Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Relative contributions of crystallinity and environmental factors to the degradation rate of poly(ε-caprolactone) (PCL) under coastal field conditions

Abstract

Evaluating the environmental fate of poly(ε-caprolactone) (PCL), a marine-biodegradable plastic, requires understanding its degradation behavior under realistic marine conditions. Previous studies have separately examined the effects of crystallinity and environmental conditions on PCL degradation, but in actual ocean environments where conditions vary spatiotemporally, the relative contributions of these factors remain insufficiently quantified. In this study, long-term coastal field tests in Japan were combined with machine learning analysis to construct a regression framework relating PCL degradation rates to crystallinity and environmental variables. PCL sheets with controlled crystallinity were exposed for 6–15 months at six coastal locations, and degradation rates were derived from mass loss. Among the regression models tested, CatBoost showed the best performance (test R² = 0.60). Within the present dataset and coastal seafloor deployment conditions, the SHapley Additive exPlanations (SHAP) analysis ranked water temperature highest in terms of mean absolute contribution, followed by depth and total nitrogen (TN), whereas crystallinity contributed moderately. Depth and TN may partly capture location-level background differences rather than isolated variable effects. These results suggest that environmental factors contributed substantially to the variation in observed degradation rates. These findings offer a basis for field-relevant environmental compatibility assessment and for interpreting the role of crystallinity in material design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Collias, D. I.; James, M. I.; Layman, J. M. Introduction—Circular Economy of Polymers and Recycling Technologies. Circular Economy of Polymers: Topics in Recycling Technologies; Collias, D. I., James, M. I., Layman, J. M., Eds.; ACS Symposium Series; Vol. 1391; American Chemical Society: Washington, DC, 2021; pp 1–21. https://doi.org/10.1021/bk-2021-1391.ch001

  2. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, et al. Accumulation of Microplastic on Shorelines Worldwide: Sources and Sinks. Environ Sci Technol. 2011;45:9175–9.

    Article  CAS  PubMed  Google Scholar 

  3. Song YK, Kim T-H, Shim WJ, Hong SH, Im D-H. Microplastic Emissions from Fishing Ropes: Quantification, Characteristics, and Implications for Marine Pollution. Mar Pollut Bull. 2025;217:118049.

    Article  CAS  PubMed  Google Scholar 

  4. Macheca AD, Mutuma B, Adalima JL, Midheme E, Lúcas LHM, Ochanda VK, et al. Perspectives on Plastic Waste Management: Challenges and Possible Solutions to Ensure Its Sustainable Use. Recycling. 2024;9:77.

    Article  Google Scholar 

  5. Le Gué L, Davies P, Arhant M, Vincent B, Tanguy E. Mitigating Plastic Pollution at Sea: Natural Seawater Degradation of a Sustainable PBS/PBAT Marine Rope. Mar Pollut Bull. 2023;193:115216.

    Article  PubMed  Google Scholar 

  6. Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, et al. Degradation Rates of Plastics in the Environment. ACS Sustain Chem Eng. 2020;8:3494–511.

    Article  CAS  Google Scholar 

  7. ISO 19679:2020 Plastics — Determination of aerobic biodegradation of non-floating plastic materials in a seawater/sediment interface — Method by analysis of evolved carbon dioxide.

  8. ISO 23977-1:2020 Plastics — Determination of the aerobic biodegradation of plastic materials exposed to seawater – Part 1: Method by analysis of evolved carbon dioxide.

  9. Ando, S.; Kasai, D.; Masaki, T.; Ueno, E.; Akiyama, M.; Gibu, N.; et al. Discovery of the Marine Biodegradability of Nylon 6 and Nylon 6,6 Copolymer Fishing Lines. ChemRxiv 2025, Version 1. https://doi.org/10.26434/chemrxiv-2025-cbmb0

  10. An Y, Padermshoke A, Nguyen TV, Masunaga H, Yokoyama R, Yonemura M, et al. Photo-Oxidative Degradation and Biodegradation of Poly(ether-block-amide) Multiblock Copolymers. ACS Appl Polym Mater 2024;6:6140–9.

