Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Preparation and application of flexible carbon nanofiber membranes via electrospinning: from stress dispersion to multifunctionality

Abstract

The ongoing surge in portable and smart device technology drives the need for materials that are both flexible and conductive. Owing to their high surface area and stability, carbon nanofibers (CNFs) are ideal for these applications. Electrospinning is a superior method for producing uniform CNFs with adjustable sizes, allowing for precise property control. The focus of this concise review is on enhancing the stress distribution and flexibility of electrospun CNFs, and the importance of optimizing pre-oxidation and carbonization to improve crystallinity and performance is emphasized. Physical stretching techniques and the addition of nanoparticles to create heterogeneous phases within the carbon matrix are discussed as the methods used to increase the mechanical properties of CNFs and develop porous structures. Additionally, the broad applications of flexible CNFs are outlined, and insights into current research and future prospects are provided, with an emphasis on the significance of CNFs in flexible material development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. He X, Lin YC, Ding YC, Abdullah AM, Lei ZP, Han YB, et al. Reshapeable, rehealable and recyclable sensor fabricated by direct ink writing of conductive composites based on covalent adaptable network polymers. Int J Extreme Manuf. 2022;4:015301.

  2. Wang MH, Zhao KH, Wu JY, Li YQ, Yang Y, Huang S, et al. Femtosecond laser fabrication of nanograting-based distributed fiber sensors for extreme environmental applications. Int J Extreme Manuf. 2021;3:025401.

  3. Zhang W, Zhang L, Liao Y, Cheng H. Conformal manufacturing of soft deformable sensors on the curved surface. Int J Extreme Manuf. 2021;3:042001.

  4. Chen F, Bian J, Hu J, Sun N, Yang B, Ling H, et al. Mass transfer techniques for large-scale and high-density microLED arrays. Int J Extreme Manuf. 2022;4:042005.

  5. Kim IC, Kim TH, Lee SH, Kim BS. Multi-valued and Fuzzy Logic Realization using TaOx Memristive Devices. Sci Rep. 2018;8:8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li T, Li SY, Li XY, Xu ZJ, Zhao JZ, Shi YT, et al. A leaf vein-like hierarchical silver grids transparent electrode towards high-performance flexible electrochromic smart windows. Sci Bull. 2020;65:225–32.

    Article  CAS  Google Scholar 

  7. Choi JH, Pande GK, Lee YR, Park JS. Psychiatric disorders and suicide risk among adults with disabilities: A nationwide retrospective cohort study. Polymer. 2020;194:9–14.

    Google Scholar 

  8. Wu WN, Yu HF, Yeh MH, Ho KC. Incorporating electrospun nanofibers of TEMPO-grafted PVDF-HFP polymer matrix in viologen-based electrochromic devices. Sol Energy Mater Sol Cells. 2020;208:10.

    Article  Google Scholar 

  9. Zhang X, Cao L, Liao Y, Qin Z, Yang Z, Sun R, et al. Improved energy storage density and efficiency in BaTiO3-BiFeO3- based relaxor-ferroelectric ceramics. J Alloy Compd. 2022;920:166035.

    Article  Google Scholar 

  10. Bhoyate S, Kahol PK, Sapkota B, Mishra SR, Perez F, Gupta RK. Polystyrene activated linear tube carbon nanofiber for durable and high-performance supercapacitors. Surf Coat Technol. 2018;345:113–22.

    Article  CAS  Google Scholar 

  11. Wang J, Suzuki R, Shao M, Gillot F, Shiratori S. Capacitive Pressure Sensor with Wide-Range, Bendable, and High Sensitivity Based on the Bionic Komochi Konbu Structure and Cu/Ni Nanofiber Network. ACS Appl Mater Interfaces. 2019;11:11928–35.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng T, Wu YW, Chen YL, Zhang YZ, Lai WY, Huang W. Diabetes Treatment: Cold‐Responsive Nanocapsules Enable the Sole‐Cryoprotectant‐Trehalose Cryopreservation of β Cell–Laden Hydrogels for Diabetes Treatment. Small. 2019;15:9.

  13. Ding XY, Pan ZH, Liu N, Li LG, Wang XS, Xu GG, et al. Freestanding Carbon Nanotube Film for Flexible Straplike Lithium/Sulfur Batteries. Chem Eur J. 2019;25:3775–80.

    Article  CAS  Google Scholar 

  14. Wang C, Li Q, Guo J, Ren Y, Zhang J, Yan F. Metal-containing Ionic Liquid/Polyacrylonitrile-derived Carbon Nanofibers for Oxygen Reduction Reaction and Flexible Zn-Air Battery. Chem Asian J. 2019;14:2008–17.

