Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ring-opening alternating copolymerization of cyclic anhydrides and isobutylene oxide using organobase catalysts

Abstract

Ring-opening alternating copolymerization (ROAC) of cyclic anhydrides and epoxides is a promising approach for the well-controlled synthesis of polyesters with versatile structures. ROAC typically yields amorphous polyesters owing to challenges in controlling the main-chain stereochemistry, whereas most applied polyesters are crystalline. Isobutylene oxide (IBO), a highly symmetric epoxide, can overcome this issue, thus facilitating the synthesis of crystalline polyesters via ROAC. However, low reactivity and potential side reactions remain major obstacles to achieving an IBO-based ROAC in a controlled manner. In this study, we successfully developed a well-controlled ROAC of cyclic anhydrides and IBO using environmentally benign organobase catalysts. Using t-BuP2 as a catalyst, the ROAC of phthalic anhydride (PA) and IBO proceeds smoothly, yielding crystalline P(PA-alt-IBO) with narrow molecular weight distribution (Đ ≤ 1.1). This method was extended to other cyclic anhydrides and initiators, enabling the synthesis of polyesters with diverse structures. Additionally, this ROAC system was applied to the synthesis of copolymers, including statistical copolymer of P(PA-alt-IBO) and P(PA-alt-butylene oxide), as well as block copolymer comprising P(PA-alt-IBO) and poly(trimethylene carbonate). This study not only expands the scope of epoxides in ROAC but also provides a straightforward and precise strategy for synthesizing crystalline polyesters and further macromolecular designs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang R, Xu G, Tao W, Wang Q, Tang Y. Recycled polymer: green roads for polyester plastics. Green Carbon. 2024;2:1–11.

    Article  Google Scholar 

  2. Longo JM, Sanford MJ, Coates GW. Ring-opening copolymerization of epoxides and cyclic anhydrides with discrete metal complexes: structure-property relationships. Chem Rev. 2016;116:15167–97.

    Article  CAS  PubMed  Google Scholar 

  3. Pappuru S, Chakraborty D. Progress in metal-free cooperative catalysis for the ring-opening copolymerization of cyclic anhydrides and epoxides. Eur Polym J. 2019;121:109276.

    Article  CAS  Google Scholar 

  4. Ryzhakov D, Printz G, Jacques B, Messaoudi S, Dumas F, Dagorne S, et al. Organo-catalyzed/initiated ring opening co-polymerization of cyclic anhydrides and epoxides: an emerging story. Polym Chem. 2021;12:2932–46.

    Article  CAS  Google Scholar 

  5. Li J, Liu Y, Ren WM, Lu XB. Enantioselective terpolymerization of racemic and meso-epoxides with anhydrides for preparation of chiral polyesters. Proc Natl Acad Sci USA. 2020;117:15429–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jeske RC, DiCiccio AM, Coates GW. Alternating copolymerization of epoxides and cyclic anhydrides: an improved route to aliphatic polyesters. J Am Chem Soc. 2007;129:11330–1.

    Article  CAS  PubMed  Google Scholar 

  7. Longo JM, Diciccio AM, Coates GW. Poly(Propylene Succinate): a new polymer stereocomplex. J Am Chem Soc. 2014;136:15897–900.

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Liu Y, Ren WM, Lu XB. Asymmetric alternating copolymerization of meso-epoxides and cyclic anhydrides: efficient access to enantiopure polyesters. J Am Chem Soc. 2016;138:11493–6.

    Article  CAS  PubMed  Google Scholar 

  9. Wan ZQ, Longo JM, Liang LX, Chen HY, Hou GJ, Yang S, et al. Comprehensive understanding of polyester stereocomplexation. J Am Chem Soc. 2019;141:14780–7.

    Article  CAS  PubMed  Google Scholar 

  10. Li J, Ren BH, Chen SY, He GH, Liu Y, Ren WM, et al. Development of highly enantioselective catalysts for asymmetric copolymerization of meso-epoxides and cyclic anhydrides: subtle modification resulting in superior enantioselectivity. ACS Catal. 2019;9:1915–22.

