Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Structural characterization of mucin in aqueous solution by static and dynamic light scattering measurements

Abstract

Mucin is a biological compound that consists of high-molecular-weight glycoproteins and plays an important role in the evaporation of water from respiratory droplets. Accurate characterization of the molecular structure of mucin in aqueous solution was performed using light scattering measurements. The molecular weight, M = 2.92 × 107, and the radius of gyration, Rg = 289 nm, were determined from static light scattering, and the hydrodynamic radius, Rh = 198 nm, was determined from dynamic light scattering. The Rg/Rh ratio of 1.46 and the observed particle scattering function reveal that the molecular structure of mucin is elongated rather than spherical. As the size of molecules approaches the wavelength of the detected light, the analysis of light scattering measurements requires careful consideration. The calculation method devised by H. Fujita enables measurement of the molecular structure with extremely high accuracy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leung NHL. Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol. 2021;19:528–45. https://doi.org/10.1038/s41579-021-00535-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Meister TL, Dreismeier M, Blanco EV, Bruggemann Y, Heinen N, Kampf G, et al. Low risk of severe acute respiratory syndrome coronavirus 2 transmission by fomites: a clinical observational study in highly infectious coronavirus disease 2019 patients. J Infect Dis. 2022;226:1608–15. https://doi.org/10.1093/infdis/jiac170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Piana A, Colucci ME, Valeriani F, Marcolongo A, Sotgiu G, Pasquarella C, et al. Monitoring COVID-19 transmission risks by quantitative real-time PCR tracing of droplets in hospital and living environments. mSphere. 2021;6:e01070-20. https://doi.org/10.1128/mSphere.01070-20.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhou L, Ayeh SK, Chidambaram V, Karakousis PC. Modes of transmission of SARSCoV-2 and evidence for preventive behavioral interventions. BMC Infect Dis. 2021;21:496. https://doi.org/10.1186/s12879-021-06222-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wang CC, Prather KA, Sznitman J, Jimenez JL, Lakdawala SS, Tufekci Z, et al. Airborne transmission of respiratory viruses. Science. 2021;373:6558 https://doi.org/10.1126/science.abd9149.

    Article  CAS  Google Scholar 

  6. Bueno de Mesquita PJ, Noakes CJ, Milton DK. Quantitative aerobiologic analysis of an influenza human challenge-transmission trial. Indoor Air. 2020;30:1189–98. https://doi.org/10.1111/ina.12701.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Yan J, Grantham M, Pantelic J, Bueno de Mesquita PJ, Albert B, Liu F, et al. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc Natl Acad Sci USA. 2018;115:1081–6. 10.1073/pnas.1716561115.

  8. Shao S, Zhou D, He R, Li J, Zou S, Mallery K, et al. Risk assessment of airborne transmission of COVID-19 by asymptomatic individuals under different practical settings. J Aerosol Sci. 2021;151:105661. https://doi.org/10.1016/j.jaerosci.2020.105661.

    Article  PubMed  CAS  Google Scholar 

  9. Vejerano EP, Marr LC. Physico-chemical characteristics of evaporating respiratory fluid droplets. J R Soc Interface. 2018;15:20170939 https://doi.org/10.1098/rsif.2017.0939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lin K, Schulte CR, Marr LC. Survival of MS2 and Φ6 viruses in droplets as a function of relative humidity, pH, and salt, protein, and surfactant concentrations. PLoS ONE. 2020;15:e0243505 https://doi.org/10.1371/journal.pone.0243505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Seyfert C, Rodríguez-Rodríguez J, Lohse D, Marin A. Stability of respiratory-like droplets under evaporation. Phys Rev Lett. 2022;7:023603. https://doi.org/10.1103/PhysRevFluids.7.023603.

    Article  Google Scholar 

  12. Kurai K, Miyamoto H, Takegawa N. Evaporation of water from airborne droplets containing sodium chloride, mucin, and surfactant. Aerosol Air Qual Res. 2024;24:240025 https://doi.org/10.4209/aaqr.240025.