    Article  CAS  PubMed  Google Scholar 

  15. Xia SH, Zhang YY, Zhao Y, Wang X, Yan JH. Hierarchical Porous Carbon Nanofibers with Tunable Geometries and Porous Structures Fabricated by a Scalable Electrospinning Technique. ACS Appl Mater Interfaces. 2021;13:44768–76.

    Article  CAS  PubMed  Google Scholar 

  16. He X, Hu Y, Chen RZ, Shen Z, Wu KS, Cheng ZL, et al. Single Purse-String Suture for Reinforcement of Duodenal Stump During Laparoscopic Radical Gastrectomy for Gastric Cancer. Chem Eng J. 2019;360:1020–9.

    Article  CAS  Google Scholar 

  17. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem Rev. 2019;119:5298–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luo GX, Xie JQ, Liu JL, Zhang QK, Luo YY, Li M, et al. Role of covalent modification by hepatic aldehydes in dictamnine-induced liver injury. Chem Eng J. 2023;451:12–21.

    Google Scholar 

  19. Shi S, Si YF, Han YT, Wu T, Iqbal MI, Fei B, et al. Innovation of strip fertilization planting for rice straw crushing with back-throwing and interrow-laying. Adv Mater. 2022;34:31.

    Google Scholar 

  20. Si YF, Shi S, Hu JL. Applications of electrospinning in human health: From detection, protection, regulation to reconstruction. Nano Today. 2023;48:37.

    Article  Google Scholar 

  21. Shao ZG, Chen HT, Wang QF, Kang GY, Wang X, Li WW, et al. High-performance multifunctional electrospun fibrous air filter for personal protection: A review. Sep Purif Technol. 2022;302:23.

    Article  Google Scholar 

  22. Inagaki M, Yang Y, Kang FY. Carbon nanofibers prepared via electrospinning. Adv Mater. 2012;24:2547–66.

    Article  CAS  PubMed  Google Scholar 

  23. Li WW, Liu J, Wei JN, Yang ZY, Ren CL, Li BX. Current‐Controlled Skyrmion Number in Confined Ferromagnetic Nanostripes. Adv Funct Mater. 2023;33:28.

  24. Wang XX, Yu GF, Zhang J, Yu M, Ramakrishna S, Long YZ. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog Mater Sci. 2021;115:44.

    Article  Google Scholar 

  25. Wang H, Niu HT, Wang HJ, Wang WY, Jin X, Wang HX, et al. Engineering of electrospun polyimide separators for electrical double-layer capacitors and lithium-ion cells. J Power Sources. 2021;482:9.

    Google Scholar 

  26. Sun WY, Bai J, Li CP, Liu JR. Effect of graphitization degree of electrospinning carbon fiber on catalytic oxidation of styrene and electrochemical properties. Chem Phys Lett. 2019;715:299–309.

    Article  CAS  Google Scholar 

  27. Zheng Q, Wang JQ, Yu MJ, Zhai HZ, Cao WQ, Cao MS. Heterodimensional structure porous nanofibers embedded confining magnetic nanocrystals for electromagnetic functional material and device. Carbon. 2023;210:11.

    Article  Google Scholar 

  28. Wang X, Zhang Y, Zhao Y, Li G, Yan J, Yu J, et al. Smart Materials Enabled with Artificial Intelligence for Healthcare Wearables. Adv Funct Mater. 2021;31:2105482.

  29. Jeon SK, Jang HS, Lee NH, Kwon OH, Nahm SH. The Mechanical and Electrical Properties of a Single Carbon Nanofiber Induced by Applying Tensile Strain. J Nanosci Nanotechnol. 2015;15:8711–5.

    Article  CAS  PubMed  Google Scholar 

  30. Shakil UA, Nauman S, Hassan SB, Yahya MY, Rushdan AIBin, Othman FEC, et al. Mechanical, microstructural, and dynamic mechanical properties of electrospun short nanofiber reinforced epoxy composites. Polym Compos. 2022;43:7028–43.

    Article  CAS  Google Scholar 

  31. Cisquella-Serra A, Magnani M, Madou M, Gamero-Castano M. Conformal CVD of WO3− on electrospun carbon nanofiber mats assisted by Joule heating. Carbon. 2022;195:27–34.

    Article  CAS  Google Scholar 

  32. Xue ZX, Xiong QQ, Zou CX, Chi HZ, Hu XS, Ji ZG. Advances in fungal chemical genomics for the discovery of new antifungal agents. Mater Res Bull. 2021;133:5–22.

    Google Scholar 

  33. Li CC, Xie BS, Chen J, He ZX, Chen ZS, Long Y. Emerging mineral-coupled composite phase change materials for thermal energy storage. Energy Conv Manag. 2019;183:633–44.

    Article  CAS  Google Scholar 

  34. Wang XH, Qin J, Cui J, Huang L, Yuan Y, Li YB. Restore China's coastline from the ground up. Adv Fiber Mater. 2022;4:1164–76.