    Article  CAS  Google Scholar 

  11. Maeda Y, Nakayama A, Kawasaki N, Hayashi K, Aiba S, Yamamoto N. Ring-opening copolymerization of succinic anhydride with ethylene oxide initiated by magnesium diethoxide. Polymer. 1997;38:4719–25.

    Article  CAS  Google Scholar 

  12. Wan Z, Ren W, Yang S, Li M, Gu G, Lu X. Reversible transformation between amorphous and crystalline states of unsaturated polyesters by Cis – Trans Isomerization. Angew Chem Int Et. 2019;131:17800–4.

    Article  Google Scholar 

  13. O’Kelley L, Swanson B, Bishop-Royse JC. Integrative literature review: ethylene oxide exposure signs and symptoms. Public Health Nurs. 2023;40:790–809.

    Article  PubMed  Google Scholar 

  14. Hotta D, Kanazawa A, Aoshima S. Generation of “living” species using perfluoroalkylsulfonic acids in concurrent cationic vinyl-addition and ring-opening copolymerization via crossover reactions. Macromolecules. 2018;51:7983–92.

    Article  CAS  Google Scholar 

  15. Hu L, Zhang X, Cao X, Chen D, Sun Y, Zhang C, et al. Alternating copolymerization of isobutylene oxide and cyclic anhydrides: a new route to semicrystalline polyesters. Macromolecules. 2021;54:6182–90.

    Article  CAS  Google Scholar 

  16. Zhang X, Zhang C, Zhang X. Organocatalyzed ring-opening copolymerization of cyclic anhydride and cyclic ether (Acetal). In: Li Z, editor. Organocatalysts in polymer chemistry: synthesis and applications. Wiley-VCH GmbH, 2025. 2025:79–113.

  17. Li H, Zhao J, Zhang G. Self-buffering organocatalysis tailoring alternating polyester. ACS Macro Lett. 2017;6:1094–8.

    Article  CAS  PubMed  Google Scholar 

  18. Li H, Luo H, Zhao J, Zhang G. Well-defined and structurally diverse aromatic alternating polyesters synthesized by simple phosphazene catalysis. Macromolecules. 2018;51:2247–57.

    Article  CAS  Google Scholar 

  19. Li F, Suzuki R, Gao T, Xia X, Isono T, Satoh T. Alkali metal carboxylates: simple, efficient, and industrial relevant catalysts for controlled polymer synthesis. Bull Chem Soc Jpn. 2023;96:1003–18.

    Article  CAS  Google Scholar 

  20. Xia X, Suzuki R, Takojima K, Jiang DH, Isono T, Satoh T. Smart access to sequentially and architecturally controlled block polymers via a simple catalytic polymerization system. ACS Catal. 2021;11:5999–6009.

    Article  CAS  Google Scholar 

  21. Gao T, Li F, Suzuki R, Li H, Yamamoto T, Xia X, et al. One-step synthesis of Poly(Amide Ester)-based block copolymers with defined phase separation behavior. Macromolecules. 2023;56:8333–43.

    Article  CAS  Google Scholar 

  22. Ota I, Suzuki R, Mizukami Y, Xia X, Tajima K, Yamamoto T, et al. Organobase-catalyzed ring-opening copolymerization of cyclic anhydrides and oxetanes: establishment and application in block copolymer synthesis. Macromolecules. 2024;57:3741–50.

    Article  CAS  Google Scholar 

  23. Suzuki R, Gao T, Sumi A, Yamamoto T, Tajima K, Li F, et al. Synthesis of Amino-functionalized polyester via ring-opening alternating copolymerization of glycidylamines with cyclic anhydrides. Polym Chem. 2024;15:3349–58.

    Article  CAS  Google Scholar 

  24. Saito T, Aizawa Y, Yamamoto T, Tajima K, Isono T, Satoh T. Alkali metal carboxylate as an efficient and simple catalyst for ring-opening polymerization of cyclic esters. Macromolecules. 2018;51:689–96.

