Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Polymerization-induced self-assembly of thermoresponsive micelles and their lubrication adaptivity

Abstract

Responsive materials have significant application value because of their ability to actively adjust their structure or properties in response to external stimuli. Poly(N-isopropylacrylamide) (PNIPAM) is widely used to form micelles, particularly for drug delivery, because its lower critical solution temperature (LCST) is close to body temperature. However, the preparation of micelles based on PNIPAM block copolymers often involves complex processes, which limit their broader application. Here, we employed polymerization-induced self-assembly (PISA) combined with in situ crosslinking to synthesize stabilized thermoresponsive micelles, such as poly(glycerol methacrylate)-b-poly(N-isopropylacrylamide)-B (PGMAx-b-PNIPAMy-B), which are spherical micelles with a thermoresponsive core of PNIPAM and a crosslinked shell of PGMA formed by sodium tetraborate decahydrate. The micelles exhibited rapid and reversible self-assembly and collapsed at 31 °C, enabling temperature regulation through light transmittance, which makes them suitable for smart window applications. Furthermore, these micelles demonstrated excellent friction-reducing and wear-resistant properties at various temperatures (25–36 °C) and under various loads (20–70 N), indicating their adaptive lubrication as additives. This work presents the facile fabrication of thermoresponsive micelles and expands the application of PISA technology in the tribological field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data will be made available upon request.

References

  1. Abousalman-Rezvani Z, Roghani-Mamaqani H, Riazi H, Abousalman-Rezvani O. Water treatment using stimuli-responsive polymers. Polymer Chem. 2022;13:5940–64. https://doi.org/10.1039/D2PY00992G.

    Article  CAS  Google Scholar 

  2. Zhang KY, Liu S, Zhao Q, Huang W. Stimuli–responsive metallopolymers. Coordination Chem Rev. 2016;319:180–95. https://doi.org/10.1016/j.ccr.2016.03.016.

    Article  CAS  Google Scholar 

  3. Musarurwa H, Tavengwa NT. Thermo-responsive polymers and advances in their applications in separation science. Microchemical J. 2022;179:107554. https://doi.org/10.1016/j.microc.2022.107554.

    Article  CAS  Google Scholar 

  4. Musarurwa H, Tavengwa NT. Stimuli-responsive polymers and their applications in separation science. Reactive Funct Polym. 2022;175:105282. https://doi.org/10.1016/j.reactfunctpolym.2022.105282.

    Article  CAS  Google Scholar 

  5. Zhang J, Jiang X, Zhang Y, Li Y, Liu S. Facile fabrication of reversible core cross-linked micelles possessing thermosensitive swellability. Macromolecules. 2007;40:9125–32. https://doi.org/10.1021/ma071564r.

    Article  CAS  Google Scholar 

  6. Manfredini N, Gardoni G, Sponchioni M, Moscatelli D. Thermo-responsive polymers as surface active compounds: a review. European Polym J. 2023;198:112421. https://doi.org/10.1016/j.eurpolymj.2023.112421.

    Article  CAS  Google Scholar 

  7. Tian Q, Fei C, Yin H, Feng Y. Stimuli-responsive polymer wormlike micelles. Progress Polym Sci. 2019;89:108–32. https://doi.org/10.1016/j.progpolymsci.2018.10.001.

    Article  CAS  Google Scholar 

  8. Farias-Mancilla B, Balestri A, Zhang J, Frielinghaus H, Berti D, Montis C, et al. Morphology and thermal transitions of self-assembled NIPAM-DMA copolymers in aqueous media depend on copolymer composition profile. Journal Colloid Interface Sci. 2024;662:99–108. https://doi.org/10.1016/j.jcis.2024.02.032.

    Article  CAS  Google Scholar 

  9. Wang Q, Wang H, Chen Q, Guan Y, Zhang Y. Glucose-triggered micellization of poly(ethylene glycol)-b-poly(N-isopropylacrylamide-co-2-(acrylamido)phenylboronic acid) block copolymer. ACS Appl Polym Mater. 2020;2:3966–76. https://doi.org/10.1021/acsapm.0c00635.

    Article  CAS  Google Scholar 

  10. Wang L, Ding Y, Liu Q, Zhao Q, Dai X, Lu X, et al. Sequence-controlled polymerization-induced self-assembly. ACS Macro Lett. 2019;8:623–8. https://doi.org/10.1021/acsmacrolett.9b00305.

    Article  CAS  PubMed  Google Scholar 

  11. Wright DB, Touve MA, Thompson MP, Gianneschi NC. Aqueous-phase ring-opening metathesis polymerization-induced self-assembly. ACS Macro Lett. 2018;7:401–5. https://doi.org/10.1021/acsmacrolett.8b00091.

    Article  CAS  PubMed  Google Scholar 

  12. Penfold NJW, Yeow J, Boyer C, Armes SP. Emerging trends in polymerization-induced self-assembly. ACS Macro Lett. 2019;8:1029–54. https://doi.org/10.1021/acsmacrolett.9b00464.

