Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Unique properties of cyclic polymers at interfaces and their applications to nanomaterials

Abstract

The effects of the topology of cyclic polymers at surfaces and interfaces are described and discussed in this review. The topics include those at the air‒water interface, micellization, phase transition, and adsorption to nanoparticles. Surface tension studies revealed that the interfacial activity of cyclized polymers is greater than that of their linear counterparts because of an increase in the molecular density at the air‒water interface. Moreover, the micellization enthalpy and entropy (ΔHmic and ΔSmic) and lower critical micelle temperature (TCMT) were found for cyclic polymers, where the hydrophilic/hydrophobic ratio also significantly influenced. In addition, cyclic poly(ethylene glycol), c-PEG, can interact strongly with gold nanoparticles (AuNPs) and bovine serum albumin (BSA), whereas no such effects were found for linear PEG. The red color of an AuNPs dispersion vanished when BSA was added to complexes of AuNPs/c-PEG to form aggregates. In this context, silver nanoparticles (AgNPs) have not been proven to be capable of consistent PEGylation despite their usefulness in biological applications. c-PEG was found to physisorb onto AgNPs to effectively PEGylate and improve dispersion stability under physiological circumstances, long-term exposure to white light, and high temperature. Consequently, the generation of new functional materials and their applications can be facilitated by the effects of cyclization, which makes the use of a polymer topology feasible for the logical design of polymeric materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shao G, Li A, Liu Y, Yuan B, Zhang W. Branched polymers: synthesis and application. Macromolecules. 2023;57:830–46.

    Article  Google Scholar 

  2. Jia Z, Monteiro MJ. Cyclic polymers: methods and strategies. J Polym Sci Part A Polym Chem. 2012;50:2085–97.

    Article  CAS  Google Scholar 

  3. Laurent BA, Grayson SM. Synthetic approaches for the preparation of cyclic polymers. Chem. 2009;38:2202–13.

    CAS  Google Scholar 

  4. Kricheldorf HR, Schwarz G. Cyclic polymers by kinetically controlled step-growth polymerization. Macromol Rapid Commun. 2003;24:359–81.

    Article  CAS  Google Scholar 

  5. Yamamoto T, Tezuka Y. Cyclic polymers revealing topology effects upon self-assemblies, dynamics and responses. Soft Matter. 2015;11:7458–68.

    Article  CAS  PubMed  Google Scholar 

  6. Watanabe T, Chimura S, Wang YB, Ono T, Isono T, Tajima K, et al. Cyclization of PEG and Pluronic surfactants and the effects of the topology on their interfacial activity. Langmuir. 2021;37:6974–84.

    Article  CAS  PubMed  Google Scholar 

  7. Watanabe T, Wang Y, Ono T, Chimura S, Isono T, Tajima K, et al. Topology and sequence-dependent micellization and phase separation of Pluronic L35, L64, 10R5, and 17R4: effects of cyclization and the chain ends. Polymers. 2022;14:1823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oziri OJ, Maeki M, Tokeshi M, Isono T, Tajima K, Satoh T, et al. Topology-dependent interaction of cyclic poly(ethylene glycol) complexed with gold nanoparticles against bovine serum albumin for a colorimetric change. Langmuir. 2022;38:5286–95.

    Article  CAS  PubMed  Google Scholar 

  9. Oziri OJ, Wang YB, Watanabe T, Uno S, Maeki M, Tokeshi M, et al. PEGylation of silver nanoparticles by physisorption of cyclic poly(ethylene glycol) for enhanced dispersion stability, antimicrobial activity, and cytotoxicity. Nanoscale Adv. 2022;4:532–45.

    Article  CAS  PubMed  Google Scholar 

  10. Schmolka IR. Artificial skin I. Preparation and properties of pluronic F-127 gels for treatment of burns. J Biomed Mater Res. 1972;6:571–82.

    Article  CAS  PubMed  Google Scholar 

  11. Prasad KN, Luong TT, Florence AT, Paris J, Vaution C, Seiller M, et al. Surface activity and association of ABA polyoxyethylene—polyoxypropylene block copolymers in aqueous solution. J Colloid Interface Sci. 1979;69:225–32.

    Article  CAS  Google Scholar 

  12. Alexandridis P, Athanassiou V, Fukuda S, Hatton T. A. Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers. Langmuir. 1994;10:2604–12.

