Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Bioinspired and biosynthetic integrated polymeric materials for the selective capture of heavy metal ions

Abstract

The selective capture of heavy metal ions is a persistent challenge in environmental remediation owing to the chemical similarities among metal ions and the need for high affinity, selectivity, and capacity. Biological systems have evolved efficient mechanisms to regulate metal ions, utilizing proteins such as phytochelatin, metallothionein, and lanmodulin. These biomacromolecules achieve affinity, selectivity, and capacity for metal ions at biologically relevant levels through well-organized structural motifs, inspiring the design of synthetic polymers with biomimetic functions. This focus review provides an overview of research on heavy metal-binding proteins and explores how these proteins inspired researchers to develop bioinspired and biointegrated materials. First, key structural and thermodynamic features of heavy metal-binding proteins and their roles in metal detoxification and homeostasis are discussed. Then, recent advancements in emerging materials that mimic these biological functions using synthetic peptides, polymers, and peptoids are highlighted. Finally, we review integrated systems that directly incorporate biological components with synthetic polymers to create advanced heavy metal adsorbents. Together, these approaches illustrate how bioinspired and biosynthetic integration strategies are driving innovations in heavy metal ion capture technologies. Continued interdisciplinary research promises to deliver next-generation materials with improved efficiency, specificity, and environmental compatibility for real-world applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7:60.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci. 2020;11:359.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dixit, Wasiullah R, Malaviya D, Pandiyan K, Singh UB, Sahu A, et al. Bioremediation of Heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability. 2015;7:2189–212.

    Article  Google Scholar 

  4. Sholl DS, Lively RP. Seven chemical separations to change the world. Nature. 2016;532:435–37.

    Article  PubMed  Google Scholar 

  5. Bolisetty S, Peydayesh M, Mezzenga R. Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev. 2019;48:463–87.

    Article  CAS  PubMed  Google Scholar 

  6. Werber JR, Osuji CO, Elimelech M. Materials for next-generation desalination and water purification membranes. Nat Rev Mater. 2016;1:16018.

    Article  CAS  Google Scholar 

  7. Sazali N, Harun Z, Sazali N. A review on batch and column adsorption of various adsorbent towards the removal of heavy metal. J Adv Res Fluid Mech Therm Sci. 2020;67:66–88.

    Google Scholar 

  8. Malik DS, Jain CK, Yadav AK. Heavy metal removal by fixed-bed column–a review. ChemBioEng Rev. 2018;5:173–79.

    Article  CAS  Google Scholar 

  9. Remelli M, Nurchi VM, Lachowicz JI, Medici S, Zoroddu MA, Peana M. Competition between Cd (II) and other divalent transition metal ions during complex formation with amino acids, peptides, and chelating agents. Coord Chem Rev. 2016;327:55–69.

    Article  Google Scholar 

  10. Qasem NA, Mohammed RH, Lawal DU. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water. 2021;4:1–15.

    Google Scholar 

  11. Cobbett CS. Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol. 2000;3:211–16.

    Article  CAS  PubMed  Google Scholar 

  12. Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol. 2002;53:159–82.

    Article  CAS  PubMed  Google Scholar 

  13. Carrasco-Gil S, Álvarez-Fernández A, Sobrino-Plata J, Millán R, Carpena-Ruiz R, Leduc D, et al. Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant Cell Environ. 2011;34:778–91.

    Article  CAS  PubMed  Google Scholar 

  14. Dorčák V, Krężel A. Correlation of acid–base chemistry of phytochelatin PC2 with its coordination properties towards the toxic metal ion Cd(II). Dalton Trans. 2003;11:2253–59.

  15. Chekmeneva E, Prohens R, Díaz-Cruz JM, Ariño C, Esteban M. Thermodynamics of Cd2+ and Zn2+ binding by the phytochelatin (γ-Glu-Cys)4-Gly and its precursor glutathione. Anal Biochem. 2008;375:82–89.

    Article  CAS  PubMed  Google Scholar 

  16. Chekmeneva E, Gusmão R, Díaz-Cruz JM, Ariño C, Esteban M. From cysteine to longer chain thiols: thermodynamic analysis of cadmium binding by phytochelatins and their fragments. Metallomics. 2011;3:838–46.

    Article  CAS  PubMed  Google Scholar 

  17. Wątły J, Łuczkowski M, Padjasek M, Krężel A. Phytochelatins as a Dynamic System for Cd(II) Buffering from the Micro- to Femtomolar Range. Inorg Chem. 2021;60:4657–75.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Margoshes M, Vallee BL. A cadmium protein from equine kidney cortex. J Am Chem Soc. 1957;79:4813–14.