    Article  CAS  Google Scholar 

  11. Lott C, Eich A, Makarow D, Unger B, van Eekert M, Schuman E, et al. M. Half-Life of Biodegradable Plastics in the Marine Environment Depends on Material, Habitat, and Climate Zone. Front Mar Sci. 2021;8:662074.

    Article  Google Scholar 

  12. Omura T, Isobe N, Miura T, Ishii S, Mori M, Ishitani Y, et al. Microbial Decomposition of Biodegradable Plastics on the Deep-Sea Floor. Nat Commun. 2024;15:568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suzuki M, Tachibana Y, Kasuya K-i. Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments. Polym J. 2021;53:47–66.

    Article  CAS  Google Scholar 

  14. Jenkins MJ, Harrison KL. The Effect of Crystalline Morphology on the Degradation of Polycaprolactone in a Solution of Phosphate Buffer and Lipase. Polym Adv Technol. 2008;19:1901–6.

    Article  CAS  Google Scholar 

  15. Cheng Y, Zhang K, Huang K, Zhang H. Meta-Analysis and Machine Learning Models for Anaerobic Biodegradation Rates of Organic Contaminants in Sediments and Sludge. Environ Sci Technol. 2024;58:12976–88.

    Article  CAS  PubMed  Google Scholar 

  16. Chen S, Xu G, Chen J, Zhang H, Jiang X, Liu Z, et al. Predicting the Environmental Fate of Biodegradable Mulch Films: A Machine Learning Approach for Sustainable Agriculture. J Hazard Mater. 2025;492:138277.

    Article  CAS  PubMed  Google Scholar 

  17. Japan Aerospace Exploration Agency (JAXA). GCOM-C/SGLI L3 Map Photosynthetically Available Radiation (PAR) (1-Day, 1/24°); JAXA: Tokyo, Japan, 2023. https://doi.org/10.57746/EO.01gs73bfy6n1sv1q02vtra7hga

  18. Japan Aerospace Exploration Agency (JAXA). GCOM-C/SGLI L3 Map Chlorophyll-a Concentration (1-Day, 1/24°); JAXA: Tokyo, Japan, 2023. https://doi.org/10.57746/EO.01gs73bebt0jafpxsk1ttv1e3x

  19. Japan Aerospace Exploration Agency (JAXA). GCOM-C/SGLI L3 Map Suspended Solid Concentration (TSM) (1-Day, 1/24°); JAXA: Tokyo, Japan, 2023. https://doi.org/10.57746/EO.01gs73bkehjpp1hqnape1nc8dm

  20. Neppalli R, Causin V, Marega C, Saini R, Mba M, Marigo A. Structure, Morphology, and Biodegradability of Poly(ε-caprolactone)-Based Nanocomposites. Polym Eng Sci. 2011;51:2393–402.

    Article  Google Scholar 

  21. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’19); ACM: New York, 2019; pp 2623-31. https://doi.org/10.1145/3292500.3330701

  22. Sjøholm KK, Birch H, Hammershøj R, Saunders DMV, Dechesne A, Loibner AP, et al. Determining the Temperature Dependency of Biodegradation Kinetics for 34 Hydrocarbons while Avoiding Chemical and Microbial Confounding Factors. Environ Sci Technol. 2021;55:11091–101.

    Article  Google Scholar 

  23. Brown DM, Camenzuli L, Redman AD, Hughes C, Wang N, Vaiopoulou E, et al. Is the Arrhenius-Correction of Biodegradation Rates, as Recommended through REACH Guidance, Fit for Environmentally Relevant Conditions? An Example from Petroleum Biodegradation in Environmental Systems. Sci Total Environ. 2020;732:139293.