    Article  CAS  Google Scholar 

  35. Feng LG, Ding RF, Chen YW, Wang JW, Xu L. Zeolitic imidazolate framework-67 derived ultra-small CoP particles incorporated into N-doped carbon nanofiber as efficient bifunctional catalysts for oxygen reaction. J Power Sources. 2020;452:10.

    Article  Google Scholar 

  36. Dai J, Jing J, Yang JP, Zhang W, Liu SX, Wang QF, et al. Flexible and free-standing La0.33Ti2(PO4)3/C nanofibers film as a novel high-performance anode for sodium- and potassium-ion batteries. Rare Met. 2023;42:3387–98.

    Article  CAS  Google Scholar 

  37. He WY, Zheng XJ, Peng JF, Zhang Q, Pei DZ, Yan XY. Pie-crusting technique is effective and safe to release superficial medial collateral ligament for total knee arthroplasty. J Alloy Compd. 2018;768:33–41.

    Article  CAS  Google Scholar 

  38. Wu ZY, Li C, Liang HW, Chen JF, Yu SH. Ultralight, Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose. Angew Chem Int Edit. 2013;52:2925–9.

  39. Li SC, Hu BC, Ding YW, Liang HW, Li C, Yu ZY, et al. Wood-Derived Ultrathin Carbon Nanofiber Aerogels. Angew Chem Int Edit. 2018;57:7085–90.

  40. Batool N, Ahmad N, Liu J, Han XF, Zhang TH, Wang WT, et al. Electrospun nanofibers and their applications in rechargeable zinc–air batteries. Mat Chem Front. 2021;5:2950–66.

    Article  CAS  Google Scholar 

  41. Zhang C, Li Y, Wang P, Zhang H. Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Compr Rev Food Sci Food Saf. 2020;19:479–502.

    Article  CAS  PubMed  Google Scholar 

  42. Yang LJ, Yang P, Yang RZ, Wang JC, Hao YW, Zhao XC. Low-temperature fabrication of carbon nanofibers with improved graphitization via incorporating carbonaceous inclusions. Polyhedron. 2019;164:13–16.

    Article  CAS  Google Scholar 

  43. Joshi B, Samuel E, Kim YI, Yarin AL, Swihart MT, Yoon SS. Trends for in-office usage of pharmacological sedation agents in India: A narrative review. Chem Eng J. 2022;430:18–27.

    Google Scholar 

  44. Covaliu-Mierla CI, Matei E, Stoian O, Covaliu L, Constandache AC, Iovu H, et al. TiO2–Based Nanofibrous Membranes for Environmental Protection. Membranes. 2022;12:22.

    Article  Google Scholar 

  45. Nguyen TD, Lee JS. Electrospinning-Based Carbon Nanofibers for Energy and Sensor Applications. Appl Sci. 2022;12:6048.

  46. Long Y-Z, Yan X, Wang X-X, Zhang J, Yu M. Electrospinning: Nanofabrication and applications. Amsterdam, the Netherlands: Elsevier Inc.; 2019. pp. 21–52.

  47. Ahmadi Z, Ravandi SAH, Haghighat F, Dabirian F. Enhancement of the Mechanical Properties of PAN Nanofiber/Carbon Nanotube Composite Mats Produced via Needleless Electrospinning System. Fiber Polym. 2020;21:1200–11.

    Article  CAS  Google Scholar 

  48. Dong SX, Li J, Zhang S, Li N, Li B, Zhang QL, et al. Excellent microwave absorption of lightweight PAN-based carbon nanofibers prepared by electrospinning. Colloid Surf A Physicochem Eng Asp. 2022;651:129670.

  49. Zainab G, Babar AA, Ali N, Aboalhassan AA, Wang XF, Yu JY, et al. Electrospun carbon nanofibers with multi-aperture/opening porous hierarchical structure for efficient CO(2) adsorption. J Colloid Interface Sci. 2020;561:659–67.

    Article  CAS  PubMed  Google Scholar 

  50. Pan WP, Lin J. Efficient centrifugal spinning of soda lignin for the production of activated carbon nanofibers with highly porous structure. Int J Biol Macromol. 2022;222:1433–42.

    Article  CAS  PubMed  Google Scholar 

  51. Vivo-Vilches JF, Celzard A, Fierro V, Devin-Ziegler I, Brosse N, Dufour A, et al. Lignin-Based Carbon Nanofibers as Electrodes for Vanadium Redox Couple Electrochemistry. Nanomaterials. 2019;9:13.

    Article  Google Scholar 

  52. Wei JY, Geng SY, Kumar M, Pitkänen O, Hietala M, Oksman K. Investigation of Structure and Chemical Composition of Carbon Nanofibers Developed From Renewable Precursor. Front Mater. 2019;6:8.

