Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tailoring aggregation behavior and crystalline structure of stretchable polymer semiconductors via a novel Lewis acid dopant

Abstract

Molecular doping has emerged as a powerful strategy to tune the charge transport and mechanical properties of polymer semiconductors. However, the lack of structural diversity among dopants often limits the potential to improve both mobility and stretchability. Herein, we report a rationally designed Lewis acid dopant, i.e., branched octyloxy borane (BOB), which incorporates π-conjugated segments and branched alkoxy side chains to modulate polymer aggregation and crystallinity. When applied to a brittle diketopyrrolopyrrole-based polymer, BOB induces moderate p-type doping while suppressing long-range crystallinity in the solid state. At 1 wt% doping, the films show a 5-fold increase in crack onset strain (from 20 to 100%) and maintain a high mobility of 1.02 cm2 V–1 s–1. The films retain more than 30% of their initial mobility at 100% strain and show excellent stability under repeated mechanical deformation. These findings provide insights into dopant‒polymer interactions and offer molecular design principles for dopants aimed at increasing the stretchability of polymer semiconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zheng Y, Wang G-JN, Kang J, Nikolka M, Wu H-C, Tran H, et al. An intrinsically stretchable high-performance polymer semiconductor with low crystallinity. Adv Funct Mater. 2019;29:1905340 https://doi.org/10.1002/adfm.201905340.

    Article  CAS  Google Scholar 

  2. Yu X, Chen L, Li C, Gao C, Xue X, Zhang X, et al. Intrinsically stretchable polymer semiconductors with good ductility and high charge mobility through reducing the central symmetry of the conjugated backbone units. Adv Mater. 2023;35:2209896. https://doi.org/10.1002/adma.202209896.

    Article  CAS  Google Scholar 

  3. Chen AX, Kleinschmidt AT, Choudhary K, Lipomi DJ. Beyond stretchability: strength, toughness, and elastic range in semiconducting polymers. Chem Mater. 2020;32:7582 https://doi.org/10.1021/acs.chemmater.0c03019.

    Article  CAS  Google Scholar 

  4. Trung TQ, Lee N-E. Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv Mater. 2017;29:1603167. https://doi.org/10.1002/adma.201603167.

    Article  CAS  Google Scholar 

  5. Wang X, Dong L, Zhang H, Yu R, Pan C, Wang ZL. Recent progress in electronic skin. Adv Sci. 2015;2:1500169. https://doi.org/10.1002/advs.201500169.

    Article  CAS  Google Scholar 

  6. Kim D-H, Rogers JA. Stretchable electronics: materials strategies and devices. Adv Mater. 2008;20:4887 https://doi.org/10.1002/adma.200801788.

    Article  CAS  Google Scholar 

  7. Liu D, Mun J, Chen G, Schuster NJ, Wang W, Zheng Y, et al. A design strategy for intrinsically stretchable high-performance polymer semiconductors: incorporating conjugated rigid fused-rings with bulky side groups. J Am Chem Soc. 2021;143:11679 https://doi.org/10.1021/jacs.1c04984.

    Article  CAS  PubMed  Google Scholar 

  8. Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater. 2019;31:1904765. https://doi.org/10.1002/adma.201904765.

    Article  CAS  Google Scholar 

  9. Wang S, Oh JY, Xu J, Tran H, Bao Z. Skin-inspired electronics: an emerging paradigm. Acc Chem Res. 2018;51:1033 https://doi.org/10.1021/acs.accounts.8b00015.

    Article  CAS  PubMed  Google Scholar 

  10. Lin Y-C, Chen F-H, Chiang Y-C, Chueh C-C, Chen W-C. Asymmetric side-chain engineering of isoindigo-based polymers for improved stretchability and applications in field-effect transistors. ACS Appl Mater Interfaces. 2019;11:34158 https://doi.org/10.1021/acsami.9b10943.

    Article  CAS  PubMed  Google Scholar 

  11. Liu D, Lei Y, Ji X, Wu Y, Lin Y, Wang Y, et al. Tuning the mechanical and electric properties of conjugated polymer semiconductors: side-chain design based on asymmetric benzodithiophene building blocks. Adv Funct Mater. 2022;32:2203527 https://doi.org/10.1002/adfm.202203527.

