Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The effect of novel β-lactam derivatives synthesized from substituted phenethylamines on resistance genes of MRSA isolates

Abstract

This study focuses on the activity of previously reported imine and β-lactam derivatives against methicillin-resistant Staphylococcus aureus (MRSA) isolates. The presence of mecA and blaZ genes in the isolates was determined, and the minimum inhibitory concentration (MIC) values were determined based on the antibacterial activity against these isolates. Active compounds were selected and their ability to act against resistant isolates in vitro was determined. Concurrently, biochemical (nitrocefin) and molecular (qRT-PCR) tests were used to investigate the ability of the compounds to induce resistance genes in MRSA isolates. The cytotoxicity of the compounds on human dermal fibroblasts (HDF) was investigated. The MIC values of compounds (10) and (12) against MSSA and MRSA isolates were 7.81 and 15.62 μg ml−1, respectively. The most active compounds were identified as (10) and (12), and it was observed that the isolates did not develop resistance to these compounds in vitro. These compounds were found to inhibit β-lactamase, reduce the expression of resistance genes, and exhibit reduced HDF cell toxicity in a dose-dependent manner. According to the findings of the study, it can be concluded that these compounds show promise as hits with an interesting mechanism of action for further chemical modifications to develop new MRSA inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015;40:277–83.

    PubMed  PubMed Central  Google Scholar 

  2. Ciftci A, Aksoy A. Acquired Resistance Mechanisms Against Antibiotics. Turkiye Klinikleri J Vet Sci Pharmacol Toxicol-Spec Top. 2015;1:1–10.

    Google Scholar 

  3. Copeland RA. Conformational adaptation in drug-target interactions and residence time. Future Med Chem. 2011;3:1491–501.

    Article  CAS  PubMed  Google Scholar 

  4. Cloete R, Oppon E, Murungi E, Schubert W-D, Christoffels A. Resistance related metabolic pathways for drug target identification in Mycobacterium tuberculosis. BMC Bioinform. 2016;17:75–75. https://doi.org/10.1186/s12859-016-0898-8.

    Article  CAS  Google Scholar 

  5. Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:1–8. https://doi.org/10.1155/2016/2475067.

    Article  CAS  Google Scholar 

  6. May KL, Grabowicz M. The bacterial outer membrane is an evolving antibiotic barrier. Proc Natl Acad Sci. 2018;115:8852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun J, Deng Z, Yan A. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun. 2014;453:254–67.

  8. Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4:482–501. https://doi.org/10.3934/microbiol.2018.3.482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Worthington RJ, Melander C. Overcoming resistance to β-lactam antibiotics. J Org Chem. 2013;78:4207–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garneau-Tsodikova S, Labby KJ. Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. Medchemcomm. 2016;7:11–27.

    Article  CAS  PubMed  Google Scholar 

  11. Uzun B, Güngör S, Pektaş B, Aksoy Gökmen A, Yula E, Koçal F, et al. Macrolide-lincosamide-streptogramin B (MLSB) resistance phenotypes in clinical Staphylococcus isolates and investigation of telithromycin activity. Mikrobiyol Bul. 2014;48:469–76.

    Article  PubMed  Google Scholar 

  12. Yushchuk O, Binda E, Marinelli F. Glycopeptide antibiotic resistance genes: distribution and function in the producer actinomycetes. Front Microbiol. 2020;11:1173–1173.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Grossman TH. Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med. 2016;6:a025387–a. https://doi.org/10.1101/cshperspect.a025387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khawcharoenporn T, Vasoo S, Ward E, Singh K. High rates of quinolone resistance among urinary tract infections in the ED. Am J Emerg Med. 2012;30:68–74.

    Article  PubMed  Google Scholar 

  15. Goldstein BP. Resistance to rifampicin: a review. J Antibiot (Tokyo). 2014;67:625–30.

    Article  CAS  PubMed  Google Scholar 

  16. Schmitz F-J, Fluit AC. Chapter 131 - Mechanisms of antibacterial resistance. In: Cohen J, Opal SM, Powderly WG, editors. Infectious diseases (Third Edition). London: Mosby; 2010. p. 1308-22.

  17. Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol. 2019;17:203–18. https://doi.org/10.1038/s41579-018-0147-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andrade MM, Luiz WB, da Silva Oliveira Souza R, Amorim JH. The History of Methicillin-Resistant Staphylococcus aureus in Brazil. Can J Infect Dis Med Microbiol. 2020;2020:1–18. https://doi.org/10.1155/2020/1721936.

