Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Development of functional polymer gel electrolytes and their application in next-generation lithium secondary batteries

Abstract

Owing to the digital revolution and growing emphasis on sustainability, the demand for innovative electrochemical devices, such as flexible and wearable sensors, energy-harvesting devices, and high-capacity secondary batteries, has been increasing. Alongside this, various high-performance gel electrolytes with excellent mechanical and electrochemical properties have been developed. This focus review presents our recent research on enhancing the mechanical properties of gel electrolytes and their application in lithium secondary batteries. It discusses the efforts made to achieve self-healing ion gels, which utilize ionic liquids as the electrolyte solutions. Additionally, the review covers the application of functional gel electrolytes in next-generation lithium secondary batteries. It focuses particularly on improving the cycling performance of lithium metal anodes, which are considered the very promising anode material. Moreover, the future prospects of functional polymer gel electrolytes have been discussed in this review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang Y, Jeong CK, Wang J, Chen X, Choi KH, Chen LQ, et al. Hydrogel ionic diodes toward harvesting ultralow-frequency mechanical energy. Adv Mater. 2021;33:2103056.

    CAS  Google Scholar 

  2. Wang H, Wang Z, Yang J, Xu C, Zhang Q, Peng Z. Ionic gels and their applications in stretchable electronics. Macromol Rapid Commun. 2018;39:1800246.

    Google Scholar 

  3. Shi Y, Zhang J, Pan L, Shi Y, Yu G. Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today. 2016;11:738–62.

    CAS  Google Scholar 

  4. Cheng X, Pan J, Zhao Y, Liao M, Peng H. Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater. 2018;8:1702184.

    Google Scholar 

  5. Wang Z, Li H, Tang Z, Liu Z, Ruan Z, Ma L, et al. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv Funct Mater. 2018;28:1804560.

    Google Scholar 

  6. Chen T, Kong W, Zhang Z, Wang L, Hu Y, Zhu G, et al. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy. 2018;54:17–25.

    CAS  Google Scholar 

  7. Kamio E, Yasui T, Iida Y, Gong JP, Matsuyama H. Inorganic/organic double‐network gels containing ionic liquids. Adv Mater. 2017;29:1704118.

    Google Scholar 

  8. Wang M, Zhang P, Shamsi M, Thelen JL, Qian W, Truong VK, et al. Tough and stretchable ionogels by in situ phase separation. Nat Mater. 2022;21:359–65.

    PubMed  CAS  Google Scholar 

  9. Zhao Y, Zhang Y, Sun H, Dong X, Cao J, Wang L, et al. A self-healing aqueous lithium-ion battery. Angew Chem Int Ed. 2016;55:14384–8.

    CAS  Google Scholar 

  10. Wang C, Li R, Chen P, Fu Y, Ma X, Shen T, et al. Highly stretchable, non-flammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for stable and safe flexible lithium batteries. J Mater Chem A. 2021;9:4758–69.

    CAS  Google Scholar 

  11. Wu H, Cao Y, Su H, Wang C. Tough gel electrolyte using double polymer network design for the safe, stable cycling of lithium metal anode. Angew Chem Int Ed. 2018;57:1361–5.

    CAS  Google Scholar 

  12. Hashimoto K, Tatara R, Ueno K, Dokko K, Watanabe M. Design of polymer network and Li + solvation enables thermally and oxidatively stable, mechanically reliable, and highly conductive polymer gel electrolyte for lithium batteries. J Electrochem Soc. 2021;168:090538.

    CAS  Google Scholar 

  13. Angell CA, Ansari Y, Zhao Z. Ionic liquids: past, present and future. Faraday Discuss. 2012;154:9–27.

    PubMed  Google Scholar 

  14. Ueno K, Tokuda H, Watanabe M. Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Phys Chem Chem Phys. 2010;12:1649–58.

    PubMed  CAS  Google Scholar 

  15. MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, et al. Energy applications of ionic liquids. Energy Environ Sci. 2014;7:232–50.

    CAS  Google Scholar 

  16. Hayes R, Warr GG, Atkin R. Structure and nanostructure in ionic liquids. Chem Rev. 2015;115:6357–426.

    PubMed  CAS  Google Scholar 

  17. Ohno H, Yoshizawa-Fujita M, Kohno Y. Functional design of ionic liquids: Unprecedented liquids that contribute to energy technology, bioscience, and materials sciences. Bull Chem Soc Jpn. 2019;92:852–68.

    CAS  Google Scholar 

  18. Tamate R, Hashimoto K, Ueki T, Watanabe M. Block copolymer self-assembly in ionic liquids. Phys Chem Chem Phys. 2018;20:25123–39.