    Article  CAS  Google Scholar 

  12. Ding Y, Yuan Y, Wu N, Wang X, Zhang G, Qiu L. Intrinsically stretchable n-type polymer semiconductors through side chain engineering. Macromolecules. 2021;54:8849 https://doi.org/10.1021/acs.macromol.1c00936.

    Article  CAS  Google Scholar 

  13. Chang T-W, Weng Y-C, Tsai Y-T, Jiang Y, Matsuhisa N, Shih C-C. Chain-Kinked design: improving stretchability of polymer semiconductors through nonlinear conjugated linkers. ACS Appl Mater Interfaces. 2023;15:51507 https://doi.org/10.1021/acsami.3c10033.

    Article  CAS  PubMed  Google Scholar 

  14. Lin Y-C, Huang Y-W, Hung C-C, Chiang Y-C, Chen C-K, Hsu L-C, et al. Backbone engineering of diketopyrrolopyrrole-based conjugated polymers through random terpolymerization for improved mobility-stretchability property. ACS Appl Mater Interfaces. 2020;12:50648 https://doi.org/10.1021/acsami.0c14592.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu M, Shao Z, Li Y, Xiong Z, Yang Z, Chen J, et al. Molecular-scale geometric design: zigzag-structured intrinsically stretchable polymer semiconductors. J Am Chem Soc. 2024;146:27429 https://doi.org/10.1021/jacs.4c07174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Higashihara T. Strategic design and synthesis of π-conjugated polymers suitable as intrinsically stretchable semiconducting materials. Polym J. 2021;53:1061 https://doi.org/10.1038/s41428-021-00510-1.

    Article  CAS  Google Scholar 

  17. Onorato J, Pakhnyuk V, Luscombe CK. Structure and design of polymers for durable, stretchable organic electronics. Polym J. 2017;49:41–60. https://doi.org/10.1038/pj.2016.76.

    Article  CAS  Google Scholar 

  18. Mun J, Kang J, Zheng Y, Luo S, Wu Y, Gong H, et al. F4-TCNQ as an additive to impart stretchable semiconductors with high mobility and stability. Adv Electron Mater. 2020;6:2000251 https://doi.org/10.1002/aelm.202000251.

    Article  CAS  Google Scholar 

  19. Tang K, Shaw A, Upreti S, Zhao H, Wang Y, Mason GT, et al. Impact of sequential chemical doping on the thin film mechanical properties of conjugated polymers. Chem Mater. 2025;37:756 https://doi.org/10.1021/acs.chemmater.4c03120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim J, Ju D, Kim S, Cho K. Disorder-controlled efficient doping of conjugated polymers for high-performance organic thermoelectrics. Adv Funct Mater. 2024;34:2309156. https://doi.org/10.1002/adfm.202309156.

    Article  CAS  Google Scholar 

  21. Karpov Y, Erdmann T, Stamm M, Lappan U, Guskova O, Malanin M, et al. Molecular doping of a high mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene donor-acceptor copolymer with F6TCNNQ. Macromolecules. 2017;50:914 https://doi.org/10.1021/acs.macromol.6b02452.

    Article  CAS  Google Scholar 

  22. Yan H, Ma W. Molecular doping efficiency in organic semiconductors: fundamental principle and promotion strategy. Adv Funct Mater. 2022;32:2111351. https://doi.org/10.1002/adfm.202111351.

    Article  CAS  Google Scholar 

  23. Ke Z, Chaudhary J, Flagg LQ, Baustert KN, Yusuf AO, Liu G, et al. Controlled dedoping and redoping of N-doped poly(benzodifurandione) (n-PBDF). Adv Funct Mater. 2024;34:2400255. https://doi.org/10.1002/adfm.202400255.

    Article  CAS  Google Scholar 

  24. Jacobs IE, Wang F, Hafezi N, Medina-Plaza C, Harrelson TF, Li J, et al. Quantitative dedoping of conductive polymers. Chem Mater. 2017;29:832 https://doi.org/10.1021/acs.chemmater.6b04880.

    Article  CAS  Google Scholar 

  25. Wang X, Huang H, Gu K, Wang Y, Zhu C, Gu X, et al. Modulating aggregation structure and properties of conjugated polymers via ester additives. Macromolecules. 2024;57:7586 https://doi.org/10.1021/acs.macromol.4c00576.

