Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Thiol-ene derivatization of polycarbonates from 5-methylene-1,3-dioxane-2-one: an efficient and practical way to tune the surface biocompatibility of polycarbonate films

Abstract

Poly(trimethylene carbonate) (PTMC) is a biodegradable polymer that is widely utilized in biomedical fields because of the soft mechanical properties conferred by its low glass transition temperature. However, its application is limited by the lack of reactive sites on its backbone for chemical modifications. To overcome this limitation, a copolymer, poly(trimethylene carbonate-r-5-methylene-1,3-dioxane-2-one) (PTMC-r-PexTMC), was developed as a platform for postpolymerization functionalization. Using thiol-ene click chemistry, diol and carboxylic acid groups were grafted onto PTMC-r-PexTMC at levels ranging from 1 to 30 mol% to tailor its hydrophilicity and surface compatibility. Thermogravimetric and contact angle analyses revealed that both the thermal stability and hydrophilicity increased with the degree of functionalization. Importantly, copolymers containing 30 mol% diol units inhibited platelet adhesion more effectively than those with equivalent carboxylic acid content did, indicating that both hydrophilicity and surface charge influence biocompatibility. Further studies involving degradation in PBS and doxorubicin release confirmed the potential of these functional groups to modulate polymer performance. These findings highlight the value of surface modification in increasing the biocompatibility of polycarbonates for advanced medical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chem Rev. 2021;121:10865–10907.

    Article  CAS  PubMed  Google Scholar 

  2. Ansari I, Singh P, Mittal A, Mahato RI, Chitkara D. 2,2-Bis(Hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications. Biomaterials. 2021;275:120953.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Z, Kuijer R, Bulstra SK, Grijpma DW, Feijen J. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials. 2006;27:1741–8.

    Article  CAS  PubMed  Google Scholar 

  4. Amsden B. In vivo degradation mechanisms of aliphatic polycarbonates and functionalized aliphatic polycarbonates. Macromol Biosci. 2021;21:2100085.

    Article  CAS  Google Scholar 

  5. Wu L, Wang Y, Zhao X, Mao H, Gu Z. Investigating the biodegradation mechanism of poly(trimethylene carbonate): macrophage-mediated erosion by secreting lipase. Biomacromolecules. 2023;24:921–8.

    Article  CAS  PubMed  Google Scholar 

  6. Nemoto N, Sanda F, Endo T. Cationic ring-opening polymerization of six-membered cyclic carbonates with ester groups. J Polym Sci Part A. 2001;39:1305–17.

    Article  CAS  Google Scholar 

  7. Nederberg F, Lohmeijer BGG, Leibfarth F, Pratt RC, Choi J, Dove AP, et al. Organocatalytic ring opening polymerization of trimethylene carbonate. Biomacromolecules. 2007;8:153–60.

    Article  CAS  PubMed  Google Scholar 

  8. Saito T, Aizawa Y, Yamamoto T, Tajima K, Isono T, Satoh T. Alkali metal carboxylate as an efficient and simple catalyst for ring-opening polymerization of cyclic esters. Macromolecules. 2018;51:689–96.

    Article  CAS  Google Scholar 

  9. Fukushima K. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials. Biomater Sci. 2016;1:9–24.

    Article  Google Scholar 

  10. Pratt RC, Nederberg F, Waymouth RM, Hedrick JL. Tagging alcohols with cyclic carbonate: a versatile equivalent of (meth)acrylate for ring-opening polymerization. Chem Commun. 2008;1:114–6.

    Article  Google Scholar 

  11. Sanders DP, Fukushima K, Coady DJ, Nelson A, Fujiwara M, Yasumoto M, et al. A simple and efficient synthesis of functionalized cyclic carbonate monomers using a versatile pentafluorophenyl ester intermediate. J Am Chem Soc. 2010;132:14724–6.

    Article  CAS  PubMed  Google Scholar 

  12. Nobuoka H, Ajiro H. Novel synthesis method of ester free trimethylene carbonate derivatives. Tetrahedron Lett. 2019;60:164–70.

    Article  CAS  Google Scholar 

  13. Watanabe Y, Takaoka S, Haga Y, Kishi K, Hakozaki S, Narumi A, et al. Organic carboxylate salt-enabled alternative synthetic routes for bio-functional cyclic carbonates and aliphatic polycarbonates. Polym Chem. 2022;13:5193–9.

