Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Note
  • Published:

Deprotection of the tert-butyl ester of poly(n-butyl methacrylate-b-tert-butyl methacrylate) under flow conditions by heterogeneous catalysts leading to acidic diblock copolymers

Abstract

The selective deprotection of tertiary-butyl (tert-Bu) esters in diblock copolymers of polyesters was studied via heterogeneous acid catalysts and flow reactors. Diblock copolymers composed of n-butyl methacrylate (nBMA) as the 1st block and tert-butyl methacrylate (tBMA) as the 2nd block were prepared by group transfer polymerization (GTP) using diisobutyl ketone (DIBK) as the solvent. The selective deprotection of the tert-Bu ester in the poly(nBMA-b-tBMA) under flow conditions was examined. The results show that the selective deprotection of the tert-Bu ester was achieved successfully via an acidic macroreticular polymeric catalyst, Amberlyst 35DRY, packed in a flow reactor. The deprotection process required 15 min of residence at 180 °C to yield acidic poly(nBMA-b-methacrylic acid) with a polydispersity index (Ð) value as low as 1.28. The durability of the catalyst was also examined during a continuous process for 1500 min by an HPLC pump.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

References

  1. Bates FS, Fredrickson GH. Block Copolymers-Designer Soft Materials. Phys Today. 1999;52:32–38.

    Article  CAS  Google Scholar 

  2. Sajjad H, Tolman WB, Reineke TM. Block Copolymer Pressure-Sensitive Adhesives Derived from Fatty Acids and Triacetic Acid Lactone. ACS Appl Polym Mater. 2020;2:2719–28.

    Article  CAS  Google Scholar 

  3. Ruzette AV, Leibler L. Block Copolymers in Tomorrow’s Plastics. Nat Mater. 2005;4:19–31.

    Article  CAS  PubMed  Google Scholar 

  4. Feng J, Wang Z, Tang P, Liu L, Chen S, Jiang F. Rational Design of Sustainable Diblock Copolymers toward Strong Adhesives and Stretchable Ionic Conductive Materials. Polymer. 2023;264:125543.

    Article  CAS  Google Scholar 

  5. Garnier S, Laschewsky A. New Amphiphilic Diblock Copolymers: Surfactant Properties and Solubilization in Their Micelles. Langmuir. 2006;22:4044–53.

    Article  CAS  PubMed  Google Scholar 

  6. Somuncuoğlu B, Lee YL, Constantinou AP, Poussin DLM, Georgiou TK. Ethyl Methacrylate Diblock Copolymers as Polymeric Surfactants: Effect of Molar Mass and Composition. Eur Polym J. 2021;154:110537.

    Article  Google Scholar 

  7. Duivenvoorde FL, Laven J, Linde R. Diblock Copolymer Dispersants in Polyester Powder Coatings. Prog Org Coat. 2002;45:127–37.

    Article  CAS  Google Scholar 

  8. North SM, Armes SP. Aqueous One-Pot Synthesis of Well-Defined Zwitterionic Diblock Copolymers by RAFT Polymerization: An Efficient and Environmentally-Friendly Route to a Useful Dispersant for Aqueous Pigments. Green Chem. 2021;23:1248–58.

    Article  CAS  Google Scholar 

  9. Fang T, Huo M, Wan Z, Chen H, Peng L, Liu L, et al. Study of Structure-Performance Relationships of Polymeric Dispersants on Particle Dispersion and Stabilisation. RSC Adv. 2017;7:2513–9.

    Article  CAS  Google Scholar 

  10. Luan M, Shen D, Zhou P, Li D, Li P, Shi B, et al. One-Pot Synthesis of Block Copolymer Dispersant by ICAR ATRP with ppm Copper Catalyst and the Dispersibility on Pigment. Prog Org Coat. 2022;169:106914.

    Article  CAS  Google Scholar 

  11. Groh KJ, Arp HPH, MacLeod M, Wang Z. Assessing and Managing Environmental Hazards of Polymers: Historical Development, Science Advances and Policy Options. Environ Sci Process Impacts. 2023;25:10–25.

