS  Google Scholar 

  33. Huang Z, Chen X, O’Neill SJK, Wu G, Whitaker DJ, Li J, et al. Highly compressible glass-like supramolecular polymer networks. Nat Mater. 2022;21:103–9.

    Article  CAS  Google Scholar 

  34. Susa A, Bose RK, Grande AM, van der Zwaag S, Garcia SJ. Effect of the dianhydride/branched diamine ratio on the architecture and room temperature healing behavior of polyetherimides. ACS Appl Mater Interfaces. 2016;8:34068–79.

    Article  CAS  Google Scholar 

  35. Yasuda Y, Nakagawa S, Houjou H, Yoshie N, Morita H. Coarse-grained molecular dynamics simulations of dynamic bond elastomers using interbead potentials for entropy- and enthalpy-driven mechanisms in their dynamics and mechanical properties. Macromolecules. 2023;56:7432–44.

    Article  CAS  Google Scholar 

  36. Stadler R, De Lucca Freitas L. Relaxation behavior of linear polymer chains with statistically distributed functional groups. Macromolecules. 1989;22:714–9.

    Article  CAS  Google Scholar 

  37. Leibler L, Rubinstein M, Colby RH. Dynamics of reversible networks. Macromolecules. 1991;24:4701–7.

    Article  CAS  Google Scholar 

  38. Baxandall LG. Dynamics of reversibly crosslinked chains. Macromolecules. 1989;22:1982–8.

    Article  CAS  Google Scholar 

  39. Hu X, Zhou J, Daniel WFM, Vatankhah-Varnoosfaderani M, Dobrynin AV, Sheiko SS. Dynamics of dual networks: strain rate and temperature effects in hydrogels with reversible h-bonds. Macromolecules. 2017;50:652–9.

    Article  CAS  Google Scholar 

  40. Cao X, Yu X, Qin J, Chen Q. Reversible gelation of entangled ionomers. Macromolecules. 2019;52:8771–80.

    Article  CAS  Google Scholar 

  41. Golkaram M, Loos K. A critical approach to polymer dynamics in supramolecular polymers. Macromolecules. 2019;52:9427–44.

    Article  PubMed Central  CAS  Google Scholar 

  42. Zhang R, Zhang C, Yang Z, Wu Q, Sun P, Wang X. Hierarchical dynamics in a transient polymer network cross-linked by orthogonal dynamic bonds. Macromolecules. 2020;53:5937–49.

    Article  CAS  Google Scholar 

  43. Katashima T. Rheological studies on polymer networks with static and dynamic crosslinks. Polym J. 2021;53:1073–82.

    Article  CAS  Google Scholar 

  44. Ahmadi M, Jangizehi A, Seiffert S. Backbone polarity tunes sticker clustering in hydrogen-bonded supramolecular polymer networks. Macromolecules. 2022;55:5514–26.

    Article  CAS  Google Scholar 

  45. Cai PC, Su B, Zou L, Webber MJ, Heilshorn SC, Spakowitz AJ. Rheological characterization and theoretical modeling establish molecular design rules for tailored dynamically associating polymers. ACS Cent Sci. 2022;8:1318–27.

    Article  PubMed Central  CAS  Google Scholar 

  46. Martins ML, Zhao X, Demchuk Z, Luo J, Carden GP, Toleutay G, et al. Viscoelasticity of polymers with dynamic covalent bonds: concepts and misconceptions. Macromolecules. 2023;56:8688–96.

    Article  CAS  Google Scholar 

  47. Xia J, Kalow JA, Olvera de la Cruz M. Structure, dynamics, and rheology of vitrimers. Macromolecules. 2023;56:8080–93.

    Article  CAS  Google Scholar 

  48. Ge S, Samanta S, Li B, Carden GP, Cao P-F, Sokolov AP. Unravelling the mechanism of viscoelasticity in polymers with phase-separated dynamic bonds. ACS Nano. 2022;16:4746–55.

    Article  CAS  Google Scholar 

  49. Carden P, Ge S, Zhao S, Li B, Samanta S, Sokolov AP. Influence of molecular architecture on the viscoelastic properties of polymers with phase-separated dynamic bonds. Macromolecules. 2023;56:5173–80.

