Abstract
About 70 years ago, the crystal structure of the nylon 6 α form was proposed by Bunn et al. (Bunn’s model) on the basis of wide-angle X-ray diffraction (WAXD) data analysis. The nearly extended planar-zigzag chains with alternating upward and downward orientations are regularly connected by intermolecular hydrogen bonds to form a sheet plane. These sheets are stacked regularly under the space group symmetry of P21. The quantitative analyses of WAXD and WAND data, which were measured for the first time in the present study, revealed the following. (i) Bunn’s model can be constructed using the space group P21/n of higher symmetry (this revision is important in the structure‒property discussion), (ii) but their regular model cannot reproduce both WAXD and WAND data without any issues. Moreover, (iii) the introduction of a statistically disordered up/down chain packing concept can reproduce these observed diffraction data consistently. As one local structure, the aggregation of domains has been proposed, where the domain itself consists of regular chain packing, but these domains are randomly aggregated together with the ±a/2 shift and a small c-axial shift to form a crystalline lamella. In this way, the crystal structure of the nylon-6 α form has been conclusively established.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout











Similar content being viewed by others
References
Schlack P. Verfahren zur Herstellung verformbarer hochmolekularer Polyamide, Germany Patent 748253, 1938. https://cir.nii.ac.jp/all?q=German%20Patent%20748253.
Hoshino K. Study of synthetic fibers (1) decomposition and synthesis of nylon. Nippon Kagaku Kai-shi. J. Chem. Soc. Jpn. 1940. https://doi.org/10.1246/bcsj.18.97.
Brill R. Über Beziehungen zwischen der Struktur der Polyamide und der des Seidenfibroins. Z Physik Chem. 1944. https://doi.org/10.1515/zpch-1943-5307.
Bunn CW, Garner EV. The crystal structures of two polyamides (‘nylons’). Proc Roy Soc A. 1947. https://doi.org/10.1098/rspa.1947.0028.
Wallner LG. Über den Einfluß der Kristallitlänge auf die Röntgen-Interferenzen der Polyamide. Monatshefte für Chemie und verwandte Teil wanderer Wissenschaften. 1948;79:279–95. https://doi.org/10.1007/BF00899900.
Holmes DR, Bunn CW, Smith DJ. The crystal structure of polycaproamide: nylon 6. J Polym Sci. 1955;17:159–77. https://doi.org/10.1002/pol.1955.120178401.
Ziabicki A. Über die mesomorphe β-form von polycapronamid und ihre Umwandlung in die kristalline form α. Kolloid Z. 1959. https://doi.org/10.1007/BF01809631.
Slichter WP. Crystal structures in polyamides made from ω-amino acids. J Polym Sci. 1959;36:259–66. https://doi.org/10.1002/pol.1959.1203613020.
Ruscher C, Schroder HJ. über die Feinstruktur der Polyamide.II.Der Einfluas von kleinen Kristalliten auf das Roentgendiagramm von Polycaprolactam. Faserforsch Text Tech. 1960;11:165–72.
Vogelsong DC. Crystal structure studies on the polymorphic forms of nylons 6 and 8 and other even nylons. J Polym Sci. 1963. https://doi.org/10.1002/pol.1963.100010319.
Bradbury EM, Brown L, Elliott A, Parry DAD. The structure of the gamma form of polycaproamide (nylon 6). Polymer. 1965;6:465–82. https://doi.org/10.1016/0032-3861(65)90032-7.
Arimoto H, Ishibashi M, Hirai M, Chatani Y. Crystal structure of the γ-form of nylon 6. J Polym Sci A. 1965. https://doi.org/10.1002/pol.1965.100030132.
Illers KH, Haberkorn H, Simák P. Untersuchungen über die γ-Struktur in unverstrecktem und verstrecktem 6-Polyamid. Makromol Chemie. 1972;158:285–311. https://doi.org/10.1002/macp.1972.021580123.
Heuvel HM, Huisman R, Lind KCJB. Quantitative information from X-ray diffraction of nylon-6 yarns. I. Development of a model for the analytical description of equatorial X-ray profiles. J Polym Sci Polym Phys Ed. 1976;14:921–40. https://doi.org/10.1002/pol.1976.180140515.