    Article  Google Scholar 

  53. Lv J, Gu WH, Cui XQ, Dai SS, Zhang BS, Ji GB. Automated, high-throughput measurement of size and growth curves of small organisms in well plates. Sci Rep. 2019;9:10.

    Article  Google Scholar 

  54. Lv J, Gu W, Cui X, Dai S, Zhang B, Ji G. Nanofiber network with adjustable nanostructure controlled by PVP content for an excellent microwave absorption. Sci Rep. 2019;9:4271.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sanchez-Alvarado DI, Guzmán-Pantoja J, Páramo-García U, Maciel-Cerda A, Martínez-Orozco RD, Vera-Graziano R. Morphological Study of Chitosan/Poly (Vinyl Alcohol) Nanofibers Prepared by Electrospinning, Collected on Reticulated Vitreous Carbon. Int J Mol Sci. 2018;19:12.

    Article  Google Scholar 

  56. Cheng ZL, Qin XX, Liu Z, Qin DZ. Electrospinning preparation and mechanical properties of PVA/HNTs composite nanofibers: PVA/HNTs Composite Nanofibers. Polym Adv Technol. 2017;28:768–74.

    Article  CAS  Google Scholar 

  57. Sharafkhani S, Kokabi M. Coaxially oriented PVDF/MWCNT nanofibers as a high-performance piezoelectric actuator. Polym Compos. 2023;44,8780–91.

  58. Shehata N, Elnabawy E, Abdelkader M, Hassanin AH, Salah M, Nair R, et al. Static-Aligned Piezoelectric Poly (Vinylidene Fluoride) Electrospun Nanofibers/MWCNT Composite Membrane: Facile Method. Polymers. 2018;10:965.

  59. Wang X, Zhang XY, Fu GT, Tang YW. AL-PHA beads: Bioplastic-based protease biosensors for global health applications. Mater Today Energy. 2021;22:25–37.

    Google Scholar 

  60. Taylor G. Disintegration of Water Drops in an Electric Field. Proc R Soc Lond. 1964;280:383–97.

  61. Liao Y, Loh CH, Tian M, Wang R, Fane AG. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog Polym Sci. 2018;77:69–94.

    Article  CAS  Google Scholar 

  62. Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, et al. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci. 2014;39:862–90.

    Article  CAS  Google Scholar 

  63. Nguyen TD, Roh S, Nguyen MTN, Lee JS. Structural Control of Nanofibers According to Electrospinning Process Conditions and Their Applications. Micromachines. 2023;14:2022.

  64. Li D, Xia YN. Electrospinning of Nanofibers: Reinventing the Wheel. Adv Mater. 2004;16:1151–70.

    Article  CAS  Google Scholar 

  65. Xue JJ, Xie JW, Liu WY, Xia YN. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc Chem Res. 2017;50:1976–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Luraghi A, Peri F, Moroni L. Electrospinning for drug delivery applications: A review. J Control Rel. 2021;334:463–84.

    Article  CAS  Google Scholar 

  67. Moulefera I, Trabelsi M, Mamun A, Sabantina L. Electrospun Carbon Nanofibers from Biomass and Biomass Blends-Current Trends. Polym. 2021;13:1071.

    Article  CAS  Google Scholar 

  68. Liao Y, Wang R, Fane AG. Determination of chronological aging parameters in epidermal keratinocytes by in vivo harmonic generation microscopy. J Membr Sci. 2013;440:77–87.

    Article  CAS  Google Scholar 

  69. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of nanofibers. J Appl Polym Sci. 2005;96:557–69.

    Article  CAS  Google Scholar 

  70. Rutledge GC, Fridrikh SV. Formation of fibers by electrospinning. Adv Drug Deliv Rev. 2007;59:1384–91.

    Article  CAS  PubMed  Google Scholar 

  71. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28:325–47.

    Article  CAS  PubMed  Google Scholar 

  72. Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7:216–23.

    Article  CAS  Google Scholar 

  73. Hu JP, Wang XF, Ding B, Lin JY, Yu JY, Sun G. One-step electro-spinning/netting technique for controllably preparing polyurethane nano-fiber/net. Macromol Rapid Commun. 2011;32:1729–34.

    Article  CAS  PubMed  Google Scholar 

  74. Wongchitphimon S, Wang R, Jiraratananon R. Surface modification of polyvinylidene fluoride-co-hexafluoropropylene (PVDF–HFP) hollow fiber membrane for membrane gas absorption. J Membr Sci. 2011;381:183–91.

    Article  CAS  Google Scholar 

  75. Yang GZ, Li HP, Yang JH, Wan J, Yu DG. Synthesis of ZnO/Si Hierarchical Nanowire Arrays for Photocatalyst Application. Nanoscale Res Lett. 2017;12:10.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ding B, Li CR, Miyauchi Y, Kuwaki O, Shiratori S. Formation of novel 2D polymer nanowebs via electrospinning. Nanotechnology. 2006;17:3685–91.