    Article  CAS  Google Scholar 

  19. Klaassen CD, Liu J, Choudhuri S. Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharm Toxicol. 1999;39:267–94.

    Article  CAS  Google Scholar 

  20. Kaegi JHR, Schaeffer A. Biochemistry of metallothionein. Biochemistry. 1988;27:8509–15.

    Article  CAS  Google Scholar 

  21. Furey W, Robbins A, Clancy L, Winge D, Wang B, Stout C. Crystal structure of Cd, Zn metallothionein. Science. 1986;231:704–10.

    Article  CAS  PubMed  Google Scholar 

  22. Dallinger R, Berger B, Hunziger P, Kgi JHR. Metallothionein in snail Cd and Cu metabolism. Nature. 1997;388:237–38.

    Article  CAS  PubMed  Google Scholar 

  23. Erk M, Raspor B. Evaluation of cadmium–metallothionein stability constants based on voltammetric measurements. Anal Chim Acta. 1998;360:189–94.

    Article  CAS  Google Scholar 

  24. Krȩżel A, Maret W. Dual Nanomolar and Picomolar Zn(II) binding properties of metallothionein. J Am Chem Soc. 2007;129:10911–21.

    Article  PubMed  Google Scholar 

  25. Mattocks JA, Cotruvo JA. Biological, biomolecular, and bio-inspired strategies for detection, extraction, and separations of lanthanides and actinides. Chem Soc Rev. 2020;49:8315–34.

    Article  CAS  PubMed  Google Scholar 

  26. Cotruvo JA Jr., Featherston ER, Mattocks JA, Ho JV, Laremore TN. Lanmodulin: a highly selective lanthanide-binding protein from a lanthanide-utilizing bacterium. J Am Chem Soc. 2018;140:15056–61.

    Article  CAS  PubMed  Google Scholar 

  27. Zuo W, Tian M, Qi J, Zhang G, Hu J, Wang S, et al. The functions of EF-hand proteins from host and zoonotic pathogens. Microb Infect. 2025;27:105276.

    Article  CAS  Google Scholar 

  28. Cook EC, Featherston ER, Showalter SA, Cotruvo JA Jr. Structural basis for rare earth element recognition by methylobacterium extorquens lanmodulin. Biochemistry. 2019;58:120–25.

    Article  CAS  PubMed  Google Scholar 

  29. Singer H, Drobot B, Zeymer C, Steudtner R, Daumann LJ. Americium preferred: lanmodulin, a natural lanthanide-binding protein favors an actinide over lanthanides. Chem Sci. 2021;12:15581–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deblonde GJ-P, Mattocks JA, Dong Z, Wooddy PT, Cotruvo JA, Zavarin M. Capturing an elusive but critical element: Natural protein enables actinium chemistry. Sci Adv. 2021;7:eabk0273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gutenthaler SM, Tsushima S, Steudtner R, Gailer M, Hoffmann-Röder A, Drobot B, et al. Lanmodulin peptides – unravelling the binding of the EF-Hand loop sequences stripped from the structural corset. Inorg Chem Front. 2022;9:4009–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mattocks JA, Jung JJ, Lin C-Y, Dong Z, Yennawar NH, Featherston ER, et al. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. Nature. 2023;618:87–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Autry HA, Holcombe JA. Cadmium, copper and zinc complexes of poly-L-cysteine. Analyst. 1995;120:2643–48.

    Article  CAS  PubMed  Google Scholar 

  34. Satofuka H, Fukui T, Takagi M, Atomi H, Imanaka T. Metal-binding properties of phytochelatin-related peptides. J Inorg Biochem. 2001;86:595–602.

    Article  CAS  PubMed  Google Scholar 

  35. Cheng Y, Yan Y-B, Liu J. Spectroscopic characterization of metal bound phytochelatin analogue (Glu–Cys)4–Gly. J Inorg Biochem. 2005;99:1952–62.

    Article  CAS  PubMed  Google Scholar 

  36. Shukla D, Tiwari M, Tripathi RD, Nath P, Trivedi PK. Synthetic phytochelatins complement a phytochelatin-deficient Arabidopsis mutant and enhance the accumulation of heavy metal(loid)s. Biochem Biophys Res Commun. 2013;434:664–69.

    Article  CAS  PubMed  Google Scholar 

  37. Viswanathan K, Schofield MH, Teraoka I, Gross RA. Surprising metal binding properties of phytochelatin-like peptides prepared by protease-catalysis. Green Chem. 2012;14:1020–29.

    Article  CAS  Google Scholar 

  38. Bontidean I, Ahlqvist J, Mulchandani A, Chen W, Bae W, Mehra RK, et al. Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosens Bioelectron. 2003;18:547–53.