    Article  CAS  Google Scholar 

  50. Watase M, Nishinari K. Effects of the degree of saponification and concentration on the thermal and rheological properties of Poly(Vinyl Alcohol)-dimethyl sulfoxide-water gels. Polym J. 1989;21:567–75.

    Article  CAS  Google Scholar 

  51. Ohkura M, Kanaya T, Kaji K. Gelation rates of Poly(Vinyl Alcohol) solution. Polymer. 1992;33:5044–8.

    Article  CAS  Google Scholar 

  52. Hoshino H, Okada S, Urakawa H, Kajiwara K. Gelation of poly(vinyl alcohol) in dimethyl sulfoxide/water solvent. Polym Bull. 1996;37:237–44.

    Article  CAS  Google Scholar 

  53. Kanaya T, Takahashi N, Takeshita H, Ohkura M, Nishida K, Kaji K. Structure and dynamics of Poly(Vinyl Alcohol) gels in mixtures of dimethyl sulfoxide and water. Polym J. 2012;44:83–94.

    Article  CAS  Google Scholar 

  54. Mathis L, Chen Y, Shull KR. Tuning the viscoelasticity of hydrogen-bonded polymeric materials through solvent composition. Macromolecules. 2018;51:3975–82.

    Article  CAS  Google Scholar 

  55. Costanzo S, Banc A, Louhichi A, Chauveau E, Wu B, Morel M-H, et al. Tailoring the viscoelasticity of polymer gels of gluten proteins through solvent quality. Macromolecules. 2020;53:9470–9.

    Article  CAS  Google Scholar 

  56. Tanaka F. Thermoreversible gelation of associating polymers in hydrogen-bonding mixed solvents. Langmuir. 2022;38:5098–10.

    Article  CAS  Google Scholar 

  57. Tanaka F. Thermoreversible gelation interfering with phase separation in multicomponent mixtures of associating polymers. Macromolecules. 2022;55:5233–48.

    Article  CAS  Google Scholar 

  58. Nakahata M, Takashima Y, Harada A. Highly flexible, tough, and self-healing supramolecular polymeric materials using host–guest interaction. Macromol Rapid Commun. 2016;37:86–92.

    Article  CAS  Google Scholar 

  59. Konishi S, Kashiwagi Y, Watanabe G, Osaki M, Katashima T, Urakawa O, et al. Design and mechanical properties of supramolecular polymeric materials based on host–guest interactions: the relation between relaxation time and fracture energy. Polym Chem. 2020;11:6811–20.

    Article  CAS  Google Scholar 

  60. Fang L, Brown W, Hvidt S. Static and dynamic properties of polyacrylamide gels and solutions in mixtures of water and glycerol: a comparison of the application of mean-field and scaling theories. Macromolecules. 1992;25:3137–42.

    Article  CAS  Google Scholar 

  61. Hopkins SD, Gogovi GK, Weisel E, Handler RA, Blaisten-Barojas E. Polyacrylamide in glycerol solutions from an atomistic perspective of the energetics, structure, and dynamics. AIP Adv. 2020;10:085011.

    Article  CAS  Google Scholar 

  62. Segur JB, Oberstar HE. Viscosity of glycerol and its aqueous solutions. Ind Eng Chem. 1951;43:2117–20.

    Article  CAS  Google Scholar 

  63. Winter HH, Chambon F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol. 1986;30:367–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Scientific Research on Innovative Areas JP19KK0131, JP19H05714 and JP19H05721 from the MEXT of Japan, JST; the Core Research for Evolutional Science and Technology (CREST) program JPMJCR22L4; the COI-NEXT program JPMJPF2218; the Asahi Glass Foundation; the Yazaki Memorial Foundation for Science; the Suzuki Foundation; and the Iketani Science and Technology Foundation, 0361034-A. The ITC measurement was performed at the Analytical Instrument Facility, Graduate School of Science, Osaka University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenji Yamaoka, Motofumi Osaki or Yoshinori Takashima.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaoka, K., Ikura, R., Osaki, M. et al. Viscoelastic behaviors for optimizing self-healing of gels with host–guest inclusion complexes. Polym J 56, 1031–1039 (2024). https://doi.org/10.1038/s41428-024-00932-7

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-024-00932-7

This article is cited by

Search

Quick links