    Article  CAS  Google Scholar 

  77. Gergin I, Ismar E, Sarac AS. Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study. Beilstein J Nanotechnol. 2017;8:1616–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bashir Z. A critical review of the stabilisation of polyacrylonitrile. Carbon. 1991;29:1081–90.

    Article  CAS  Google Scholar 

  79. Dalton S, Heatley F, Budd PM. Thermal stabilization of polyacrylonitrile fibres. Polymer. 1999;40:5531–43.

    Article  CAS  Google Scholar 

  80. Wu MY, Wang QY, Li KN, Wu YQ, Liu HQ. Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers. Polym Degrad Stabil. 2012;97:1511–9.

    Article  CAS  Google Scholar 

  81. Zhou ZP, Lai CL, Zhang LF, Qian Y, Hou HQ, Reneker DH, et al. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer. 2009;50:2999–3006.

    Article  CAS  Google Scholar 

  82. Jo E, Yeo JG, Kim DK, Oh JS, Hong CK. Preparation of well-controlled porous carbon nanofiber materials by varying the compatibility of polymer blends: Preparation of well-controlled porous carbon nanofiber materials. Polym Int. 2014;63:1471–7.

    Article  CAS  Google Scholar 

  83. Miao FJ, Shao CL, Li XH, Wang KX, Liu YC. Flexible solid-state supercapacitors based on freestanding nitrogen-doped porous carbon nanofibers derived from electrospun polyacrylonitrile@polyaniline nanofibers. J Mater Chem A. 2016;4:4180–7.

    Article  CAS  Google Scholar 

  84. Dong Q, Wang G, Hu H, Yang J, Qian BQ, Ling Z, et al. Complete mitochondrial genome of Acipenser schrenckii (Acipenseriformes, Acipenseridae). J Power Sources. 2013;243:350–3.

    Article  CAS  Google Scholar 

  85. Shi XJ, He BB, Zhao L, Gong YS, Wang R, Wang HW. FeS2–CoS2 incorporated into nitrogen-doped carbon nanofibers to boost oxygen electrocatalysis for durable rechargeable Zn-air batteries. J Power Sources. 2021;482:9.

    Article  Google Scholar 

  86. Zhao YJ, Zhang YN, Yang CR, Cheng LF. Ultralight and flexible SiC nanoparticle-decorated carbon nanofiber mats for broad-band microwave absorption. Carbon. 2021;171:474–83.

    Article  CAS  Google Scholar 

  87. Wang X, Aboalhassan AA, Zhu C, Zhang L, Li G, Yan J, et al. Tannic Acid‐Promoted Deposition of Glucose Oxidase on Titanium Surfaces for Mitigation of Persistent Bacterial Infections. Adv Mater Interfaces. 2022;9:2201506.

  88. Liu J, Yue ZR, Fong H. Continuous nanoscale carbon fibers with superior mechanical strength. Small. 2009;5:536–42.

    Article  CAS  PubMed  Google Scholar 

  89. Gazzano M, Gualandi C, Zucchelli A, Sui T, Korsunsky AM, Reinhard C, et al. Structure-morphology correlation in electrospun fibers of semicrystalline polymers by simultaneous synchrotron SAXS-WAXD. Polymer. 2015;63:154–63.

    Article  CAS  Google Scholar 

  90. Kunzmann C, Schmidt-Bilkenroth G, Moosburger-Will J, Horn S. Microscopic investigation of polyacrylonitrile fiber fibrils separated by ultrasonic etching. J Mater Sci. 2018;53:4693–704.

    Article  CAS  Google Scholar 

  91. Xie Z, Niu H, Lin T. Continuous polyacrylonitrile nanofiber yarns: preparation and dry-drawing treatment for carbon nanofiber production. RSC Adv. 2015;5:15147–53.

    Article  CAS  Google Scholar 

  92. Lai CL, Zhong GJ, Yue ZR, Chen G, Zhang LF, Vakili A, et al. Investigation of post-spinning stretching process on morphological, structural, and mechanical properties of electrospun polyacrylonitrile copolymer nanofibers. Polymer. 2011;52:519–28.

    Article  CAS  Google Scholar 

  93. Youm JS, Kim JH, Kim CH, Kim JC, Kim YA, Yang KS. Densifying and strengthening of electrospun polyacrylonitrile‐based nanofibers by uniaxial two‐step stretching. J Appl Polym Sci. 2016;133:9.

    Article  Google Scholar 

  94. Liao C-C, Wang C-C, Chen C-Y, Lai W-J. Stretching-induced orientation of polyacrylonitrile nanofibers by an electrically rotating viscoelastic jet for improving the mechanical properties. Polymer. 2011;52:2263–75.