    Article  CAS  PubMed  Google Scholar 

  39. Knight AS, Zhou EY, Francis MB. Development of peptoid-based ligands for the removal of cadmium from biological media. Chem Sci. 2015;6:4042–48.

    Article  CAS  PubMed Central  Google Scholar 

  40. Voltrova S, Hidasova D, Genzer J, Srogl J. Metallothionein-inspired prototype of molecular pincer. Chem Commun. 2011;47:8067–69.

    Article  CAS  Google Scholar 

  41. Sharma G, Kandasubramanian B. Molecularly imprinted polymers for selective recognition and extraction of heavy metal ions and toxic dyes. J Chem Eng Data. 2020;65:396–418.

    Article  CAS  Google Scholar 

  42. Nakahata M, Sumiya A, Ikemoto Y, Nakamura T, Dudin A, Schwieger J, et al. Hyperconfined bio-inspired polymers in integrative flow-through systems for highly selective removal of heavy metal ions. Nat Commun. 2024;15:5824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakahata M, Okamoto C, Tanaka M, Hashidzume A. Cadmium Ion Adsorption Properties of Polyanions Carrying Carboxylate and Thiol-Containing Amino Acid Residues. ACS Appl Polym Mater. 2025. https://doi.org/10.1021/acsapm.5c00381. in press.DOI.

    Article  Google Scholar 

  44. Ejima R, Nakahata M, Kamon Y, Hashidzume A. Synthesis and metal ion adsorption properties of a dense triazole polymer carrying cysteine residues. J Polym Sci. 2025;63:1570–79.

    Article  CAS  Google Scholar 

  45. Xu Z, Bae W, Mulchandani A, Mehra RK, Chen W. Heavy Metal Removal by Novel CBD-EC20 Sorbents Immobilized on Cellulose. Biomacromolecules. 2002;3:462–65.

    Article  CAS  PubMed  Google Scholar 

  46. Esser-Kahn AP, Iavarone AT, Francis MB. Metallothionein-cross-linked hydrogels for the selective removal of heavy metals from water. J Am Chem Soc. 2008;130:15820–22.

    Article  CAS  PubMed  Google Scholar 

  47. Garifullin R, Ustahuseyin O, Celebioglu A, Cinar G, Uyar T, Guler MO. Noncovalent functionalization of a nanofibrous network with a bio-inspired heavy metal binding peptide. RSC Adv. 2013;3:24215–21.

    Article  CAS  Google Scholar 

  48. Mansour MS, Ossman ME, Farag HA. Removal of Cd(II) ion from waste water by adsorption onto polyaniline coated on sawdust. Desalination. 2011;272:301–05.

    Article  CAS  Google Scholar 

  49. Saini S, Katnoria JK, Kaur I. A comparative study for removal of cadmium(II) ions using unmodified and NTA-modified Dendrocalamus strictus charcoal powder. J Environ Health Sci Eng. 2019;17:259–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Radha E, Gomathi T, Sudha PN, Sashikala S. Cadmium(II) ion removal from aqueous solution using chitosan oligosaccharide-based blend. Polym Bull. 2021;78:1109–32.

    Article  CAS  Google Scholar 

  51. Puspitasari T, Oktaviani, Pangerteni DS, Nurfilah E, Darwis D. Study of metal ions removal from aqueous solution by using radiation crosslinked chitosan-co-Poly(Acrylamide)-based adsorbent. Macromol Symp. 2015;353:168–77.

    Article  CAS  Google Scholar 

  52. Liu Y, Hu L, Tan B, Li J, Gao X, He Y, et al. Adsorption behavior of heavy metal ions from aqueous solution onto composite dextran-chitosan macromolecule resin adsorbent. Int J Biol Macromol. 2019;141:738–46.

    Article  CAS  PubMed  Google Scholar 

  53. Abdel-Halim ES, Al-Deyab SS. Preparation of poly(acrylic acid)/starch hydrogel and its application for cadmium ion removal from aqueous solutions. React Funct Polym. 2014;75:1–8.

    Article  CAS  Google Scholar 

  54. Wang W-B, Huang D-J, Kang Y-R, Wang A-Q. One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Colloids Surf B Biointerfaces. 2013;106:51–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.N. acknowledges the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP19H05719. M.N. expresses gratitude to Prof. A. Hashidzume (The University of Osaka) for fruitful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Nakahata.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakahata, M. Bioinspired and biosynthetic integrated polymeric materials for the selective capture of heavy metal ions. Polym J (2025). https://doi.org/10.1038/s41428-025-01092-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-025-01092-y

Search

Quick links