    Article  CAS  Google Scholar 

  13. Takegawa N. Aerosol, droplet transmission, and airborne transmission. Earozoru Kenkyu. 2021;36:65–74. https://doi.org/10.11203/jar.36.65.

    Article  CAS  Google Scholar 

  14. Takegawa N. Evaporation of water from respiratory droplets. Earozoru Kenkyu. 2021;36:231–6. https://doi.org/10.11203/jar.36.231.

    Article  CAS  Google Scholar 

  15. Bettelheim AF, Hashimoto Y, Pigman W. Light-scattering studies of bovine submaxillary mucin. Biochem Biophys Aata. 1962;63:235–42. https://doi.org/10.1016/0006-3002(62)90677-7.

    Article  CAS  Google Scholar 

  16. Bansil R, Stanley E, LaMont JT. Mucin biophysics. Annu Rev Physiol. 1995;57:635–57. https://doi.org/10.1016/j.cocis.2005.11.001.

    Article  PubMed  CAS  Google Scholar 

  17. Herrmann A, Davies JR, Lindell G, Mårtensson S, Packeri NH, Swallow DM, et al. Studies on the “Insoluble” glycoprotein complex from human colon. 1999;274:15828-36. https://doi.org/10.1074/jbc.274.22.15828

  18. Watanabe Y, Inoko Y. Small-angle light and X-ray scattering measurements of a protein–oligosaccharide complex mucin in solution. J Appl Cryst. 2007;40:s209–s212. https://doi.org/10.1107/S0021889807009247.

    Article  CAS  Google Scholar 

  19. Jumel K, Fiebrig I, Harding SE. Rapid size distribution and purity analysis of gastric mucus glycoproteins by size exclusion chromatography/multi angle laser light scattering. Int J Biol Macromol. 1996;18:133–9. https://doi.org/10.1016/0141-8130(95)01071-8.

    Article  PubMed  CAS  Google Scholar 

  20. Shi L, Caldwell KD. Mucin adsorption to hydrophobic surfaces. J Colloid Interface Sci. 2000;224:372–81. https://doi.org/10.1006/jcis.2000.6724.

    Article  PubMed  CAS  Google Scholar 

  21. Chang Y, McClements DJ. Characterization of mucin - lipid droplet interactions: Influence on potential fate of fish oil-in-water emulsions under simulated gastrointestinal conditions. Food Hydrocoll. 2016;56:425–33. https://doi.org/10.1016/j.foodhyd.2015.12.034.

    Article  CAS  Google Scholar 

  22. Griffiths PC, Cattoz B, Ibrahim MS, Anuonye JC. Probing the interaction of nanoparticles with mucin for drug delivery applications using dynamic light scattering. Eur J Pharm Biopharm. 2015;97:218–22. https://doi.org/10.1016/j.ejpb.2015.05.004.

    Article  PubMed  CAS  Google Scholar 

  23. Dinu V, Lu Y, Weston N, Lithgo R, Coupe H, Channe G, et al. The antibiotic vancomycin induces complexation and aggregation of gastrointestinal and submaxillary mucins. Sci Rep. 2020;10:960. https://doi.org/10.1038/s41598-020-57776-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Curnutt A, Smith K, Darrow E, Walters KB. Chemical and microstructural characterization of pH and [Ca2+] dependent sol-gel transitions in mucin biopolymer. Sci Rep. 2020;10:8760. https://doi.org/10.1038/s41598-020-65392-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chun T, Pattem J, Gillis RB, Dinu VT, Yakubov GE, Corfeld AP, Harding SE. Comparative hydrodynamic and nanoscale imaging study on the interactions of teicoplanin‑A2 and bovine submaxillary mucin as a model ocular mucin. Sci Rep. 2023;13:11367. https://doi.org/10.1038/s41598-023-38036-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Stie MB, Cunha C, Huang Z, Kirkensgaard JJK, Tuelung PS, Wan F, et al. A head‑to‑head comparison of polymer interaction with mucin from porcine stomach and bovine submaxillary glands. Sci Rep. 2024;14:21350. https://doi.org/10.1038/s41598-024-72233-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kerker M. The scattering of light. New York: Academic Press; 1969.

