Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Surface and interfacial aggregation states in thin films of a polystyrene/polyrotaxane blend

Abstract

Polyrotaxane (PR) exhibits unique mechanical properties due to the ability of its cyclic molecules to move or slide along the axial chain. Thus, to design advanced polymer-based composite materials and organic devices, it is crucial to better understand the aggregation states at the surface and substrate interface in polymer films containing PR. Here, we report the depth profile of PR along the direction normal to the interface when it is mixed with polystyrene (PS). Neutron reflectivity and X-ray photoelectron spectroscopy revealed that PS and PR segregated at the surface and substrate interface, respectively, and that the extent of segregation depended on the length of PS. The surface enrichment of PS is driven by both energy and entropy, whereas the enrichment of PR at the substrate interface is energy driven.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harada A, Li J, Kamachi M. Synthesis of a tubular polymer from threaded cyclodextrins. Nature. 1993;364:516–8.

    Article  CAS  Google Scholar 

  2. Takata T. Polyrotaxane and polyrotaxane network: supramolecular architectures based on the concept of dynamic covalent bond chemistry. Polym J. 2006;38:1–20.

    Article  CAS  Google Scholar 

  3. Harada A, Takashima Y, Yamaguchi H. Cyclodextrin-based supramolecular polymers. Chem Soc Rev. 2009;38:875–82.

    Article  CAS  PubMed  Google Scholar 

  4. Koyama Y. Synthesis of topologically crosslinked polymers with rotaxane-crosslinking points. Polym J. 2014;46:315–22.

    Article  CAS  Google Scholar 

  5. Kobayashi Y. Precise synthesis of polyrotaxane and preparation of supramolecular materials based on its mobility. Polym J. 2021;53:505–13.

    Article  CAS  Google Scholar 

  6. Javier P, Francisco M, Wayne LM. Inclusion complexes of chain molecules with cycloamyloses III. molecular dynamics simulations of polyrotaxanes formed by poly(propylene glycol) and β-cyclodextrins. Polym J. 1998;30:479–84.

    Article  Google Scholar 

  7. Takata T, Kawasaki H, Asai S, Kihara N, Furusho Y. Radically polymerizable pseudorotaxane monomers: versatile building units for side chain. Chem Lett 1999;2:111–2.

    Article  Google Scholar 

  8. Oku T, Furusho Y, Takata T. A concept for recyclable cross-linked polymers: topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. Angew Chem Int Ed. 2004;43:966–9.

    Article  CAS  Google Scholar 

  9. Nakazono K, Fukasawa K, Sato T, Koyama Y, Takata T. Synthesis of acetylene-functionalized [2]rotaxane monomers directed toward side chain-type polyrotaxanes. Polym J. 2010;42:208–15.

    Article  CAS  Google Scholar 

  10. Araki J, Kagaya K. Synthesis of polyrotaxane–glycine conjugates with various degrees of substitution via conjugation with Boc- or Z-glycine and subsequent deprotection. Polym J. 2013;45:1081–6.

    Article  CAS  Google Scholar 

  11. Takata T, Aoki D. Topology-transformable polymers: linear–branched polymer structural transformation via the mechanical linking of polymer chains. Polym J. 2018;50:127–47.

    Article  CAS  Google Scholar 

  12. Ito K. Novel cross-linking concept of polymer network: synthesis, structure, and properties of slide-ring gels with freely movable junctions. Polym J. 2007;39:489–99.

    Article  CAS  Google Scholar 

  13. Yasuda Y, Hidaka Y, Mayumi K, Yamada T, Fujimoto K, Okazaki S, et al. Molecular dynamics of polyrotaxane in solution investigated by quasi-elastic neutron scattering and molecular dynamics simulation: sliding motion of rings on polymer. J Am Chem Soc. 2019;141:9655–63.

    Article  CAS  PubMed  Google Scholar 

  14. Mayumi K. Molecular dynamics and structure of polyrotaxane in solution. Polym J. 2021;53:581–6.

    Article  CAS  Google Scholar 

  15. Bin Imran A, Esaki K, Gotoh H, Seki T, Ito K, Sakai Y, et al. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat Commun. 2014;5:5124.

    Article  Google Scholar 

  16. Tanaka A, Kato K, Ito K, Urayama K. Pronounced effects of the densities of threaded rings on the strain-dependent Poisson’s ratio of polyrotaxane gels with movable cross-links. Soft Matter. 2018;14:2808–15.