    PubMed  CAS  Google Scholar 

  19. Wang M, Hu J, Dickey MD. Tough ionogels: synthesis, toughening mechanisms, and mechanical properties─a perspective. JACS Au. 2022;2:2645–57.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. MacFarlane DR, Forsyth M, Howlett PC, Kar M, Passerini S, Pringle JM, et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat Rev Mater. 2016;1:15005.

    CAS  Google Scholar 

  21. Yan CC, Li WZ, Liu ZY, Zheng SJ, Hu Y, Zhou YJ, et al. Ionogels: preparation, properties and applications. Adv Funct Mater. 2024;34:2314408.

    CAS  Google Scholar 

  22. Cho KG, An S, Cho DH, Kim JH, Nam J, Kim M, et al. Block copolymer‐based supramolecular ionogels for accurate on‐skin motion monitoring. Adv Funct Mater. 2021;31:2102386.

    CAS  Google Scholar 

  23. Chen N, Zhang H, Li L, Chen R, Guo S. Ionogel electrolytes for high-performance lithium batteries: a review. Adv Energy Mater. 2018;8:1702675.

    Google Scholar 

  24. Wu DY, Meure S, Solomon D. Self-healing polymeric materials: a review of recent developments. Prog Polym Sci. 2008;33:479–522.

    CAS  Google Scholar 

  25. Yang Y, Urban MW. Self-healing polymeric materials. Chem Soc Rev. 2013;42:7446–67.

    PubMed  CAS  Google Scholar 

  26. Kang J, Tok JBH, Bao Z. Self-healing soft electronics. Nat Electron. 2019;2:144–50.

    Google Scholar 

  27. Maeda T, Otsuka H, Takahara A. Dynamic covalent polymers: Reorganizable polymers with dynamic covalent bonds. Prog Polym Sci. 2009;34:581–604.

    CAS  Google Scholar 

  28. Wang S, Urban MW. Self-healing polymers. Nat Rev Mater. 2020;5:562–83.

    CAS  Google Scholar 

  29. Li B, Cao P-F, Saito T, Sokolov AP. Intrinsically self-healing polymers: from mechanistic insight to current challenges. Chem Rev. 2023;123:701–35.

    PubMed  CAS  Google Scholar 

  30. Tamate R, Watanabe M. Recent progress in self-healable ion gels. Sci Technol Adv Mater. 2020;21:388–401.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Tamate R. Healable soft materials based on ionic liquids and block copolymer self-assembly. Polym J. 2021;53:789–98.

    CAS  Google Scholar 

  32. Tamate R, Ueki T. Adaptive ion-gel: stimuli-responsive, and self-healing ion gels. Chem Rec. 2023;23:e202300043.

    PubMed  CAS  Google Scholar 

  33. Cao Y, Morrissey TG, Acome E, Allec SI, Wong BM, Keplinger C, et al. A transparent, self‐healing, highly stretchable ionic conductor. Adv Mater. 2017;29:1605099.

    Google Scholar 

  34. Saruwatari A, Tamate R, Kokubo H, Watanabe M. Photohealable ion gels based on the reversible dimerisation of anthracene. Chem Commun. 2018;54:13371–4.

    CAS  Google Scholar 

  35. Xu L, Huang Z, Deng Z, Du Z, Sun TL, Guo ZH, et al. A transparent, highly stretchable, solvent‐resistant, recyclable multifunctional ionogel with underwater self‐healing and adhesion for reliable strain sensors. Adv Mater. 2021;33:2105306.

    CAS  Google Scholar 

  36. Yang L, Sun L, Huang H, Zhu W, Wang Y, Wu Z, et al. Mechanically robust and room temperature self-healing ionogel based on ionic liquid inhibited reversible reaction of disulfide bonds. Adv Sci. 2023;10:2207527.

    CAS  Google Scholar 

  37. Kim YM, Kwon JH, Kim S, Choi UH, Moon HC. Ion-cluster-mediated ultrafast self-healable ionoconductors for reconfigurable electronics. Nat Commun. 2022;13:3769.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Kim S, Yeo J, Kim SJ, Park S, Cho KG, Paeng K, et al. Photopatternable and self-healable ionogels for organic thin-film transistors. Org Electron. 2023;122:106895.

    CAS  Google Scholar 

  39. Yu Z, Wu P. Underwater communication and optical camouflage ionogels. Adv Mater. 2021;33:2008479.

    CAS  Google Scholar 

  40. Tamate R, Hashimoto K, Horii T, Hirasawa M, Li X, Shibayama M, et al. Self-healing micellar ion gels based on multiple hydrogen bonding. Adv Mater. 2018;30:1802792.

    Google Scholar 

  41. Tamate R, Hashimoto K, Li X, Shibayama M, Watanabe M. Effect of ionic liquid structure on viscoelastic behavior of hydrogen-bonded micellar ion gels. Polymer. 2019;178:121694.