Parker JP, Lindenmeyer PH. On the crystal structure of nylon 6. J Appl Polym Sci. 1977;21:821–37. https://doi.org/10.1002/app.1977.070210322.
Simon P, Argay G. Revised atomic coordinates of crystalline nylon-6. J Polym Sci Polym Phys Ed. 1978;16:935–7. https://doi.org/10.1002/pol.1978.180160517.
Malta V, Cojazzi G, Fichera A, Ajò D, Zannetti R. A re-examination of the crystal structure and molecular packing of α-NYLON 6. Eur Polym J. 1979;15:765–70. https://doi.org/10.1016/0014-3057(79)90029-6.
Stepaniak RF, Garton A, Carlsson DJ, Wiles DM. An examination of the crystal structures present in nylon-6 fibers. J Polym Sci Polym Phys Ed. 1979;17:987–99. https://doi.org/10.1002/pol.1979.180170608.
Murthy NS, Minor H, Latif RA. Effect of annealing on the structure and morphology of nylon 6 fibers. J Macromol Sci B. 1987;26:427–46. https://doi.org/10.1080/00222348708223946.
Shanak H, Ehses K-H, Götz W, Leibenguth P, Pelster R. X-ray diffraction investigations of a-polyamide 6 films: orientation and structural changes upon uni- and biaxial drawing. J Mater Sci. 2009;44:655–63. https://doi.org/10.1007/s10853-008-3062-7.
Puiggalí J. Aliphatic polyamides (nylons): Interplay between hydrogen bonds and crystalline structures, polymorphic transitions and crystallization. Polym Crystallization. 2021;4. https://doi.org/10.1002/pcr2.10199.
Geil PH. Nylon single crystals. J Polym Sci. 1960;44:449–58. https://doi.org/10.1002/pol.1960.1204414416.
Tobin MC, Carrano MJ. Infrared spectra of polymers. I. Effect of crystallinity on the infrared spectrum of polyethylene and on the infrared spectra of nylon 6 and nylon 11. J Chem Phys. 1956;25:1044–52. https://doi.org/10.1063/1.1742963.
Kinoshita Y. An investigation of the structures of polyamide series. Makromol Chem. 1959;33:1–20. https://doi.org/10.1002/macp.1959.020330101.
Loo LS, Gleason KK. Insights into structure and mechanical behavior of α and γ crystal forms of nylon-6 at low strain by infrared studies. Macromolecules. 2003;36:6114–26. https://doi.org/10.1021/ma034213v.
Yamamoto S, Ohnishi E, Sato H, Hoshina H, Ishikawa D, Ozaki Y. Low-frequency vibrational modes of nylon 6 studied by using infrared and Raman spectroscopies and density functional theory calculations. J Phys Chem B. 2019;123:5368–76. https://doi.org/10.1021/acs.jpcb.9b04347.
Dasgupta S, Hammond WB, Goddard WA. Crystal structures and properties of nylon polymers from theory. J Am Chem Soc. 1996;118:12291–301. https://doi.org/10.1021/ja944125d.
León S, Aleman C, Munoz-Guerra S. Structure of the extended crystal forms of nylon-6. Macromolecules. 2000. https://doi.org/10.1021/ma0004514.
Li Y, Goddard III WA. Nylon 6 crystal structures, folds, and lamellae from theory. Macromolecules. 2002. https://doi.org/10.1021/ma020815n.
Quarti C, Milani A, Civalleri B, Orlando R, Castiglioni C. Ab initio calculation of the crystalline structure and IR spectrum of polymers: nylon 6 polymorphs. J Phys Chem B. 2012. https://doi.org/10.1021/jp303715v.
Kaji K, Sakurada I. Crystallite size determination of nylon 6 by Wallner’s method. J Polym Sci Polym Phys Ed. 1974. https://doi.org/10.1002/pol.1974.180120721.
Sakurada I, Kaji K. Relation between the crystal structure of polymers and the elastic modulus of polymer crystals in the direction perpendicular to the chain axis. Makromol Chem. 1975. https://doi.org/10.1002/macp.1975.020011975139.