    Article  Google Scholar 

  19. Brahma U, Sharma P, Murthy S, Sharma S, Chakraborty S, Appalaraju SN, et al. Decreased expression of femXAB genes and fnbp mediated biofilm pathways in OS-MRSA clinical isolates. Sci Rep. 2019;9:16028 https://doi.org/10.1038/s41598-019-52557-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shalaby M-AW, Dokla EME, Serya RAT, Abouzid KAM. Penicillin binding protein 2a: An overview and a medicinal chemistry perspective. Eur J Med Chem. 2020;199:112312.

    Article  CAS  PubMed  Google Scholar 

  21. Kuehl R, Morata L, Meylan S, Mensa J, Soriano A. When antibiotics fail: a clinical and microbiological perspective on antibiotic tolerance and persistence of Staphylococcus aureus. J Antimicrob Chemother. 2020;75:1071–86. https://doi.org/10.1093/jac/dkz559.

    Article  CAS  PubMed  Google Scholar 

  22. Guignard B, Vouillamoz J, Giddey M, Moreillon PA. A positive interaction between inhibitors of protein synthesis and cefepime in the fight against methicillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis. 2013;32:899–907.

    Article  CAS  PubMed  Google Scholar 

  23. Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol Rev. 2008;32:361–85.

    Article  CAS  PubMed  Google Scholar 

  24. Yildirim M, Ozgeris B, Gormez A. Substituted phenethylamine-based 8-lactam derivatives: Antimicrobial, anticancer, and 8-lactamase inhibitory properties. Bioorg Chem. 2022;129:106212.

    Article  CAS  PubMed  Google Scholar 

  25. Ulucay O, Gormez A, Ozic C. Identification, characterization and hydrolase producing performance of thermophilic bacteria: geothermal hot springs in the Eastern and Southeastern Anatolia Regions of Turkey. Antonie van Leeuwenhoek. 2022;115:253–70. https://doi.org/10.1007/s10482-021-01678-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chung PY, Chung LY, Navaratnam P. Transcriptional profiles of the response of methicillin-resistant staphylococcus aureus to pentacyclic triterpenoids. Plos One. 2013;8:e56687 https://doi.org/10.1371/journal.pone.0056687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu XF, Pai PJ, Zhang WP, Hu YW, Dong XJ, Qian PY, et al. Proteomic response of methicillin-resistant S. aureus to a synergistic antibacterial drug combination: a novel erythromycin derivative and oxacillin. Sci Rep. 2016;6 https://doi.org/10.1038/srep19841.

  28. Gormez A, Bozari S, Yanmis D, Gulluce M, Sahin F, Agar G. Chemical composition and antibacterial activity of essential oils of two species of lamiaceae against phytopathogenic bacteria. Pol J Microbiol. 2015;64:121–7.

    Article  PubMed  Google Scholar 

  29. Ruzin A, Petersen PJ, Jones CH. Resistance development profiling of piperacillin in combination with the novel beta-lactamase inhibitor BLI-489. J Antimicrob Chemother. 2010;65:252–7. https://doi.org/10.1093/jac/dkp435.

    Article  CAS  PubMed  Google Scholar 

  30. Haste NM, Hughes CC, Tran DN, Fenical W, Jensen PR, Nizet V, Hensler ME. Pharmacological properties of the marine natural product marinopyrrole A against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55:3305–12. https://doi.org/10.1128/AAC.01211-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Atshan SS, Shamsudin MN, Lung LT, Ling KH, Sekawi Z, Pei CP, Ghaznavi-Rad E. Improved method for the isolation of RNA from bacteria refractory to disruption, including S. aureus producing biofilm. Gene. 2012;494:219–24. https://doi.org/10.1016/j.gene.2011.12.010.

    Article  CAS  PubMed  Google Scholar 

  32. Narrandes S, Xu W. Gene expression detection assay for cancer clinical use. J Cancer. 2018;9:2249–65.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ghavami A, Labbé G, Brem J, Goodfellow VJ, Marrone L, Tanner CA, King DT, Lam M, Strynadka NCJ, Pillai DR, Siemann S, Spencer J, Schofield CJ, Dmitrienko GI. Assay for drug discovery: Synthesis and testing of nitrocefin analogues for use as β-lactamase substrates. Anal Biochem. 2015;486:75–77. https://doi.org/10.1016/j.ab.2015.06.032.

    Article  CAS  PubMed  Google Scholar 

  34. Barlak N, Sanlı F, Capik O, Tuysuz E, Aydın Karataş E, Turkez H, Karatas OF. Metformin treatment sensitizes human laryngeal cancer cell line hep-2 to 5-fluorouracil. Clin Cancer Drugs. 2020;7:16–24. https://doi.org/10.2174/2212697X06666190906165309.

    Article  CAS  Google Scholar 

  35. Kaci FN, Ruzgar D, Gormez A, Efe D. The evaluation of cytotoxic and antibacterial activity of the ethanol extract of Punica granatum L. Peels. J Inst Sci Technol. 2021;11:2319–27. https://dergipark.org.tr/en/pub/jist/issue/64410/875449.