    Article  CAS  PubMed  Google Scholar 

  13. Jabbari V, Phakatkar AH, Amiri A, Ghorbani A, Shahbazian-Yassar R. Direct visualization of polymerization-induced self-assembly of amphiphilic copolymers. Macromolecules. 2023;56:3171–82. https://doi.org/10.1021/acs.macromol.2c02318.

    Article  CAS  Google Scholar 

  14. Du R, Fielding LA. pH-responsive nanogels generated by polymerization-induced self-assembly of a succinate-functional monomer. Macromolecules. 2024;57:3496–501. https://doi.org/10.1021/acs.macromol.4c00427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D’agosto F, Rieger J, Lansalot M. RAFT-mediated polymerization-induced self-assembly. Angew Chem Int Ed. 2020;59:8368–92. https://doi.org/10.1002/anie.201911758.

    Article  CAS  Google Scholar 

  16. Mellot G, Guigner J-M, Bouteiller L, Stoffelbach F, Rieger J. Templated PISA: driving polymerization-induced self-assembly towards fibre morphology. Angewandte Chem Int Ed. 2019;58:3173–7. https://doi.org/10.1002/anie.201809370.

    Article  CAS  Google Scholar 

  17. Armes SP, Perrier S, Zetterlund PB. Introduction to polymerisation-induced self assembly. Polymer Chem. 2021;12:8–11. https://doi.org/10.1039/d0py90190c.

    Article  CAS  Google Scholar 

  18. Liu H, Gong J, Cao P, Yang L, Tao L, Pei X, et al. Polymerization-induced self-assembled micelles in oil as lubricant additives with enhanced tribological properties. ACS Appl Polym Mater. 2024;6:4789–97. https://doi.org/10.1021/acsapm.4c00369.

    Article  CAS  Google Scholar 

  19. Liu C, Hong C-Y, Pan C-Y. Polymerization techniques in polymerization-induced self-assembly (PISA). Polymer Chem. 2020;11:3673–89. https://doi.org/10.1039/D0PY00455C.

    Article  CAS  Google Scholar 

  20. Wei P, Cornel EJ, Du J. Breaking the corona symmetry of vesicles. Macromolecules. 2021;54:7603–11. https://doi.org/10.1021/acs.macromol.1c00060.

    Article  CAS  Google Scholar 

  21. Shen X, Cao S, Zhang Q, Zhang J, Wang J, Ye Z. Amphiphilic TEMPO-functionalized block copolymers: synthesis, self-assembly and redox-responsive disassembly behavior, and potential application in triggered drug delivery. ACS Appl Polym Mater. 2019;1:2282–90. https://doi.org/10.1021/acsapm.9b00293.

    Article  CAS  Google Scholar 

  22. Li D, Shao X, Li X, Qian Y, Wang G, Wei Y, et al. Versatile morphology transition of nano-assemblies via ultrasonics/microwave assisted aqueous polymerization-induced self-assembly based on host–guest interaction. Ultrasonics Sonochem. 2024;107:106901. https://doi.org/10.1016/j.ultsonch.2024.106901.

    Article  CAS  Google Scholar 

  23. Ma Y, Gao P, Ding Y, Huang L, Wang L, Lu X, et al. Visible light initiated thermoresponsive aqueous dispersion polymerization-induced self-Assembly. Macromolecules. 2019;52:1033–41. https://doi.org/10.1021/acs.macromol.8b02490.

    Article  CAS  Google Scholar 

  24. Zhu R, Zheng Y, Zhang Q, Yu C, Zhang Z, Huo M. Statistical copolymerization-induced self-assembly (stat-PISA) for colloidal hydrogels. Advanced Funct Mater. 2024;34:2313155. https://doi.org/10.1002/adfm.202313155.

    Article  CAS  Google Scholar 

  25. Ikkene D, Six J-L, Ferji K. Progress in aqueous dispersion RAFT PISA. European Polym J. 2023;188:111848. https://doi.org/10.1016/j.eurpolymj.2023.111848.

    Article  CAS  Google Scholar 

  26. Ball LE, Garbonova G, Pfukwa R, Klumperman B. Synthesis of thermoresponsive PNIPAm-b-PVP-b-PNIPAm hydrogels via aqueous RAFT polymerization. Polymer Chem. 2023;14:3569–79. https://doi.org/10.1039/D3PY00625E.

    Article  CAS  Google Scholar 

  27. Chen Z, Feng Y, Zhao N, Shi J, Liu G, Liu W. Near-infrared photothermal microgel for interfacial friction control. ACS Appl Polym Mater. 2021;3:4055–61. https://doi.org/10.1021/acsapm.1c00557.