    Article  CAS  Google Scholar 

  95. Lian F, Liu J, Ma Z, Liang J. Stretching-induced deformation of polyacrylonitrile chains both in quasicrystals and in amorphous regions during the in situ thermal modification of fibers prior to oxidative stabilization. Carbon. 2012;50:488–99.

    Article  CAS  Google Scholar 

  96. Chawla S, Cai J, Naraghi M. Mechanical tests on individual carbon nanofibers reveals the strong effect of graphitic alignment achieved via precursor hot-drawing. Carbon. 2017;117:208–19.

    Article  CAS  Google Scholar 

  97. Kim D-W, Kim CH, Yang C-M, Ahn S, Kim YH, Hong SK, et al. Deriving structural perfection in the structure of polyacrylonitril-based electrospun carbon nanofibers. Carbon. 2019;147:612–5.

    Article  CAS  Google Scholar 

  98. Zhou Z, Liu K, Lai C, Zhang L, Li J, Hou H, et al. Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid. Polymer. 2010;51:2360–7.

    Article  CAS  Google Scholar 

  99. Mu Y, Han M, Wu B, Wang Y, Li Z, Li J, et al. Nitrogen, Oxygen‐Codoped Vertical Graphene Arrays Coated 3D Flexible Carbon Nanofibers with High Silicon Content as an Ultrastable Anode for Superior Lithium Storage. Adv Sci. 2022;9:2104685.

  100. Khayyam H, Jazar RN, Nunna S, Golkarnarenji G, Badii K, Fakhrhoseini SM, et al. PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: Experimental and mathematical modelling. Prog Mater Sci. 2020;107:100575.

    Article  CAS  Google Scholar 

  101. Zhang WX, Liu J, Wu G. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon. 2003;41:2805–12.

    Article  CAS  Google Scholar 

  102. Nunna S, Naebe M, Hameed N, Fox BL, Creighton C. Evolution of radial heterogeneity in polyacrylonitrile fibres during thermal stabilization: An overview. Polym Degrad Stabil. 2017;136:20–30.

    Article  CAS  Google Scholar 

  103. Yang X, Ding Y, Shen Z, Sun Q, Zheng F, Fong H, et al. High-strength electrospun carbon nanofibrous mats prepared via rapid stabilization as frameworks for Li-ion battery electrodes. J Mater Sci 2019;54:11574–84.

    Article  CAS  Google Scholar 

  104. Luan YX, Nie GD, Zhao XW, Qiao N, Liu XC, Wang H, et al. The integration of SnO2 dots and porous carbon nanofibers for flexible supercapacitors. Electrochim Acta. 2019;308:121–30.

    Article  CAS  Google Scholar 

  105. Wang J, Tang J, Xu YL, Ding B, Chang Z, Wang Y, et al. Interface miscibility induced double-capillary carbon nanofibers for flexible electric double layer capacitors. Nano Energy. 2016;28:232–40.

    Article  CAS  Google Scholar 

  106. Liu YK, Jiang GH, Sun SQ, Xu B, Zhou JY, Zhang Y, et al. Decoration of carbon nanofibers with NiCo2S4 nanoparticles for flexible asymmetric supercapacitors. J Alloy Compd. 2018;731:560–8.

    Article  CAS  Google Scholar 

  107. Li XY, Cai ZS. Flexible carbon nano-films as self-sustained ultralight electrodes for supercapacitor. Mater Res Bull 2019;113:109–14.

    Article  Google Scholar 

  108. Kim SY, Kim BH, Yang KS, Oshida K. Supercapacitive properties of porous carbon nanofibers via the electrospinning of metal alkoxide-graphene in polyacrylonitrile. Mater Lett 2012;87:157–61.

    Article  CAS  Google Scholar 

  109. Li X, Wang J, Ge F, Komarneni S, Cai Z. Facile fabrication of freestanding three-dimensional composites for supercapacitors. Chem Commun. 2016;52:2691–4.

    Article  CAS  Google Scholar 

  110. Li X, Zhou M, Wang J, Ge F, Zhao Y, Komarneni S, et al. Flexible and internal series-connected supercapacitors with high working voltage using ultralight porous carbon nanofilms. J Power Sources. 2017;342:762–71.

    Article  CAS  Google Scholar 

  111. Tran C, Kalra V. Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. J Power Sources. 2013;235:289–96.

    Article  CAS  Google Scholar 

  112. Liu H, Cao CY, Wei FF, Huang PP, Sun YB, Jiang L, et al. Flexible macroporous carbon nanofiber film with high oil adsorption capacity. J Mater Chem A. 2014;2:3557–62.

    Article  CAS  Google Scholar 

  113. Li JY, Zhang WM, Zhang X, Huo LY, Liang JY, Wu LS, et al. Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors. J Mater Chem A. 2020;8:2463–71.