    Article  CAS  PubMed  Google Scholar 

  17. Qiu Y, Song B, Pezzato C, Shen D, Liu W, Zhang L, et al. A precise polyrotaxane synthesizer. Science. 2020;368:1247–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hart LF, Hertzog JE, Rauscher PM, Rawe BW, Tranquilli MM, Rowan SJ. Material properties and applications of mechanically interlocked polymers. Nat Rev Mater. 2021;6:508–30.

    Article  CAS  Google Scholar 

  19. Okumura Y, Ito K. The polyrotaxane gel: a topological gel figure-of-eight cross links. Adv Mater. 2001;13:485–7.

    Article  CAS  Google Scholar 

  20. Liu C, Morimoto N, Ito K. Tough hydrogels with rapid self reinforcement. Science. 2021;372:1078–81.

    Article  CAS  PubMed  Google Scholar 

  21. Mayumi K. Tough polymer gels reinforced by strain-induced crystallization. Polym J. 2025;57:449–53.

  22. Liu S, Hayashi T, Hara M, Seki T, Ito K, Takeoka Y. Optimal conditions for the use of polyrotaxane as a cross-linker in preparing elastomers with high toughnesses. Polym J. 2024;56:589–98.

    Article  CAS  Google Scholar 

  23. Gotoh H, Liu C, Bin Imran A, Hara M, Seki T, Mayumi K, et al. Optically transparent, high-toughness elastomer using a polyrotaxane cross-linker as a molecular pulley. Sci Adv. 2018;4:7629–38.

    Article  Google Scholar 

  24. Li G, Kato K, Mayumi K, Yokoyama H, Ito K. Efficient mechanical toughening of polylactic acid without substantial decreases in stiffness and transparency by the reactive grafting of polyrotaxanes. J Incl Phenom Macrocycl Chem. 2019;93:107–16.

    Article  CAS  Google Scholar 

  25. Molero G, Liu C, Zhu Z, Chen Q, Peterson SR, Kolluru PV, et al. Fracture behavior of polyrotaxane-toughened poly(methyl methacrylate). Langmuir. 2022;38:2335–45.

    Article  CAS  PubMed  Google Scholar 

  26. Wang XS, Kim HK, Fujita Y, Sudo A, Nishida H, Endo T. Relaxation and reinforcing effects of polyrotaxane in an epoxy resin matrix. Macromolecules. 2006;39:1046–52.

    Article  CAS  Google Scholar 

  27. Isobe Y, Sudo A, Endo T. Thermally dissociable pseudo-polyrotaxane as a supramolecular shrinkage suppressor for epoxy–amine curing system. J Polym Sci A. 2008;46:2305–8.

    Article  CAS  Google Scholar 

  28. Pruksawan S, Samitsu S, Yokoyama H, Naito M. Homogeneously dispersed polyrotaxane in epoxy adhesive and its improvement in the fracture toughness. Macromolecules. 2019;52:2464–75.

    Article  CAS  Google Scholar 

  29. Hanafusa A, Ando S, Ozawa S, Ito M, Hasegawa R, Mayumi K, et al. Viscoelastic relaxation attributed to the molecular dynamics of polyrotaxane confined in an epoxy resin network. Polym J. 2020;52:1211–21.

    Article  CAS  Google Scholar 

  30. Ando S, Hirano M, Watakabe L, Yokoyama H, Ito K. Environmentally friendly sustainable thermoset vitrimer-containing polyrotaxane. ACS Mater Lett. 2023;5:3156–60.

    Article  CAS  Google Scholar 

  31. Zhu Z, Chen H, Zhu X, Uenuma S, Ito K, Kotaki M, et al. Fracture behavior of polybenzoxazine toughened by polyrotaxane molecules and core–shell rubber. ACS Appl Eng Mater. 2023;1:1048–57.

    Article  CAS  Google Scholar 

  32. Hanafusa A, Ando S, Yuge T, Ozawa S, Ito M, Hasegawa R, et al. Epoxy resins containing epoxy-modified polyrotaxanes. Polymer. 2023;278:126007.

    Article  CAS  Google Scholar 

  33. Bhatia QS, Pan DH, Koberstein JT. Preferential surface adsorption in miscible blends of polystyrene and poly(vinyl methyl ether). Macromolecules. 1988;21:2166–75.