Kaji K, Sakurada I. Determination of the elastic modulus of polyamide crystals along the chain axis by x‐ray diffraction, 1. The α‐form of nylon‐6. Makromol Chem. 1978. https://doi.org/10.1002/macp.1978.021790121.
Tashiro K, Tadokoro H. Calculation of three-dimensional elastic constants of polymer crystals. 3. α and γ forms of Nylon 6. Macromolecules. 1981. https://doi.org/10.1021/ma60065a013.
Salem DR. Shifts of X-ray diffraction reflections of polycaproamide (nylon 6) owing to small crystal size. J Polym Sci Polym Phys. 1987. https://doi.org/10.1002/polb.1987.090251210.
Matsuo M, Sato R, Shimizu Y. Effect of molecular orientation distribution and crystallinity on the measurement of the crystal lattice modulus of nylon 6 by x-ray diffraction. Colloid Polym Sci. 1993. https://doi.org/10.1007/BF00652298.
Lotz B. Brill transition in nylons: the structural scenario. Macromolecules. 2021. https://doi.org/10.1021/acs.macromol.0c02409.
Kummara S, Tashiro K. Heterogeneous stress distribution and hierarchical structure in the highly oriented nylon 6 strings annealed at various temperatures to evaluate the true crystallite modulus. Macromolecules. 2021. https://doi.org/10.1021/acs.macromol.1c00142.
Roe R-J. Methods of X-Ray and Neutron Scattering in Polymer Science (Topics in Polymer Science). London: Oxford Univ. Press; 2000.
Tadokoro H. Structure of crystalline polymers. New York; Wiley Interscience: 1979, p. 465. https://doi.org/10.1002/pol.1980.130180220.
Tashiro K. Structural science of crystalline polymers, 1: Basic Concepts and Practices. Singapore: Springer Nature; 2022.
Tashiro K. Structural science of crystalline polymers, 2: Microscopically-viewed Structure-Property Relationship. Singapore: Springer Nature; 2024.
Price DL, Scold K. Introduction to neutron scattering. Methods Exp Phys. 1986. https://doi.org/10.1016/S0076-695X(08)60554-2.
Wilson CC. Single crystal neutron diffraction from molecular materials. Singapore: World Scientific; 2000.
Tashiro K, Tanaka I, Ohhara Y, Niimura N, Fujiwara S, Kamae T. Extraction of hydrogen atom positions in polyethylene crystal lattice from the wide-angle neutron diffraction data collected by 2-dimensional imaging plate system: a comparison with the X-ray and electron diffraction results. Macromolecules. 2004. https://doi.org/10.1021/ma036003o.
Tashiro K, Hanesaka M, Ohhara T, Ozeki T, Kitano T, Nishu T, et al. Structural refinement and extraction of hydrogen atomic positions in polyoxymethylene crystal based on the first successful measurements of 2-dimensional high-energy synchrotron X-ray diffraction and wide-angle neutron diffraction patterns of hydrogenated and deuterated species. Polym J. 2007. https://doi.org/10.1295/polymj.pj2007076.
Wasanasuk K, Tashiro K, Hanesaka M, Ohhara T, Kurihara K, Kuroki R, et al. Crystal structure analysis of poly(L-lactic acid) α form based on the 2-dimensional wide-angle synchrotron X-ray and neutron diffraction measurements. Macromolecules. 2011. https://doi.org/10.1021/ma2006624.
Tashiro K, Hanesaka M, Yamamoto H, Wasanasuk K, Jayaratri P, Yoshizawa Y, et al. Accurate structure analyses of polymer crystals on the basis of wide-angle X-ray and neutron diffractions. Kobunshi-Ronbunshu. 2014. https://doi.org/10.1295/koron.71.508.
Tashiro K, Kusaka K, Hosoya T, Ohhara T, Hanesaka M, Yoshizawa Y, et al. Structure analysis and derivation of deformed electron density distribution of polydiacetylene giant single crystal by the combination of x-ray and neutron diffraction data. Macromolecules. 2018. https://doi.org/10.1021/acs.macromol.8b00650.