    Article  CAS  Google Scholar 

  114. Li X, Wang J, Zhao Y, Ge F, Komarneni S, Cai Z. Wearable Solid-State Supercapacitors Operating at High Working Voltage with a Flexible Nanocomposite Electrode. ACS Appl Mater Interfaces. 2016;8:25905–14.

    Article  CAS  PubMed  Google Scholar 

  115. Liu S, Du H, Liu K, Ma M-G, Kwon Y-E, Si C, et al. Enabling chemical protein (semi)synthesis via reducible solubilizing tags (RSTs). Adv Compos Hybrid Mater. 2021;4:1367–83.

    Article  CAS  Google Scholar 

  116. Zhou T, Jiang Q, Wang L, Qiu Z, Liu Y, Zhou J, et al. A tribute to my supervisor Professor Zhengyi Wu. Appl Surf Sci. 2018;456:827–34.

    Article  CAS  Google Scholar 

  117. Liu Y, Zhou J, Chen L, Zhang P, Fu W, Zhao H, et al. Highly Flexible Freestanding Porous Carbon Nanofibers for Electrodes Materials of High-Performance All-Carbon Supercapacitors. ACS Appl Mater Interfaces. 2015;7:23515–20.

    Article  CAS  PubMed  Google Scholar 

  118. Ali N, Babar AA, Zhang Y, Iqbal N, Wang X, Yu J, et al. Porous, flexible, and core-shell structured carbon nanofibers hybridized by tin oxide nanoparticles for efficient carbon dioxide capture. J Colloid Interface Sci. 2020;560:379–87.

    Article  CAS  PubMed  Google Scholar 

  119. Song L, Yin X, Xie X, Du P, Xiong J, Ko F. Highly flexible TiO2/C nanofibrous film for flexible dye-sensitized solar cells as a platinum- and transparent conducting oxide-free flexible counter electrode. Electrochim Acta. 2017;255:256–65.

  120. Ge J, Fan G, Si Y, He J, Kim HY, Ding B, et al. Elastic and hierarchical porous carbon nanofibrous membranes incorporated with NiFe2O4 nanocrystals for highly efficient capacitive energy storage. Nanoscale. 2016;8:2195–204.

    Article  CAS  PubMed  Google Scholar 

  121. Iqbal N, Wang X, Yu J, Ding B. Robust and Flexible Carbon Nanofibers Doped with Amine Functionalized Carbon Nanotubes for Efficient CO2Capture. Adv Sustain Syst. 2017;1:1600028.

  122. Wu Q, Zhao R, Zhang X, Li W, Xu R, Diao G, et al. Synthesis of flexible Fe 3 O 4 /C nanofibers with buffering volume expansion performance and their application in lithium-ion batteries. J Power Sources. 2017;359:7–16.

    Article  CAS  Google Scholar 

  123. Huang L, Guan Q, Cheng J, Li C, Ni W, Wang Z, et al. Free-standing N-doped carbon nanofibers/carbon nanotubes hybrid film for flexible, robust half and full lithium-ion batteries. Chem Eng J 2018;334:682–90.

    Article  CAS  Google Scholar 

  124. Xu Y, Yuan T, Bian Z, Sun H, Pang Y, Peng C, et al. Electrospun flexible Si/C@CNF nonwoven anode for high capacity and durable lithium-ion battery. Compos Commun. 2019;11:1–5.

    Article  Google Scholar 

  125. Sun H, Li S, Shen Y, Miao F, Zhang P, Shao G. Integrated structural design of polyaniline-modified nitrogen-doped hierarchical porous carbon nanofibers as binder-free electrodes toward all-solid-state flexible supercapacitors. Appl Surface Sci. 2020;501:144001.

  126. Wang J, Huang Y, Zhang S, Han X, Du X, Zong M. Comparative study of thermal stability of lithium metal anode in carbonate and ether based electrolytes. J Power Sources. 2022;551:232182.

    Article  Google Scholar 

  127. Chen J, Liu Y-l, Wu T, Liu S, Xing C, Li W-C. Highly conductive and flexible porous carbon nanofibers cloth for high-performance supercapacitor. J Energy Storage. 2022;56:106108.

  128. Ma C, Ruan S, Wang J, Long D, Qiao W, Ling L. Free-standing carbon nanofiber fabrics for high performance flexible supercapacitor. J Colloid Interface Sci 2018;531:513–22.

    Article  CAS  PubMed  Google Scholar 

  129. Niu Q, Chen B, Guo J, Nie J, Guo X, Ma G. Flexible, Porous, and Metal-Heteroatom-Doped Carbon Nanofibers as Efficient ORR Electrocatalysts for Zn-Air Battery. Nano Micro Lett. 2019;11:8.