    Article  CAS  PubMed  Google Scholar 

  12. Connors KA, Arndt D, Rawlings JM, Brun Hansen AM, Lam MW, Sanderson H, et al. Environmental Hazard of Cationic Polymers Relevant in Personal and Consumer Care Products: A Critical Review. Integr Environ Assess Manag. 2023;19:312–25.

    Article  CAS  PubMed  Google Scholar 

  13. Corrigan N, Jung K, Moad G, Hawker CJ, Matyjaszewski K, Boyer C. Reversible-Deactivation Radical Polymerization (Controlled/Living Radical Polymerization): From Discovery to Materials Design and Applications. Prog Polym Sci. 2020;111:101311.

    Article  CAS  Google Scholar 

  14. Grubbs RB, Grubbs RH. 50th anniversary perspective: Living Polymerization-Emphasizing the Molecule in Macromolecules. Macromolecules. 2017;50:6979–97.

    Article  CAS  Google Scholar 

  15. Parkatzidis K, Wang HS, Truong NP, Anastasaki A. Recent Developments and Future Challenges in Controlled Radical Polymerization: A 2020 Update. Chem. 2020;6:1575–88.

    Article  CAS  Google Scholar 

  16. Kwon SK, Choi WJ, Kim YH, Choi SK. Synthesis of Amphiphilic Poly(Alkyl Methacrylate-b-Methacrylic Acid) by Group Transfer Polymerization and Selective Hydrolysis. Bull Korean Chem Soc. 1992;13:479–82.

    CAS  Google Scholar 

  17. Rannard SP, Billingham NC, Armes SP, Mykytiuk J. Synthesis of Monodisperse Block Copolymers Containing Methacrylic Acid Segments by Group-Transfer Polymerization: Choice of Protecting Group and Catalyst. Eur Polym J. 1993;29:407–14.

    Article  CAS  Google Scholar 

  18. Webster OW. The Discovery and Commercialization of Group Transfer Polymerization. J Polym Sci A Polym Chem. 2000;38:2855–60.

    Article  CAS  Google Scholar 

  19. Fuchise K, Chen Y, Satoh T, Kakuchi T. Recent Progress in Organocatalytic Group Transfer Polymerization. Polym Chem. 2013;4:4278.

    Article  CAS  Google Scholar 

  20. Pearson DA, Blanchette M, Baker ML, Guindon CA. Trialkylsilanes as Scavengers for the Trifluoroacetic Acid Deblocking of Protecting Groups in Peptide Synthesis. Tetrahedron Lett. 1989;30:2739–42.

    Article  CAS  Google Scholar 

  21. Mehta A, Jaouhari R, Benson TJ, Douglas KT. Improved Efficiency and Selectivity in Peptide Synthesis: Use of Triethylsilane as a Carbocation Scavenger in Deprotection of t-Butyl Esters and t-Butoxycarbonyl-Protected Sites. Tetrahedron Lett. 1992;33:5441–4.

    Article  CAS  Google Scholar 

  22. Sani YM, Daud WMAW, Abdul Aziz AR. Activity of Solid Acid Catalysts for Biodiesel Production: A Critical Review. Appl Catal A Gen. 2014;470:140–61.

    Article  CAS  Google Scholar 

  23. Argyle M, Bartholomew C. Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts. 2015;5:145–269.

    Article  CAS  Google Scholar 

  24. Jackson RW. A Mild and Selective Method for the Cleavage of Tert-Butyl Esters. Tetrahedron Lett. 2001;42:5163–5.

    Article  CAS  Google Scholar 

  25. Yadav JS, Subba Reddy BV, Rao KS, Harikishan K. Montmorillonite Clay: A Novel Reagent for the Chemoselective Hydrolysis of t-Butyl Esters. Synlett. 2002;5:0826–8.

    Article  Google Scholar 

  26. Uemura Y, Tanaka H, Oe N. Method for producing block copolymer, and block copolymer obtained using same. WO Pat, 2015;2015041146.