    Article  CAS  Google Scholar 

  34. Jones RAL, Kramer EJ, Rafailovich MH, Sokolov J, Schwarz SA. Surface enrichment in an isotopic polymer blend. Phys Rev Lett 1989;62:280–3.

    Article  CAS  PubMed  Google Scholar 

  35. Hirata T, Matsuno H, Tanaka M, Tanaka K. Surface segregation of poly(2-methoxyethyl acrylate) in a mixture with poly(methyl methacrylate). Phys Chem Chem Phys. 2011;13:4928–34.

    Article  CAS  PubMed  Google Scholar 

  36. Hirata T, Matsuno H, Kawaguchi D, Yamada NL, Tanaka M, Tanaka K. Effect of interfacial structure on bioinert properties of poly(2-methoxyethyl acrylate)/poly(methyl methacrylate) blend films in water. Phys Chem Chem Phys. 2015;17:17399–405.

    Article  CAS  PubMed  Google Scholar 

  37. Russell TP, Coulon G, Deline VR, Miller DC. Characteristics of the surface-induced orientation for symmetric diblock PS/PMMA copolymers. Macromolecules. 1989;22:4600–6.

    Article  CAS  Google Scholar 

  38. Tanaka K, Takahara A, Kajiyama T. Surface molecular motion in thin films of poly(styrene-block-methyl methacrylate) diblock copolymer. Acta Polym. 1995;46:476–82.

    Article  CAS  Google Scholar 

  39. Hikita M, Tanaka K, Nakamura T, Kajiyama T, Takahara A. Aggregation states and surface wettability in films of poly(styrene-block-2-perfluorooctyl ethyl acrylate) diblock copolymers synthesized by atom transfer radical polymerization. Langmuir. 2004;20:5304–10.

    Article  CAS  PubMed  Google Scholar 

  40. Tanaka K, Sanada N, Hikita M, Nakamura T, Kajiyama T, Takahara A. Surface depth analysis for fluorinated block copolymer films by X-ray photoelectron spectroscopy using C60 cluster ion beam. Appl Surf Sci. 2008;254:5435–8.

    Article  CAS  Google Scholar 

  41. Uchida K, Mita K, Yamamoto S, Tanaka K. Conformational relaxation of ethylene-propylene-diene terpolymer at a solid interface. Polym J. 2023;55:683–90.

    Article  CAS  Google Scholar 

  42. Narumi H, Oda Y. Surface orientation of amphiphilic block copolymers via thermal annealing. Polym J. 2025;57:335–9.

  43. Yokoyama H. New developments in polymer brush fabrication: concepts and physical properties of dynamic polymer brushes. Polym J. 2023;55:735–42.

    Article  CAS  Google Scholar 

  44. Saito M, Ito K, Yokoyama H. Negative interfacial energies of dynamic polymer brush interfaces: a discussion of the free energy balance. Polym J. 2023;55:897–902.

    Article  CAS  Google Scholar 

  45. Andrade JD. Surface and interfacial aspects of biomedical polymers: Volume 1 Surface chemistry and physics. New York: Plenum Press; 1985.

  46. Sanchez IC. Physics of Polymer surfaces and interfaces. Boston: Butterworth-Heinemann; 1992.

  47. Jones RAL, Richards RW. Polymers at surfaces and interfaces. Cambridge: Cambridge University Press; 1999.

    Book  Google Scholar 

  48. Kajiyama T, Tanaka K, Takahara A. Surface segregation of the higher surface free energy component in symmetric polymer blend films. Macromolecules. 1998;31:3746–9.

    Article  CAS  Google Scholar 

  49. Matsumoto T, Kannan E, Tomioka M, Nishino T. Effects of the high side-chain densities of hydrophobic poly(substituted methylene)s on their surface free energies. Polym J. 2022;54:1081–9.

    Article  CAS  Google Scholar 

  50. Tanaka K, Kajiyama T, Takahara A, Tasaki S. A Novel method to examine surface composition in mixtures of chemically identical two polymers with different molecular weights. Macromolecules. 2002;35:4702–6.

    Article  CAS  Google Scholar 

  51. Aoki M, Shundo A, Okamoto K, Ganbe T, Tanaka K. Segregation of an amine component in a model epoxy resin at a copper interface. Polym J. 2019;51:359–63.