    Article  CAS  Google Scholar 

  130. Zhang Z, Gao D, Xue D, Liu Y, Liu P, Zhang J, et al. Co and CeO2 co-decorated N-doping carbon nanofibers for rechargeable Zn–air batteries. Nanotechnology. 2019;30:395401.

  131. Xue S, Wang Q, Dai G, Zhao M, Sun S, Yu N, et al. Titanium carbide/carbon nanofibers film as flexible gas diffusion layers for passive direct methanol fuel cells. Int J Energy Res. 2022;46:10919–29.

    Article  CAS  Google Scholar 

  132. Wu X-Q, Shao Z-D, Liu Q, Xie Z, Zhao F, Zheng Y-M. Flexible and porous TiO(2)/SiO(2)/carbon composite electrospun nanofiber mat with enhanced interfacial charge separation for photocatalytic degradation of organic pollutants in water. J Colloid Interface Sci. 2019;553:156–66.

    Article  CAS  PubMed  Google Scholar 

  133. Li Z, Lin Z, Han M, Mu Y, Yu P, Zhang Y, et al. Hyper-dendritic PdZn nanocrystals as highly stable and efficient bifunctional electrocatalysts towards oxygen reduction and ethanol oxidation. Chem Eng J. 2021;420:130503.

    Article  Google Scholar 

  134. Han ZY, Li XY, Li Q, Li HS, Xu J, Li N, et al. Construction of the POMOF@Polypyrrole Composite with Enhanced Ion Diffusion and Capacitive Contribution for High-Performance Lithium-Ion Batteries. ACS Appl Mater Interfaces. 2021;13:6265–75.

    Article  CAS  PubMed  Google Scholar 

  135. Chernysheva DV, Smirnova NV, Ananikov VP. Recent Trends in Supercapacitor Research: Sustainability in Energy and Materials. ChemSusChem. 2024;17:52.

    Article  Google Scholar 

  136. Zhao ZY, Xia KQ, Hou Y, Zhang QH, Ye ZZ, Lu JG. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers. Chem Soc Rev. 2021;50:12702–43.

    Article  CAS  PubMed  Google Scholar 

  137. Wang L, Zhang G, Zhang X, Shi H, Zeng W, Zhang H, et al. Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors. J Mater Chem A. 2017;5:14801–10.

    Article  CAS  Google Scholar 

  138. Atacan OF, Ouellette D, Colpan CO. Two-dimensional multiphase non-isothermal modeling of a flowing electrolyte – Direct methanol fuel cell. Int J Hydrog Energy. 2017;42:2669–79.

    Article  CAS  Google Scholar 

  139. Alias MS, Kamarudin SK, Zainoodin AM, Masdar MS. Active direct methanol fuel cell: An overview. Int J Hydrog Energy. 2020;45:19620–141.

    Article  CAS  Google Scholar 

  140. Zuo YH, Sheng WC, Tao WQ, Li Z. Direct methanol fuel cells system–A review of dual-role electrocatalysts for oxygen reduction and methanol oxidation. J Mater Sci Technol. 2022;114:29–41.

    Article  CAS  Google Scholar 

  141. Lin S, Bai XP, Wang HY, Wang HL, Song JN, Huang K, et al. Roll-to-Roll Production of Transparent Silver-Nanofiber-Network Electrodes for Flexible Electrochromic Smart Windows. Adv Mater. 2017;29:1703238.

  142. Lan D, Qin M, Liu JL, Wu GL, Zhang Y, Wu HJ. Levels of sex steroid hormones and their receptors in women with preeclampsia. Chem Eng J. 2020;382:12.

    Google Scholar 

  143. Ma QL, Yu YF, Sindoro M, Fane AG, Wang R, Zhang H. Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage. Adv Mater. 2017;29:1605361.

  144. Ramalingam G, Perumal N, Priya AK, Rajendran S. A review of graphene-based semiconductors for photocatalytic degradation of pollutants in wastewater. Chemosphere. 2022;300:18.

    Article  Google Scholar 

  145. Kaur PK, Badru R, Singh PP, Kaushal S. Comparative Evaluation of McGrath MAC, Truview Video Laryngoscopes and Macintosh Laryngoscope for Endotracheal Intubation in Patients Undergoing Surgery under General Anaesthesia. J Environ Chem Eng. 2020;8:20–24.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC No. 52170019 and 52103070), the Fundamental Research Funds for the Central Universities (No. 06500100), and the “Ten thousand plan”-National High-level personnel of special support program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuyan Yu or Congju Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yu, S. & Li, C. Preparation and application of flexible carbon nanofiber membranes via electrospinning: from stress dispersion to multifunctionality. Polym J 57, 605–622 (2025). https://doi.org/10.1038/s41428-025-01024-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-025-01024-w

Search

Quick links