    Article  CAS  Google Scholar 

  28. Lou L, Zhang S, Mahdy A-HS, Wang M, Li K, Xing Q, et al. Thermal- and oxidation dual-responsive random copolymer self-assembly of nanostructures. Polymer Chem. 2024;15:1339–46. https://doi.org/10.1039/D3PY01242E.

    Article  CAS  Google Scholar 

  29. Li H, Cornel EJ, Fan Z, Du J. Chirality-controlled polymerization-induced self-assembly. Chem. Sci. 2022;13:14179–90. https://doi.org/10.1039/D2SC05695J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao Z, Huo M. Polymerization-induced self-assembly for the construction of nanostructured hydrogels. Polymer Chem. 2024;15:1577–90. https://doi.org/10.1039/D4PY00263F.

    Article  CAS  Google Scholar 

  31. He J, Lin D, Chen Y, Zhang L, Tan J. One-step preparation of thermo-responsive poly(N-isopropylacrylamide)-based block copolymer nanoparticles by aqueous photoinitiated polymerization-induced self-assembly. Macromol. Rapid Commun. 2021. https://doi.org/10.1002/marc.202100201.

  32. Convertine AJ, Lokitz BS, Vasileva Y, Myrick LJ, Scales CW, Lowe AB, et al. Direct synthesis of thermally responsive DMA/NIPAM diblock and DMA/NIPAM/DMA triblock copolymers via aqueous, room temperature RAFT polymerization. Macromolecules. 2006;39:1724–30. https://doi.org/10.1021/ma0523419.

    Article  CAS  Google Scholar 

  33. Augustine R, Kim D-K, Jeon SH, Lee TW, Kalva N, Kim JH, et al. Chimeric poly(N-isopropylacrylamide)-b-poly(3,4-dihydroxy-L-phenylalanine) nanocarriers for temperature/pH dual-stimuli-responsive theranostic application. Reactive Funct Polym. 2020;152:104595. https://doi.org/10.1016/j.reactfunctpolym.2020.104595.

    Article  CAS  Google Scholar 

  34. Guo R, Shen Y, Chen Y, Cheng C, Ye C, Tang S. KCA/Na2SiO3/PNIPAm hydrogel with highly robust and strong solar modulation capability for thermochromic smart window. Chem Eng J. 2024;486:150194. https://doi.org/10.1016/j.cej.2024.150194.

    Article  CAS  Google Scholar 

  35. Tao J, Tian S, Li B, Ma T, Zhou L, Zhao X. Photo-thermochromic W18O49/hydrogel hybrid smart windows for graded and dual-band sunlight control. Chem Eng J. 2024;482:149079. https://doi.org/10.1016/j.cej.2024.149079.

    Article  CAS  Google Scholar 

  36. Tan Y, Chen R, Xiao Y, Wang C, Zhou C, Chen D, et al. Temperature-responsive ‘cloud’ with controllable self-assembled particle size for smart window application. Appl Mater Today. 2021;25:101248. https://doi.org/10.1016/j.apmt.2021.101248.

    Article  Google Scholar 

  37. Sun K, Dong Y, Yao L, Mahapatra M, Xu Y. Surface lubrication with thermal- and pH-sensitive PNIPAM-co-PAA-(IF-MoS2/GO) composite microgels under YG8/TC4 contact. Appl Surf Sci. 2024;669:160461. https://doi.org/10.1016/j.apsusc.2024.160461.

    Article  CAS  Google Scholar 

  38. Liu G, Wang X, Zhou F, Liu W. Tuning the tribological property with thermal sensitive microgels for aqueous lubrication. ACS Appl Mater Interfaces. 2013;5:10842–52. https://doi.org/10.1021/am403041r.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0470303), the National Natural Science Foundation of China (52105223), and the CAS Project for Young Scientists in Basic Research (YSBR-023).

Author information

Authors and Affiliations

Authors

Contributions

Linjie Yang: Conceptualization, Methodology, Writing−original draft. Hanfeng Liu: Methodology, Data Curation. Pengrui Cao: Methodology, Data Curation. Junhui Gong: Methodology, Data Curation. Xinrui Zhang: Funding Acquisition, Supervision. Tingmei Wang: Funding Acquisition, Methodology, Supervision. Liming Tao: Methodology, Supervision. Xianqiang Pei: Methodology, Supervision. Qihua Wang: Methodology, Funding Acquisition, Supervision. Jianqiang Zhang: Methodology, Writing−review & editing, Supervision. Yaoming Zhang: Conceptualization, Methodology, Funding Acquisition, Writing−review & editing, Supervision.

Corresponding authors

Correspondence to Xianqiang Pei, Qihua Wang, Jianqiang Zhang or Yaoming Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Liu, H., Cao, P. et al. Polymerization-induced self-assembly of thermoresponsive micelles and their lubrication adaptivity. Polym J 57, 1115–1125 (2025). https://doi.org/10.1038/s41428-025-01057-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-025-01057-1

Search

Quick links