    Article  CAS  PubMed  Google Scholar 

  24. Ferguson SH, Franzmann PD, Snape I, Revill AT, Trefry MG, Zappia LR. Effects of Temperature on Mineralisation of Petroleum in Contaminated Antarctic Terrestrial Sediments. Chemosphere. 2003;52:955–66.

    Article  Google Scholar 

  25. Guildford SJ, Hecky RE. Total Nitrogen, Total Phosphorus, and Nutrient Limitation in Lakes and Oceans: Is There a Common Relationship?. Limnol Oceanogr. 2000;45:1213–23.

    Article  CAS  Google Scholar 

  26. Martiny AC, Vrugt JA, Primeau FW, Lomas MW. Regional Variation in the Particulate Organic Carbon to Nitrogen Ratio in the Surface Ocean. Glob Biogeochem Cycles. 2013;27:723–31.

    Article  CAS  Google Scholar 

  27. Behrenfeld MJ, Falkowski PG. Photosynthetic Rates Derived from Satellite-Based Chlorophyll Concentration. Limnol Oceanogr. 1997;42:1–20.

    Article  CAS  Google Scholar 

  28. Sathyendranath S, Brewin RJW, Brockmann C, Brotas V, Calton B, Chuprin A, et al. An Ocean-Colour Time Series for Use in Climate Studies: The Experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors. 2019;19:4285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fong CR, Gaynus CJ, Carpenter RC. Extreme Rainfall Events Pulse Substantial Nutrients and Sediments from Terrestrial to Nearshore Coastal Communities: A Case Study from French Polynesia. Sci Rep. 2020;10:3891.

    Article  Google Scholar 

  30. Graham MH. Confronting Multicollinearity in Ecological Multiple Regression. Ecology. 2003;84:2809–15.

    Article  Google Scholar 

  31. Zuur AF, Ieno EN, Elphick CS. A Protocol for Data Exploration to Avoid Common Statistical Problems. Methods Ecol Evol. 2010;1:3–14.

    Article  Google Scholar 

  32. Zou H, Hastie T. Regularization and Variable Selection via the Elastic Net. J R Stat Soc, Ser B. 2005;67:301–20.

    Article  Google Scholar 

  33. Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik V. Support Vector Regression Machines. Adv Neural Inf Process Syst. 1997;9:155–61.

    Google Scholar 

  34. Breiman L. Random Forests. Mach Learn. 2001;45:5–32.

    Article  Google Scholar 

  35. Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A. V.; Gulin, A. CatBoost: Unbiased Boosting with Categorical Features. arXiv 2017, arXiv:1706.09516. https://doi.org/10.48550/arXiv.1706.09516

  36. Jacquin J, Cheng J, Odobel C, Pandin C, Conan P, Pujo-Pay M, et al. Microbial Ecotoxicology of Marine Plastic Debris: A Review on Colonization and Biodegradation by the “Plastisphere. Front Microbiol. 2019;10:865.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO) under Project PNP18016. The authors thank Prof. Hirofumi Hinata, Prof. Hidetaka Takeoka, and Prof. Takahiro Matsubara (Ehime University) for their kind support and valuable assistance with the coastal field exposure experiments, including field logistics and sample deployment and retrieval.

Author information

Authors and Affiliations

Authors

Contributions

Hironori Taguchi: Conceptualization, Methodology, Validation, Formal Analysis, Writing-Original Draft, Writing-Review & Editing, Visualization Takako Kikuchi: Conceptualization, Funding acquisition. Yoshifumi Amamoto: Conceptualization, Methodology Hiroshi Morita: Conceptualization, Methodology Keiji Tanaka: Conceptualization, Methodology, Writing-Review & Editing, Supervision, Project administration.

Corresponding authors

Correspondence to Hironori Taguchi or Keiji Tanaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taguchi, H., Kikuchi, T., Amamoto, Y. et al. Relative contributions of crystallinity and environmental factors to the degradation rate of poly(ε-caprolactone) (PCL) under coastal field conditions. Polym J (2026). https://doi.org/10.1038/s41428-026-01153-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41428-026-01153-w

Search

Quick links