    Article  CAS  Google Scholar 

  13. Yu GE, Deng Y, Dalton S, Wang QG, Attwood D, Price C, et al. Micellisation and gelation of triblock copoly(oxyethylene/oxypropylene/oxyethylene), F127. J Chem Soc Faraday Trans. 1992;88:2537–44.

    Article  CAS  Google Scholar 

  14. Yang Z, Pickard S, Deng NJ, Barlow RJ, Attwood D, Booth C. Effect of block structure on the micellization and gelation of aqueous solutions of copolymers of ethylene oxide and butylene oxide. Macromolecules. 1994;27:2371–9.

    Article  CAS  Google Scholar 

  15. Varade D, Sharma R, Aswal VK, Goyal PS, Bahadur P. Effect of hydrotropes on the solution behavior of PEO/PPO/PEO block copolymer L62 in aqueous solutions. Eur Polym J. 2004;40:2457–64.

    Article  CAS  Google Scholar 

  16. Yu GE, Garrett CA, Mai SM, Altinok H, Attwood D, Price C, et al. Effect of cyclization on the association behavior of block copolymers in aqueous solution. Comparison of Oxyethylene/Oxypropylene Block Copolymers Cyclo-P34E104 and E52P34E52. Langmuir. 1998;14:2278–85.

    Article  CAS  Google Scholar 

  17. Hirose Y, Taira T, Sakai K, Sakai H, Endo A, Imura T. Structures and surface properties of “cyclic” polyoxyethylene alkyl ethers: unusual behavior of cyclic surfactants in water. Langmuir. 2016;32:8374–82.

    Article  CAS  PubMed  Google Scholar 

  18. Kim SH, Jo WH. A Monte Carlo simulation for the micellization of ABA- and BAB-type triblock copolymers in a selective solvent. Macromolecules. 2001;34:7210–18.

    Article  CAS  Google Scholar 

  19. Kim SH, Jo WH. A Monte Carlo simulation for the micellization of ABA- and BAB-type triblock copolymers in a selective solvent. II. Effects of the block composition. J Chem Phys. 2002;117:8565–72.

    Article  CAS  Google Scholar 

  20. Svard A, Neilands J, Palm E, Svensater G, Bengtsson T, Aili D. Protein-functionalized gold nanoparticles as refractometric nanoplasmonic sensors for the detection of proteolytic activity of porphyromonas gingivalis. ACS Appl Nano Mater. 2020;3:9822–30.

    Article  Google Scholar 

  21. Hu SQ, Huang PJJ, Wang JX, Liu JW. Dissecting the effect of salt for more sensitive label-free colorimetric detection of DNA using gold nanoparticles. Anal Chem. 2020;92:13354–60.

    Article  CAS  PubMed  Google Scholar 

  22. Scari G, Porta F, Fascio U, Avvakumova S, Dal Santo V, De Simone M, et al. Gold nanoparticles capped by a GC-containing peptide functionalized with an RGD motif for integrin targeting. Bioconjugate Chem. 2012;23:340–9.

    Article  CAS  Google Scholar 

  23. Wang GK, Papasani MR, Cheguru P, Hrdlicka PJ, Hill RA. Gold-peptide nanoconjugate cellular uptake is modulated by serum proteins. Nanomedicine. 2012;8:822–32.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang G, Yang Z, Lu W, Zhang R, Huang Q, Tian M, et al. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomater. 2009;30:1928–36.

    Article  CAS  Google Scholar 

  25. Nam S, Parikh DV, Condon BD, Zhao Q, Yoshioka-Tarver M. Importance of poly(ethylene glycol) conformation for the synthesis of silver nanoparticles in aqueous solution. J Nanopart Res. 2011;13:3755–64.

    Article  CAS  Google Scholar 

  26. Wang Y, Quinsaat JEQ, Ono T, Maeki M, Tokeshi M, Isono T, et al. Enhanced dispersion stability of gold nanoparticles by the physisorption of cyclic poly(ethylene glycol). Nat Commun. 2020;11:6089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lacerda SHD, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, et al. Interaction of gold nanoparticles with common human blood proteins. ACS Nano. 2010;4:365–79.