    Google Scholar 

  42. Yamaguchi M, Ono S, Okamoto K. Interdiffusion of dangling chains in weak gel and its application to self-repairing material. Mater Sci Eng B. 2009;162:189–94.

    CAS  Google Scholar 

  43. Kamiyama Y, Tamate R, Hiroi T, Samitsu S, Fujii K, Ueki T. Highly stretchable and self-healable polymer gels from physical entanglements of ultrahigh–molecular weight polymers. Sci Adv. 2022;8:eadd0226.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Harrisson S, Mackenzie SR, Haddleton DM Unprecedented solvent-induced acceleration of free-radical propagation of methyl methacrylate in ionic liquids. Chem Commun. 2002:2850-1.

  45. Low K, Wylie L, Scarborough DLA, Izgorodina EI. Is it possible to control kinetic rates of radical polymerisation in ionic liquids? Chem Commun. 2018;54:11226–43.

    CAS  Google Scholar 

  46. Suzuki Y, Shinagawa Y, Kato E, Mishima R, Fukao K, Matsumoto A. Polymerization-induced vitrification and kinetic heterogenization at the onset of the Trommsdorff effect. Macromolecules. 2021;54:3293–303.

    CAS  Google Scholar 

  47. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature. 2008;451:977–80.

    PubMed  CAS  Google Scholar 

  48. Stukalin EB, Cai LH, Kumar NA, Leibler L, Rubinstein M. Self-healing of unentangled polymer networks with reversible bonds. Macromolecules. 2013;46:7525–41.

    CAS  Google Scholar 

  49. Ge T, Grest GS, Robbins MO. Tensile fracture of welded polymer interfaces: miscibility, entanglements, and crazing. Macromolecules. 2014;47:6982–9.

    CAS  Google Scholar 

  50. Kamiyama Y, Tamate R, Fujii K, Ueki T. Controlling mechanical properties of ultrahigh molecular weight ion gels by chemical structure of ionic liquids and monomers. Soft Matter. 2022;18:8582–90.

    PubMed  CAS  Google Scholar 

  51. Tikekar MD, Choudhury S, Tu Z, Archer LA. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy. 2016;1:16114.

    CAS  Google Scholar 

  52. Guo Y, Li H, Zhai T. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv Mater. 2017;29:1700007.

    Google Scholar 

  53. Cheng X-B, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117:10403–73.

    PubMed  CAS  Google Scholar 

  54. Watanabe M, Dokko K, Ueno K, Thomas ML. From ionic liquids to solvate ionic liquids: challenges and opportunities for next generation battery electrolytes. Bull Chem Soc Jpn. 2018;91:1660–82.

    CAS  Google Scholar 

  55. Yamada Y, Yamada A. Review—superconcentrated electrolytes for lithium batteries. J Electrochem Soc. 2015;162:A2406–A2423.

    CAS  Google Scholar 

  56. Xiao P, Yun X, Chen Y, Guo X, Gao P, Zhou G, et al. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chem Soc Rev. 2023;52:5255–316.

    PubMed  CAS  Google Scholar 

  57. Yoshida K, Nakamura M, Kazue Y, Tachikawa N, Tsuzuki S, Seki S, et al. Oxidative-stability enhancement and charge transport mechanism in glyme–lithium salt equimolar complexes. J Am Chem Soc. 2011;133:13121–9.

    PubMed  CAS  Google Scholar 

  58. Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc. 2014;136:5039–46.

    PubMed  CAS  Google Scholar 

  59. Ciurduc DE, Boaretto N, Fernández-Blázquez JP, Marcilla R. Development of high performing polymer electrolytes based on superconcentrated solutions. J Power Sources. 2021;506:230220.

    CAS  Google Scholar 

  60. Hao Z, Zhao Q, Tang J, Zhang Q, Liu J, Jin Y, et al. Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries. Mater Horiz. 2021;8:12–32.

    PubMed  CAS  Google Scholar 

  61. Huang B, Luo J, Xu B, Li Z, Li Y, Che Y, et al. Surface coating on a separator with a reductive solid Li-ion conductor for dendrite-free Li-metal batteries. ACS Appl Energy Mater. 2021;4:8621–8.

    CAS  Google Scholar 

  62. Poungsripong P, Tamate R, Ono M, Sakaushi K, Ue M. Fabrication of single-ion conducting polymer-coated separators and their application in nonaqueous Li-O2 batteries. Polym J. 2021;53:549–56.

    CAS  Google Scholar 

  63. Shomura R, Tamate R, Matsuda S. Lithium-ion-conducting ceramics-coated separator for stable operation of lithium metal-based rechargeable batteries. Materials. 2022;15:322.

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Ryou MH, Lee DJ, Lee JN, Lee YM, Park JK, Choi JW. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv Energy Mater. 2012;2:645–50.