  27. Gutmann B, Cantillo D, Kappe CO. Continuous-flow Technology-A Tool for the Safe Manufacturing of Active Pharmaceutical Ingredients. Angew Chem Int Ed Engl. 2015;54:6688–728.

    Article  CAS  PubMed  Google Scholar 

  28. Jiao J, Nie W, Yu T, Yang F, Zhang Q, Aihemaiti F, et al. Multi-step Continuous-flow Organic Synthesis: Opportunities and Challenges. Chemistry. 2021;27:4817–38.

    Article  CAS  PubMed  Google Scholar 

  29. Baxendale IR. The Integration of Flow Reactors into Synthetic Organic Chemistry. J Chem Technol Biotechnol. 2013;88:519–52.

    Article  CAS  Google Scholar 

  30. Hartman RL, McMullen JP, Jensen KF. Deciding Whether to Go with the Flow: Evaluating the Merits of Flow Reactors for Synthesis. Angew Chem Int Ed Engl. 2011;50:7502–19.

    Article  CAS  PubMed  Google Scholar 

  31. Mallia CJ, Baxendale IR. The Use of Gases in Flow Synthesis. Org Process Res Dev. 2016;20:327–60.

    Article  CAS  Google Scholar 

  32. Fukuyama T, Kasakado T, Hyodo M, Ryu I. Improved Efficiency of Photo-Induced Synthetic Reactions Enabled by Advanced Photo Flow Technologies. Photochem Photobiol Sci. 2022;21:761–75.

    Article  CAS  PubMed  Google Scholar 

  33. Bally F, Serra CA, Hessel V, Hadziioannou G. Homogeneous Polymerization: Benefits Brought by Microprocess Technologies to the Synthesis and Production of Polymers. Macromol React Eng. 2010;4:543–61.

    Article  CAS  Google Scholar 

  34. Nagaki A, Yoshida J. Controlled Polymerization in Flow Microreactor Systems. In: Abe A, Lee KS, Leibler L, Kobayashi S, editors. Controlled Polymerization and Polymeric Structures, Advances in Polymer Science. Cham: Springer; 2012. p. 1–50.

  35. Zaquen N, Rubens M, Corrigan N, Xu J, Zetterlund PB, Boyer C, et al. Polymer Synthesis in Continuous Flow Reactors. Prog Polym Sci. 2020;107:101256.

    Article  CAS  Google Scholar 

  36. Ryu I, Studer A, Fukuyama T, Kajihara Y. Nitroxide-Mediated Polymerization of Styrene, Butyl Acrylate, or Methyl Methacrylate by Microflow Reactor Technology. Synthesis. 2012;44:2555–9.

    Article  Google Scholar 

  37. Takabayashi R, Feser S, Yonehara H, Ryu I, Fukuyama T. Accelerated Nitroxide-Mediated Polymerization of Styrene and Butyl Acrylate Initiated by BlocBuilder MA Using Flow Reactors. Polym Chem. 2023;14:4515–20.

    Article  CAS  Google Scholar 

  38. Ceylan S, Kirschning A. Organic Synthesis with Mini Flow Reactors Using Immobilised Catalysts. In: Benaglia M, editor. Recoverable and Recyclable Catalysts. John Wiley & Sons, New York; 2009. p. 379–410.

  39. Masuda K, Ichitsuka T, Koumura N, Sato K, Kobayashi S. Flow Fine Synthesis with Heterogeneous Catalysts. Tetrahedron. 2018;74:1705–30.

    Article  CAS  Google Scholar 

  40. Tanimu A, Jaenicke S, Alhooshani K. Heterogeneous Catalysis in Continuous Flow Microreactors: A Review of Methods and Applications. Chem Eng J. 2017;327:792–821.

    Article  CAS  Google Scholar 

  41. Furuta A, Fukuyama T, Ryu I. Efficient Flow Fischer Esterification of Carboxylic Acids with Alcohols Using Sulfonic Acid-Functionalized Silica as Supported Catalyst. Bull Chem Soc Jpn. 2017;90:607–12.