Tashiro K, Kusaka K, Yamamoto H, Hanesaka M. Introduction of disorder in the crystal structures of atactic poly(vinyl alcohol) and its iodine complex to solve a dilemma between X- ray and neutron diffraction data analyses. Macromolecules. 2020. https://doi.org/10.1021/acs.macromol.0c00839.
Tashiro K, Kusaka K, Yamamoto H, Hosoya T, Okada S, Ohhara T. Hybridization of wide-angle X-ray and neutron diffraction techniques in the crystal structure analyses of synthetic polymers. Polymers. 2023. https://doi.org/10.3390/polym15020465.
Coppens P. X-ray charge densities and chemical bonding. Oxford, UK: Oxford University Press Inc.; 1997. https://doi.org/10.1093/oso/9780195098235.001.0001.
Niimura N, Karasawa N, Tanaka Y, Miyahara I, Akahashi J, Saito K, et al. An imaging plate neutron detector. Nucl Instr Methods Phys Res. 1994. https://doi.org/10.1016/0921-4526(95)00341-6.
Tanaka I, Kurihara K, Chatake T, Niimura N. A high-performance neutron diffractometer for biological crystallography (BIX-3). J Appl Cryst. 2002. https://doi.org/10.1107/S0021889801017745.
Niimura NN, Chatake T, Ostermann A, Kurihara K, Tanaka I. High resolution neutron protein crystallography hydrogen and hydration in proteins. J Z Kristallogr. 2003. https://doi.org/10.1524/zkri.218.2.96.20666.
Kusaka K, Ohhara T, Tanaka I, Niimura N, Ozeki T, Kurihara K, et al. Peak overlapping and its de-convolution in TOF diffraction data from neutron biological diffractometer in J-PARC. Phys B. 2006. https://doi.org/10.1107/S0907444910033020.
Ohhara T, Kusaka K, Hosoya T, Kurihara K, Tomoyori K, Niimura N, et al. Development of data processing software for a new TOF single crystal neutron diffractometer at J-PARC. Nucl Instrum Methods Phys Res A. 2009. https://doi.org/10.1016/j.nima.2008.11.030.
Kusaka K, Hosoya T, Yamada T, Tomoyori K, Ohhara T, Katagiri M, et al. Evaluation of performance for IBARAKI biological crystal diffractometer iBIX with new detectors. J Synchrotron Radiat. 2013;20:994–8. https://doi.org/10.1107/S0909049513021845.
Nimmanpipug P, Tashiro K, Maeda Y, Rangsiman O. Factors governing the three-dimensional hydrogen bond network structure of poly(m-phenylene isophthalamide) and a series of its model compounds: (1) systematic classification of structures analyzed by the X-ray diffraction method. J Phys Chem. 2002;110:20858–64. https://doi.org/10.1021/jp013982i.
Tashiro K, Nimmanpipug P, Rangsiman O. Factors governing the three-dimensional hydrogen bond network structure of poly(m-phenylene isophthalamide) and a series of its model compounds: (2) computer simulation of crystal structures of aromatic amide compounds and comparison with X-ray analyzed structures, J Phys Chem. 2002. https://doi.org/10.1021/jp021691j.
Hahn T, ed. International tables for crystallography, volume a “space-group symmetry”, Dordrecht, Holland: D. Reidel Publ. Co.; 1983. https://doi.org/10.1107/97809553602060000100.
Wasanasuk K, Tashiro K. Crystal structure and disorder in poly(L-lactic Acid) δ form (α’ form) and the phase transition mechanism to the ordered αform. Polymer. 2011;52:6097–109. https://doi.org/10.1016/j.polymer.2011.10.046.
Acknowledgements
This work was performed with kind support from the staff of the BIX-3 and i-BIX facilities at JAEA, Tokai, Japan. The TOF experiments were performed under the proposals 2022PX3002, 2023PX3002, and 2024PX3001 of the Ibaraki Prefecture Project. This study was supported by the Grant-in-Aid for Scientific Research (B) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (No. 22H02151).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Tashiro, K., Kurihara, K., Tamada, T. et al. Crystal structure of the nylon-6 α form as established by wide-angle X-ray and neutron diffraction data analyses. Polym J (2025). https://doi.org/10.1038/s41428-025-01094-w
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41428-025-01094-w