    Article  CAS  Google Scholar 

  14. Lin B, Hedrick JL, Park NH, Waymouth RM. Programmable high-throughput platform for the rapid and scalable synthesis of polyester and polycarbonate libraries. J Am Chem Soc. 2019;141:8921–7.

    Article  CAS  PubMed  Google Scholar 

  15. Tan EWP, Hedrick JL, Arrechea PL, Erdmann T, Kiyek V, Lottier S, et al. Overcoming barriers in polycarbonate synthesis: a streamlined approach for the synthesis of cyclic carbonate monomers. Macromolecules. 2021;54:1767–74.

    Article  CAS  Google Scholar 

  16. Houw Z, Chen S, Hu W, Guo J, Li P, Hu J, et al. Long-term in vivo degradation behavior of poly(trimethlyene carbonate-co-2,2’-dimethyltrimethylene carbonate). Eur Polym J. 2022;177:111442.

    Article  Google Scholar 

  17. Fukushima K, Watanabe Y, Ueda T, Nakai S, Kato T. Organocatalytic depolymerization of poly(trimethylene carbonate). J Polym Sci. 2022;60:3489–3500.

    Article  CAS  Google Scholar 

  18. Fukushima K, Hakozaki S, Lang R, Haga Y, Narumi A, Tanaka M, et al. Hydrolyzable biocompatible aliphatic polycarbonates with ether-functionalized side chains attached via amide linkers. Polym J. 2024;56:431–42.

    Article  CAS  Google Scholar 

  19. Qiu FY, Zhang M, Du FS, Li ZC. Oxidation degradable aliphatic polycarbonates with pendent phenylboronic ester. Macromolecules. 2017;50:23–34.

    Article  CAS  Google Scholar 

  20. Prinse M, Qi R, Amsden BG. Polymer micelles for the protection and delivery of specialized pro-resolving mediators. Eur J Pharm Biopharm. 2023;184:159–69.

    Article  PubMed  Google Scholar 

  21. Fukushima K, Inoue Y, Haga Y, Ota T, Honda K, Sato C, et al. Monoether-tagged biodegradable polycarbonate preventing platelet adhesion and demonstrating vascular cell adhesion: a promising material for resorbable vascular grafts and stents. Biomacromolecules. 2017;18:3834–43.

    Article  CAS  PubMed  Google Scholar 

  22. Lu N, Li P, Zhou L, Wang R, Chen H, Li X, et al. Synthesis, evaluation of phospholipid biomimetic polycarbonate for potential cardiovascular stents coating. React Funct Polym. 2021;163:104897.

    Article  Google Scholar 

  23. Shen X, Su F, Dong J, Fan Z, Duan Y, Li S. In vitro biocompatibility evaluation of bioresorbable compolymers prepared from L-lactide, 1,3-trimethylene carbonate, and glycolide for cardiovascular applications. J Biomater Sci Polym Ed. 2015;26:497–514.

    Article  CAS  PubMed  Google Scholar 

  24. Kim SH, Tan JPK, Nederberg F, Fukushima K, Colson J, Yang C, et al. Hydrogen bonding-enhanced micelle assemblies for drug delivery. Biomaterials. 2010;31:8063–71.

    Article  CAS  PubMed  Google Scholar 

  25. Gao L, Dong B, Zhang J, Chen Y, Qiao H, Liu Z, et al. Functional biodegradable nitric oxide donor-containing polycarbonate-based micelles for reduction-triggered drug release and overcoming multidrug resistance. ACS Macro lett. 2019;8:1552–8.

    Article  CAS  PubMed  Google Scholar 

  26. Li Y, Wei J, Wei Y, Cheng L, Guo B, Meng F, et al. Apolipoprotein E pebtide-guided disulfide-cross-linked micelles for targeted delivery of sorafenib to hepatocellular carcinoma. Biomacromolecules. 2020;21:716–24.

    Article  CAS  PubMed  Google Scholar 

  27. Luo Y, Wu H, Zhou X, Wang J, Er S, Li Y, et al. J Am Chem Soc. 2023;145:20073–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun J, Birnbaum W, Anderski J, Picker MT, Mulac D, Langer K, et al. Biomacromolecules. 2018;19:4677–90.