    Article  PubMed  Google Scholar 

  28. Naveenraj S, Anandan S, Kathiravan A, Renganathan R, Ashokkumar M. The interaction of sonochemically synthesized gold nanoparticles with serum albumins. J Pharm Biomed Anal. 2010;53:804–10.

    Article  CAS  PubMed  Google Scholar 

  29. Pramanik S, Banerjee P, Sarkar A, Bhattacharya SC. Size-dependent interaction of gold nanoparticles with transport protein: a spectroscopic study. J Lumin. 2008;128:1969–74.

    Article  CAS  Google Scholar 

  30. Kathiravan A, Paramaguru G, Renganathan R. Study on the binding of colloidal zinc oxide nanoparticles with bovine serum albumin. J Mol Struct. 2009;934:129–37.

    Article  CAS  Google Scholar 

  31. Kathiravan A, Anandan S, Renganathan R. Interaction of colloidal TiO2 with human serum albumin: a fluorescence quenching study. Colloids Surf, A. 2009;333:91–5.

    Article  CAS  Google Scholar 

  32. Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir. 2005;21:9303–7.

    Article  CAS  PubMed  Google Scholar 

  33. Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics. 2020;10:8996–9031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh A, Dar MY, Joshi B, Sharma B, Shrivastava S, Shukla S. Phytofabrication of silver nanoparticles: novel drug to overcome hepatocellular ailments. Toxicol Rep. 2018;5:333–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saadmim F, Forhad T, Sikder A, Ghann W, Ali M. M, Sitther V, et al. Enhancing the performance of dye sensitized solar cells using silver nanoparticles modified photoanode. Molecules. 2020;25:4021.

  36. Elhakim HKA, Azab SM, Fekry AM. A novel simple biosensor containing silver nanoparticles/propolis (bee glue) for microRNA let-7a determination. Mater Sci Eng, C. 2018;92:489–95.

    Article  CAS  Google Scholar 

  37. Huy TQ, Huyen PTM, Le AT, Tonezzer M. Recent advances of silver nanoparticles in cancer diagnosis and treatment: anti-Cancer. Agents Med Chem. 2020;20:1276–87.

    CAS  Google Scholar 

  38. Pandian N, Chidambaram S. Antimicrobial, cytotoxicty and anti cancer activity of silver nanoparticles from glycyrrhiza glabra. Int J Pharm Sci Res. 2017;8:1633–41.

    CAS  Google Scholar 

  39. Bagherzade G, Tavakoli MM, Namaei MH. Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria: Asian Pac. J Trop Biomed. 2017;7:227–33.

    Article  Google Scholar 

  40. Manson J, Kumar D, Meenan BJ, Dixon D. Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media. Gold Bull. 2011;44:99–105.

    Article  CAS  Google Scholar 

  41. Marchioni M, Battocchio C, Joly Y, Gateau C, Nappini S, Pis I, et al. Thiolate-capped silver nanoparticles: discerning direct grafting from sulfidation at the metal-ligand interface by interrogating the sulfur atom. J Phys Chem C. 2020;124:13467–78.

    Article  CAS  Google Scholar 

  42. Liu L, Burnyeat CA, Lepsenyi RS, Nwabuko IO, Kelly TL. Mechanism of shape evolution in Ag nanoprisms stabilized by thiol-terminated poly(ethylene glycol): an in situ kinetic study. Chem Mater. 2013;25:4206–14.

    Article  CAS  Google Scholar 

  43. Lee JS, Kim H, Algar WR. Thiol-ligand-catalyzed quenching and etching in mixtures of colloidal quantum dots and silver nanoparticles. J Phys Chem C. 2017;121:28566–75.

    Article  CAS  Google Scholar 

  44. Cheng YW, Yin LY, Lin SH, Wiesner M, Bernhardt E, Liu J. Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J Phys Chem C. 2011;115:4425–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for Challenging Research (Pioneering) (22K18334, TY), Grant-in-Aid for Scientific Research (B) (21H01991, TY), the Asahi Glass Foundation (TY), and the Iketani Science and Technology Foundation (TY).

Author information

Authors and Affiliations

Authors

Contributions

TY and JT wrote the manuscript.

Corresponding author

Correspondence to Takuya Yamamoto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, T., Tazuke, J. Unique properties of cyclic polymers at interfaces and their applications to nanomaterials. Polym J (2025). https://doi.org/10.1038/s41428-025-01095-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-025-01095-9

Search

Quick links