    Article  CAS  Google Scholar 

  25. Suzuki R, Takagi S, Matsuda M, Yamamoto T, Tajima K, Li F, et al. Synthesis of polycarbonates and polyesters via tetraalkylammonium salt-catalyzed ring-opening polymerization. Chem Lett. 2025;54:upae242.

  26. Qiang S, Hu R-B, Yeung Y-Y. Zwitterion-Catalyzed Ring-Opening of Epoxides with Carboxylic Acids. Asian J Org Chem. 2023;12:e202200673.

    Article  CAS  Google Scholar 

  27. Sujansky SJ, Hoteling GA, Bandar JS. A strategy for the controllable generation of organic superbases from benchtop-stable salts. Chem Sci. 2024;15:10018–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xia X, Gao T, Li F, Suzuki R, Isono T, Satoh T. Sequential polymerization from complex monomer mixtures: access to multiblock copolymers with adjustable sequence, topology, and gradient strength. Macromolecules. 2023;56:92–103.

    Article  CAS  Google Scholar 

  29. Zhang J, Wang L, Liu S, Li Z. Phosphazene/lewis acids as highly efficient cooperative catalyst for synthesis of high-molecular-weight polyesters by ring-opening alternating copolymerization of epoxide and anhydride. J Polym Sci. 2020;58:803–10.

    Article  CAS  Google Scholar 

  30. Beckingham BS, Sanoja GE, Lynd NA. Simple and accurate determination of reactivity ratios using a nonterminal model of chain copolymerization. Macromolecules. 2015;48:6922–30.

    Article  CAS  Google Scholar 

  31. Huang CC, Du MX, Zhang BQ, Liu CY. Glass transition temperatures of copolymers: molecular origins of deviation from the linear relation. Macromolecules. 2022;55:3189–200.

    Article  CAS  Google Scholar 

  32. Hu C, Pang X, Chen X. Self-switchable polymerization: a smart approach to sequence-controlled degradable copolymers. Macromolecules. 2022;55:1879–93.

    Article  CAS  Google Scholar 

  33. Deacy AC, Gregory GL, Sulley GS, Chen TTD, Williams CK. Sequence control from mixtures: switchable polymerization catalysis and future materials applications. J Am Chem Soc. 2021;143:10021–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research(A) (24H00766), Grant-in-Aid for Early-Career Scientists (24K17719), Grant-in-Aid for JSPS Research Fellows, the Frontier Chemistry Center (Hokkaido University), the Photo-Excitonic Project (Hokkaido University), the List Sustainable Digital Transformation Catalyst Collaboration Research Platform (List-PF, Hokkaido University), the Project of Junior Scientist Promotion (Hokkaido University), and ENEOS TONENGENERAL Research/Development Encouragement & Scholarship Foundation. R.S. and T.G. gratefully acknowledges the JSPS Fellowship for Young Scientists. We would like to express our gratitude to Dr. Pingyu Jiang from the Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University for his help to the DFT calculation.

Author information

Authors and Affiliations

Authors

Contributions

Moeno Sugiyama: Writing original draft, Methodology, Visualization, Data curation, Ryota Suzuki: Methodology, Data curation, Funding acquisition, Hiroto Ayakawa: Methodology, Tianle Gao: Data curation, Writing – review & editing, Funding acquisition, Feng Li: Supervision, Conceptualization, Methodology, Writing original draft, Writing – review & editing, Funding acquisition. Takuya Yamamoto: Supervision. Takuya Isono: Supervision, Writing – review & editing. Toshifumi Satoh: Supervision, Conceptualization, Writing – review & editing, Funding acquisition.

Corresponding authors

Correspondence to Feng Li or Toshifumi Satoh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugiyama, M., Suzuki, R., Ayakawa, H. et al. Ring-opening alternating copolymerization of cyclic anhydrides and isobutylene oxide using organobase catalysts. Polym J (2025). https://doi.org/10.1038/s41428-025-01087-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-025-01087-9

Search

Quick links