    Article  CAS  PubMed  Google Scholar 

  29. Mohajeri S, Chen F, Prinse M, Phung T, Burke-Kleinman J, Maurice DH, et al. Liquid degradable poly(trimethylene-carbonate-co-5-hydroxy-trimethylene carbonate): an injectable drug delivery vehicle for acid-sensitive drugs. Mol Pharmaceutics. 2020;17:1363–76.

    Article  CAS  Google Scholar 

  30. Barcan GA, Zhang X, Waymouth RM. Structurally dynamic hydrogels derived from 1,2-dithiolanes. J Am Chem Soc. 2015;137:5650–3.

    Article  CAS  PubMed  Google Scholar 

  31. Guillaume O, Geven MA, Sprecher CM, Stadelmann VA, Grijpma DW, Tang TT, et al. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomateriallia. 2017;54:386–98.

    Article  CAS  Google Scholar 

  32. Brossier T, Volpi G, Vasques-Villegas J, Petitjean N, Guillaume O, Lapinte V, et al. Photoprintable gelatin-graft-poly(trimethylene carbonate) by stereolithography for tissue engineering applications. Biomacromolecules. 2021;22:3873–83.

    Article  CAS  PubMed  Google Scholar 

  33. Gielen AMC, Ankone M, Grijpma DW, Poot AA. Hybrid networks of hyaluronic acid and poly(trimethylene carbonate) for tissue regeneration. Biomacromolecules. 2023;24:4366–74.

    Article  CAS  PubMed  Google Scholar 

  34. Brissenden AJ, Amsden BG. In situ forming microporous biohybrid hydrogel for nucleus pulposus cell delivery. Acta Biomaterialia. 2023;170:169–84.

    Article  CAS  PubMed  Google Scholar 

  35. Ajiro H, Takahashi Y, Akashi M. Thermosensitive biodegradable homopolymer of trimethylene carbonate derivative at body temperature. Macromolecules. 2012;45:2668–74.

    Article  CAS  Google Scholar 

  36. Chanthaset N, Takahashi Y, Haramiishi Y, Akashi M, Ajiro H. Control of thermoresponsivity of biocompatible poly(trimethylene carbonate) with direct introduction of oligo(ethylene glycol) under various circumstances. J Polym Sci Part A: Polym Chem. 2017;55:3466–74.

    Article  CAS  Google Scholar 

  37. Nobuoka H, Miyake R, Choi J, Yoshida H, Chanthaset N, Ajiro H. Synthesis of ester-free type poly(trimethylene carbonate) derivatives bearing cycloalkyl side groups. Eur Polym J. 2021;160:110782.

    Article  CAS  Google Scholar 

  38. Chanthset N, Maehara A, Ajiro H. Particles and film preparation of ester-free type poly(trimethylene carbonate) derivatives bearing aromatic groups initiated with hydrophilic initiators. Colloids Surf A. 2023;667:131413.

    Article  Google Scholar 

  39. Tempelaar S, Mespouille L, Coulembier O, Dubois P, Dove AP. Synthesis and post-polymerization modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerisation. Chem Soc Rev. 2013;42:1312–36.

    Article  CAS  PubMed  Google Scholar 

  40. Hassan M, Bhat GA, Darensbourg DJ. Post-polymerization functionalization of aliphatic polycarbonates using click chemistry. Polym Chem. 2024;15:1803–20.

    Article  CAS  Google Scholar 

  41. Komforth P, Imschweiler J, Hesse M, Heck AG, Fuchs A, Hauck AV, et al. Toward intercellular delivery: aliphatic polycarbonates with pendant thiol-reactive thiosulfonates for reversible postpolymerization modification. Biomacromolecules. 2025;26:387–404.

    Article  CAS  PubMed  Google Scholar 

  42. Lanzi M, Kleij AW. Recent advances in the synthesis and polymerization of new CO2-based cyclic carbonates. Chin J Chem. 2024;42:430–43.

    Article  CAS  Google Scholar 

  43. Nederberg F, Zhang Y, Tan JPK, Xu K, Wang H, Yang C, et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nat Chem. 2011;3:409–14.

    Article  CAS  PubMed  Google Scholar 

  44. Ono RJ, Liu SQ, Venkataraman S, Chin W, Yang YY, Hedrick JL. Benzyl chloride-functionalized polycarbonates: a versatile platform for the synthesis of functional biodegradable polycarbonates. Macromolecules. 2014;47:7725–31.