    Article  CAS  Google Scholar 

  26. Weng Y-C, Kang C-C, Chang T-W, Tsai Y-T, Khan S, Hung T-M, et al. Design principles for enhancing both carrier mobility and stretchability in polymer semiconductors via Lewis acid doping. Adv Mater. 2025;37:2411572. https://doi.org/10.1002/adma.202411572.

    Article  CAS  Google Scholar 

  27. Yurash B, Cao DX, Brus VV, Leifert D, Wang M, Dixon A, et al. Towards understanding the doping mechanism of organic semiconductors by Lewis acids. Nat Mater. 2019;18:1327–1334. https://doi.org/10.1038/s41563-019-0479-0.

    Article  CAS  PubMed  Google Scholar 

  28. Ghamari P, Niazi MR, Perepichka DF. Controlling structural and energetic disorder in high-mobility polymer semiconductors via doping with nitroaromatics. Chem Mater. 2021;33:2937 https://doi.org/10.1021/acs.chemmater.1c00448.

    Article  CAS  Google Scholar 

  29. Liu Y, Zhao B, Liu J, Wang Z, Liang Z, Dong W, et al. Extending the p-doping of polymers to an air stable Lewis acid-base adduct by increasing the acidity of the dopant. ACS Appl Polym Mater. 2022;4:3877 https://doi.org/10.1021/acsapm.2c00342.

    Article  CAS  Google Scholar 

  30. Wang Y, Gao Y, Cao S, Wang Z, Xu M, Chen H, et al. Mitigating dark current and improving charge collection for high-performance near-infrared organic photodiodes via p-doping strategy. Chem Eng J. 2024;488:151044. https://doi.org/10.1016/j.cej.2024.151044.

    Article  CAS  Google Scholar 

  31. Sarkar T, Schneider SA, Ankonina G, Hendsbee AD, Li Y, Toney MF, et al. Tuning Intra and Intermolecular Interactions for Balanced Hole and Electron Transport in Semiconducting Polymers. Chem Mater. 2020;32:7338 https://doi.org/10.1021/acs.chemmater.0c02199.

    Article  CAS  Google Scholar 

  32. Lüssem B, Keum C-M, Kasemann D, Naab B, Bao Z, Leo K. Doped organic transistors. Chem Rev. 2016;116:13714 https://doi.org/10.1021/acs.chemrev.6b00329.

    Article  CAS  PubMed  Google Scholar 

  33. Xu J, Wu H-C, Mun J, Ning R, Wang W, Wang G-JN, et al. Tuning conjugated polymer chain packing for stretchable semiconductors. Adv Mater. 2022;34:2104747 https://doi.org/10.1002/adma.202104747.

    Article  CAS  Google Scholar 

  34. Cheng H-W, Zhang S, Michalek L, Ji X, Luo S, Cooper CB, et al. Realizing intrinsically stretchable semiconducting polymer films by nontoxic additives. ACS Mater Lett. 2022;4:2328 https://doi.org/10.1021/acsmaterialslett.2c00749.

    Article  CAS  Google Scholar 

  35. Mun J, Ochiai Y, Wang W, Zheng Y, Zheng Y-Q, Wu H-C, et al. A design strategy for high mobility stretchable polymer semiconductors. Nat Commun. 2021;12:3572. https://doi.org/10.1038/s41467-021-23798-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang S, Ocheje MU, Huang L, Galuska L, Cao Z, Luo S, et al. The critical role of electron-donating thiophene groups on the mechanical and thermal properties of donor-acceptor semiconducting polymers. Adv Electron Mater. 2019;5:1800899. https://doi.org/10.1002/aelm.201800899.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science and Technology Council in Taiwan (NSTC 113-2628-E-224-001). The authors gratefully acknowledge the use of NMR005000 belonging to the Core Facility Center of National Cheng Kung University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Chung Shih.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, TM., Kang, CC., Lu, TC. et al. Tailoring aggregation behavior and crystalline structure of stretchable polymer semiconductors via a novel Lewis acid dopant. Polym J (2025). https://doi.org/10.1038/s41428-025-01080-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-025-01080-2

Search

Quick links