  28. Brown W, Mortensen K. Scattering in polymeric and colloidal systems. Amsterdam: Gordon and Breach; 2000.

  29. Zimm BH. The scattering of light and the radial distribution function of high polymer solutions. J Chem Phys. 1948;16:1093–9. https://doi.org/10.1063/1.1746738.

    Article  CAS  Google Scholar 

  30. Zimm BH, Dandliker WB. Theory of light scattering and refractive index of solutions of large colloidal particles. J Phys Chem. 1954;58:644–8. https://doi.org/10.1021/J150518A012.

    Article  CAS  Google Scholar 

  31. Berry GC. Thermodynamic and conformational properties of polystyrene. I. light scattering studies on dilute solutions of linear polystyrenes. J Chem Phys. 1966;44:4550–64. https://doi.org/10.1063/1.1726673.

    Article  CAS  Google Scholar 

  32. Fujita H. A new method of treating light-scattering data on dilute polymer solutions. Ploym J. 1970;5:537–41. https://doi.org/10.1295/POLYMJ.1.537.

    Article  Google Scholar 

  33. Chu B Laser light scattering: Basic principles and practice, 2nd ed. Boston: Academic Press; 1991, p. 19.

  34. Takahashi K, Takano A, Kinugasa S, Sakurai H. Determination of the Rayleigh ratio with an uncertainty analysis by static light-scattering measurements of certified reference materials for molecular weight. Anal Sci. 2019;35:1045–51. https://doi.org/10.2116/analsci.19P103.

    Article  PubMed  CAS  Google Scholar 

  35. Berne BJ, Pecora R. Dynamic light scattering with applications to chemistry, biology, and physics. New York: Wiley; 1976.

  36. International Organization of Standards ISO 22412. Particle size analysis—dynamic light scattering (DLS). Geneva: The International Organization for Standardization; 2017.

  37. Einstein A. Investigations on the theory of the Brownian movement. London: Methuen; 1926.

  38. Takahashi K, Kato H, Saito T, Matsuyama S, Kinugasa S. Precise measurement of the size of nanoparticles by dynamic light scattering with uncertainty analysis. Part Part Syst Charact. 2008;25:31–38. https://doi.org/10.1002/ppsc.200700015.

    Article  CAS  Google Scholar 

  39. Takahashi K, Kato H, Kinugasa S. Development of a standard method for nanoparticle sizing by using the angular dependence of dynamic light scattering. Anal Sci. 2011;27:751–6. https://doi.org/10.2116/analsci.27.751.

    Article  PubMed  CAS  Google Scholar 

  40. Schärtl W. Light scattering from polymer solutions and nanoparticle dispersions. Berlin: Springer-Verlag; 2007.

  41. Nose T, Chu B. Light scattering, polymer science: a comprehensive reference, vol. 2, Amsterdam: Elsevier BV; 2012. p. 301–29.

  42. Burchard W. Light scattering from polymers. In: Burchard W, Patterson GD, editors. Advances in polymer science. eds.Berlin: Springer-Verlag; 1983. 48, p.1.

  43. Kratochvil P. ClassicaL Light Scattering from Polymer Solutions. Polymer Science Library 5. Amsterdam: Elsevier; 1987.

Download references

Funding

This study was funded by a Grant-in-Aid for Challenging Research (Exploratory) (22K19849).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayori Takahashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, K., Iida, K., Sakurai, H. et al. Structural characterization of mucin in aqueous solution by static and dynamic light scattering measurements. Polym J (2025). https://doi.org/10.1038/s41428-025-01096-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-025-01096-8

Search

Quick links