    Article  CAS  Google Scholar 

  52. Yamamoto S, Tanaka K. Entropy-driven segregation in epoxy-amine systems at a copper interface. Soft Matter. 2021;17:1359–67.

    Article  CAS  PubMed  Google Scholar 

  53. Tanaka K, Jiang X, Nakamura K, Takahara A, Kajiyama T, Ishizone T, et al. Effect of chain end chemistry on surface molecular motion of polystyrene films. Macromolecules. 1998;31:5148–9.

    Article  CAS  PubMed  Google Scholar 

  54. Satomi N, Tanaka K, Takahara A, Kajiyama T, Ishizone T, Nakahama S. Surface molecular motion of monodisperse α,ω-diamino-terminated and α,ω-dicarboxy-terminated polystyrenes. Macromolecules. 2001;34:8761–7.

    Article  CAS  Google Scholar 

  55. Tanaka K, Kawaguchi D, Yokoe Y, Kajiyama T, Takahara A, Tasaki S. Surface segregation of chain ends in α,ω-fluoroalkyl-terminated polystyrenes films. Polymer. 2003;44:4171–7.

    Article  CAS  Google Scholar 

  56. Kawaguchi D, Tanaka K, Kajiyama T, Takahara A, Tasaki S. Surface composition control via chain end segregation in blend films of polystyrene and poly(vinyl methyl ether). Macromolecules. 2003;36:6824–30.

    Article  CAS  Google Scholar 

  57. Kawaguchi D, Tanaka K, Torikai N, Takahara A, Kajiyama T. Surface and interfacial segregation in blends of polystyrene with functional end groups and deuterated polystyrene. Langmuir. 2007;23:7269–75.

    Article  CAS  PubMed  Google Scholar 

  58. Matsuno H, Tsukamoto R, Shimomura S, Hirai T, Oda Y, Tanaka K. Platelet-adhesion behavior synchronized with surface rearrangement in a film of poly(methyl methacrylate) terminated with elemental blocks. Polym J. 2016;48:413–9.

    Article  CAS  Google Scholar 

  59. Wu DT, Fredrickson GH. Effect of architecture in the surface segregation of polymer blends. Macromolecules. 1996;29:7919–30.

    Article  CAS  Google Scholar 

  60. Yethiraj A. Integral equation theory for the surface segregation from blends of linear and star polymers. Comput Theor Polym Sci. 2000;10:115–23.

    Article  CAS  Google Scholar 

  61. Minnikanti VS, Archer LA. Entropic attraction of polymers toward surfaces and its relationship to surface tension. Macromolecules. 2006;39:7718–28.

    Article  CAS  Google Scholar 

  62. Sugimoto S, Oda Y, Hirata T, Matsuyama R, Matsuno H, Tanaka K. Surface segregation of a branched polymer with hydrophilic poly[2-(2-ethoxy)ethoxyethyl vinyl ether] side chains. Polym Chem. 2017;8:505–10.

    Article  CAS  Google Scholar 

  63. Oda Y, Inutsuka M, Awane R, Totani M, Yamada NL, Haraguchi M, et al. A dynamic interface based on segregation of an amphiphilic hyperbranched polymer containing fluoroalkyl and oligo(ethylene oxide) moieties. Macromolecules. 2020;53:2380–7.

    Article  CAS  Google Scholar 

  64. Karim A, Mansour A, Felcher GP, Russell TP. Short-time relaxation at polymer interfaces. Phys Rev B. 1990;42:6846–50.

    Article  CAS  Google Scholar 

  65. Green PF, Kramer EJ. Matrix effects on the diffusion of long polymer chains. Macromolecules. 1986;19:1108–14.

    Article  CAS  Google Scholar 

  66. Nelson A. Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT. J Appl Crystallogr. 2006;39:273–6.

    Article  CAS  Google Scholar 

  67. Hariharan A, Kumar SK, Russell TP. Reversal of the isotopic effect in the surface behavior of binary polymer blends. J Chem Phys. 1993;98:4163–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JST-Mirai Program Grant Number JPMJMI18A2, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miki Taguchi or Keiji Tanaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taguchi, M., Miyata, N., Miyazaki, T. et al. Surface and interfacial aggregation states in thin films of a polystyrene/polyrotaxane blend. Polym J 57, 737–743 (2025). https://doi.org/10.1038/s41428-025-01030-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-025-01030-y

Search

Quick links