    Article  CAS  Google Scholar 

  42. Furuta A, Hirobe Y, Fukuyama T, Ryu I, Manabe Y, Fukase K. Flow Dehydration and Hydrogenation of Allylic Alcohols: Application to the Waste-free Synthesis of Pristane. Eur J Org Chem. 2017;10:1365–8.

    Article  Google Scholar 

  43. Kasakado T, Hyodo M, Furuta A, Kamardine A, Ryu I, Fukuyama T. Flow Friedel-Crafts Alkylation of 1-adamantanol with Arenes Using HO-SAS as an Immobilized Acid Catalyst. J Chin Chem Soc. 2020;67:2253–7.

    Article  CAS  Google Scholar 

  44. Fukuyama T, Hirano T, Takamura K. HO-SAS Catalyzed Protection and Deprotection of Aldehydes and Alcohols in Continuous Flow Reactors. J Flow Chem. 2024;14:297–301.

    Article  CAS  Google Scholar 

  45. DuPont de Nemours Inc. Product Data Sheet of DuPont™ AmberLyst™ 15DRY Polymeric Catalyst https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/IER-AmberLyst-15DRY-PDS-45-D00927-en.pdf (2023) Accessed 21 July 2024.

  46. DuPont de Nemours Inc. Product Data Sheet of DuPont™ AmberLyst™ 35DRY Polymeric Catalyst https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/IER-AmberLyst-35DRY-PDS-45-D00929-en.pdf (2020) Accessed 21 July 2024.

  47. DuPont de Nemours Inc. Product Data Sheet of DuPont™ AmberLyst™ 45 Polymeric Catalyst https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/IER-AmberLyst-45-PDS-45-D00915-en.pdf (2023) Accessed 21 July 2024.

  48. Merck & Co., Inc. The website of the Montmorillonite K 10 from the supplier https://www.sigmaaldrich.com/JP/en/product/aldrich/281522 (2024) Accessed 21 July 2024.

  49. Merck & Co., Inc. The website of the Montmorillonite K 30 from the supplier https://www.sigmaaldrich.com/JP/en/product/sial/69904 (2024) Accessed 21 July 2024.

  50. Tayca Corporation. The specification of TAYCACURE SAC-6 https://www.tayca.co.jp/english/research_development/new_tech01/acid_catalyst/spec.php (2009) Accessed 21 July 2024.

  51. Fujii H, Shimada N, Ohtawa M, Karaki F, Koshizuka M, Hayashida K, et al. Deprotection of silyl ethers by using SO3H silica gel: Application to sugar, nucleoside, and alkaloid derivatives. Tetrahedron. 2017;73:5425–9.

    Article  CAS  Google Scholar 

  52. Gabor AH, Ober CK. Group-Transfer Polymerization of tert-Butyl Methacrylate and [3-(Methacryloxy)Propyl]Pentamethyldisiloxane: Synthesis and Characterization of Homopolymers and Random and Block Copolymers. Chem Mater. 1996;8:2272–81.

  53. Kakuchi T, Chen Y, Kitakado J, Mori K, Fuchise K, Satoh T. Organic Superbase as an Efficient Catalyst for Group Transfer Polymerization of Methyl Methacrylate. Macromolecules. 2011;44:4641–7.

    Article  CAS  Google Scholar 

  54. Brar AS, Singh G, Shankar R. Structural investigations of poly(methyl methacrylate) by two-dimensional NMR. J Mol Struct. 2004;703:69–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to express our appreciation to Tayca Corporation for providing TAYCACURE SAC-6. This work was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) (24K08433 and 19H02722). IR wishes to thank NSTC (112-2113-MA49-013) and the Centre for Emergent Functional Matter Science at NYCU for additional support (112R10194C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahide Fukuyama.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takabayashi, R., Feser, S., Yonehara, H. et al. Deprotection of the tert-butyl ester of poly(n-butyl methacrylate-b-tert-butyl methacrylate) under flow conditions by heterogeneous catalysts leading to acidic diblock copolymers. Polym J 57, 215–224 (2025). https://doi.org/10.1038/s41428-024-00978-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-024-00978-7

Search

Quick links