    CAS  Google Scholar 

  65. Zhang W, Tu Z, Qian J, Choudhury S, Archer LA, Lu Y. Design principles of functional polymer separators for high-energy, metal-based batteries. Small. 2018;14:1703001.

    Google Scholar 

  66. Yu Z, Cui Y, Bao Z. Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep. Phys Sci. 2020;1:100119.

    Google Scholar 

  67. Tu Z, Choudhury S, Zachman MJ, Wei S, Zhang K, Kourkoutis LF, et al. Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport in batteries. Joule. 2017;1:394–406.

    CAS  Google Scholar 

  68. Xu R, Zhang XQ, Cheng XB, Peng HJ, Zhao CZ, Yan C, et al. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv Funct Mater. 2018;28:1705838.

    Google Scholar 

  69. Yang D, Li J, Yang F, Li J, He L, Zhao H, et al. A rigid-flexible protecting film with surface pits structure for dendrite-free and high-performance lithium metal anode. Nano Lett. 2021;21:7063–9.

    PubMed  CAS  Google Scholar 

  70. Gao Y, Yan Z, Gray JL, He X, Wang D, Chen T, et al. Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat Mater. 2019;18:384–9.

    PubMed  CAS  Google Scholar 

  71. Xu R, Cheng XB, Yan C, Zhang XQ, Xiao Y, Zhao CZ, et al. Artificial interphases for highly stable lithium metal anode. Matter. 2019;1:317–44.

    Google Scholar 

  72. Liu K, Pei A, Lee HR, Kong B, Liu N, Lin D, et al. Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer. J Am Chem Soc. 2017;139:4815–20.

    PubMed  CAS  Google Scholar 

  73. Wang Y, Zanelotti CJ, Wang X, Kerr R, Jin L, Kan WH, et al. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat Mater. 2021;20:1255–63.

    PubMed  CAS  Google Scholar 

  74. Jaumaux P, Liu Q, Zhou D, Xu X, Wang T, Wang Y, et al. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries. Angew Chem Int Ed Engl. 2020;59:9134–42.

    PubMed  CAS  Google Scholar 

  75. Tamate R, Peng Y, Kamiyama Y, Nishikawa K. Extremely tough, stretchable gel electrolytes with strong interpolymer hydrogen bonding prepared using concentrated electrolytes to stabilize lithium‐metal anodes. Adv Mater. 2023;35:2211679.

    CAS  Google Scholar 

  76. Ueno K, Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M. Glyme–lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids? J Phys Chem B. 2012;116:11323–31.

    PubMed  CAS  Google Scholar 

  77. Mandai T, Yoshida K, Ueno K, Dokko K, Watanabe M. Criteria for solvate ionic liquids. Phys Chem Chem Phys. 2014;16:8761–72.

    PubMed  CAS  Google Scholar 

  78. Shkrob IA, Marin TW, Zhu Y, Abraham DP. Why bis(fluorosulfonyl)imide is a “magic anion” for electrochemistry. J Phys Chem C. 2014;118:19661–71.

    CAS  Google Scholar 

  79. Tatara R, Ikeda K, Ueno K, Watanabe M, Dokko K Solid–electrolyte interphase formation during Li metal deposition in LiN(SO2F)2-based solvate ionic liquids. J Solid State Electrochem. https://doi.org/10.1007/s10008-024-05843-4

  80. Chang J, Huang Q, Gao Y, Zheng Z. Pathways of developing high‐energy‐density flexible lithium batteries. Adv Mater. 2021;33:2004419.

    CAS  Google Scholar 

  81. Kong L, Tang C, Peng HJ, Huang JQ, Zhang Q. Advanced energy materials for flexible batteries in energy storage: a review. SmartMat. 2020;1:e1007.

    Google Scholar 

  82. Liu J, Bao Z, Cui Y, Dufek EJ, Goodenough JB, Khalifah P, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy. 2019;4:180–6.

    CAS  Google Scholar 

  83. Tamate R, Matsuda S. Asymmetric volume expansion of the lithium metal electrode in symmetric lithium/lithium cells under lean electrolyte and high areal capacity conditions. ACS Appl Energy Mater. 2023;6:573–9.

    CAS  Google Scholar 

Download references

Acknowledgements

The author is sincerely grateful to all his colleagues for their collaboration and encouragement in this work. This work was financially supported by JSPS KAKENHI (23K26409), JST PRESTO program (JPMJPR2196), COI-NEXT (JPMJPF2016), and Green Technologies of Excellence (GteX) Program (JPMJGX23S3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryota Tamate.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamate, R. Development of functional polymer gel electrolytes and their application in next-generation lithium secondary batteries. Polym J 57, 43–55 (2025). https://doi.org/10.1038/s41428-024-00969-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-024-00969-8

This article is cited by

Search

Quick links