    Article  CAS  Google Scholar 

  45. Shi Y, Wang X, Graff RW, Phillip WA, Gao H. Synthesis of degradable molecular brushes via a combination of ring-opening polymerization and click chemistry. J Polym Sci Part A: Polym Chem. 2015;53:239–48.

    Article  CAS  Google Scholar 

  46. Tempelaar S, Barker IA, Truong VX, Hall DJ, Mespouille L, Dubois P, et al. Organocatalytic synthesis and post-polymerization functionalization of propargyl-functional poly(carbonate)s. Polym Chem. 2013;4:174–83.

    Article  CAS  Google Scholar 

  47. Tempelaar S, Mespouille L, Dubois P, Dove AP. Organocatalytic synthesis and post-polymerization functionalization of allyl-functional poly(carbonate)s. Macromolecules. 2011;44:2084–91.

    Article  CAS  Google Scholar 

  48. Chen W, Yang H, Wang R, Cheng R, Meng F, Wei W, et al. Versatile synthesis of functional biodegradable polymers by combining ring-opening polymerization and post-polymerization modification via Michael-type addition reaction. Macromolecules. 2010;43:201–7.

    Article  CAS  Google Scholar 

  49. Durand PL, Brège A, Chollet G, Grau E, Cramail H. Simple and efficient approach toward photosensitive biobased aliphatic polycarbonate materials. ACS Macro Lett. 2018;7:250–4.

    Article  CAS  PubMed  Google Scholar 

  50. Tan LY, Chanthaset N, Nanto S, Soba R, Nagasawa M, Ohno H, et al. Synthesis and preparation of cross-linked films with ester-free poly(trimethylene carbonate) bearing aromatic urea moiety. Macromolecules. 2021;54:5518–25.

    Article  CAS  Google Scholar 

  51. Palenzuela M, Sarisuta K, Navarro M, Kumamoto N, Chanthaset N, Monat J, et al. 5-Methylene-1,3-dioxane-2-one: a first-choice comonomer for trimethylene carbonate. Macromolecules. 2023;56:678–89.

    Article  CAS  Google Scholar 

  52. Totani M, Ando T, Terada K, Terashima T, Kim IY, Ohtsuki C, et al. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion. Biomater Sci. 2014;2:1172–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Palard I, Schappacher M, Belloncle B, Soum A, Guillaume SM. Unprecedented polymerization of trimethylene carbonate initiated by a samarium borohydride complex: mechanistic insights and copolymerization with ε-caprolactone. Chem A Eur J. 2007;13:1511–21.

    Article  CAS  Google Scholar 

  54. Liu X, Liu X, Zheng H, Lu K, Chen D, Xiong C, et al. Improvement of hydrophilicity and formation of heparin/chitosan coating inhibits stone formation in ureteral stents. Colloids Surf A. 2024;694:134065.

    Article  CAS  Google Scholar 

  55. Sivaraman B, Latour RA. The adherence of platelets to adsorbed albumin by receptor-mediated recognition of binding sites exposed by adsorption-induced unfolding. Biomaterials. 2010;31:1036–44.

    Article  CAS  PubMed  Google Scholar 

  56. Xu LC, Bauer JW, Siedlecki CA. Proteins, platelets, and blood coagulation at biomaterial interfaces. Colloids Surf B. 2014;124:49–68.

    Article  CAS  Google Scholar 

  57. Yu F, Zhuo R. Synthesis, characterization, and degradation behaviors of end-group-functionalized poly(trimethylene carbonate)s. Polym J. 2003;35:671–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Centre National de la Recherche Scientifique and the Université de Toulouse 3. This work was partly supported by the Suzuken Memorial Foundation and JSPS KAKENHI (JP24K01555). We are grateful for the fruitful discussions with Dr. Tsuyoshi Ando, Dr. Hiroaki Yoshida, Dr. Katsunori Tanaka, and Dr. Keita Okayama.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Blanca Martín-Vaca, Didier Bourissou, Nalinthip Chanthaset or Hiroharu Ajiro.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarisuta, K., Martín-Vaca, B., Bourissou, D. et al. Thiol-ene derivatization of polycarbonates from 5-methylene-1,3-dioxane-2-one: an efficient and practical way to tune the surface biocompatibility of polycarbonate films. Polym J (2025). https://doi.org/10.1038/s41428-025-01068-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-025-01068-y

Search

Quick links