    Google Scholar 

  36. Takayama Y, Tanaka T, Oikawa K, Fukano N, Goto M, Takahashi T. Prevalence of blaZ gene and performance of phenotypic tests to detect penicillinase in Staphylococcus aureus Isolates from Japan. Ann Lab Med. 2018;38:155–9.

    Article  CAS  PubMed  Google Scholar 

  37. Dulger D, Ekici S, Albuz O, Pakdemirli A. Investigation of Nasal Staphylococcus aureus carriage in hospital employees and rapid detection of PVL and mecA genes by RT-PCR. Etlik Vet Mikrobiyol Derg 2022;31:47–51.

    Article  Google Scholar 

  38. Iravani Mohammad Abadi M, Moniri R, Khorshidi A, Piroozmand A, Mousavi SGA, Dastehgoli K, et al. Molecular characteristics of nasal carriage methicillin-resistant coagulase negative staphylococci in school students. Jundishapur J Microbiol. 2015;8:e18591–e. https://doi.org/10.5812/jjm.18591v2. 2015

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ray MD, Boundy S, Archer GL. Transfer of the methicillin resistance genomic island among staphylococci by conjugation. Mol Microbiol. 2016;100:675–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mobasherizadeh S, Shojaei H, Azadi D, Havaei SA, Rostami S. Molecular characterization and genotyping of methicillin-resistant Staphylococcus aureus in nasal carriage of healthy Iranian children. J Med Microbiol. 2019;68:374–8. https://doi.org/10.1099/jmm.0.000924.

    Article  CAS  PubMed  Google Scholar 

  41. Ibrahim OMA, Bilal NE, Osman OF, Magzoub MA. Assessment of methicillin resistant Staphylococcus aureus detection methods: analytical comparative study. Pan Afr Med J. 2017;27:281 https://doi.org/10.11604/pamj.2017.27.281.9016.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bagcigil AF, Taponen S, Koort J, Bengtsson B, Myllyniemi AL, Pyorala S. Genetic basis of penicillin resistance of S. aureus isolated in bovine mastitis. Acta Vet Scand. 2012;54. https://doi.org/10.1186/1751-0147-54-69.

  43. Kriegeskorte A, Ballhausen B, Idelevich E, Köck R, Friedrich A, Karch H, et al. Human MRSA isolates with novel genetic homolog, Germany. Emerg Infect Dis. 2012;18:1016–8. https://doi.org/10.3201/eid1806.110910.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Laica SP, Andrade CF, Orellana PP, Ramos RR. Resistance to beta-lactams in Staphylococcus aureus isolated from cell phone screens of dentistry students based on an antibiogram and detection of blaZ and mecA genes. Genet Mol Res. 2021;20:gmr18931 https://doi.org/10.4238/gmr18931.

    Article  CAS  Google Scholar 

  45. Shi L, Mao WJ, Yang Y, Zhu HL. Synthesis, characterization, and biological activity of a Schiff-base Zn(II) complex. J Coord Chem. 2009;62:3471–7.

    Article  CAS  Google Scholar 

  46. Schroeder M, Horne SM, Prüß BM. Efficacy of β-phenylethylamine as a novel anti-microbial and application as a liquid catheter flush. J Med Microbiol. 2018;67:1778–88.

    Article  CAS  PubMed  Google Scholar 

  47. Gładkowski W, Siepka M, Janeczko T, Kostrzewa-Susłow E, Popłoński J, Mazur M, Żarowska B, Łaba W, Maciejewska G, Wawrzeńczyk C. Synthesis and antimicrobial activity of methoxy- substituted γ-Oxa-ε-lactones derived from flavanones. Molecules. 2019;24:4151 https://doi.org/10.3390/molecules24224151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gopalakrishnan M, Thanusu J, Kanagarajan V. Design, synthesis, spectral analysis and in vitro microbiological evaluation of 2-phenyl-3-(4,6-diarylpyrimidin-2-yl)thiazolidin-4-ones. J Enzym Inhibition Medicinal Chem. 2009;24:1088–94.

    Article  CAS  Google Scholar 

  49. Limban C, Chifiriuc MC, Caproiu MT, Dumitrascu F, Ferbinteanu M, Pintilie L, et al. New substituted benzoylthiourea derivatives: from design to antimicrobial applications. Molecules. 2020;25:1478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ozgeris B. Synthesis of substituted phenethylamine-based thioureas and their antimicrobial and antioxidant properties. Russ J Org Chem. 2021;57:422–9. https://doi.org/10.1134/S1070428021030143.

    Article  CAS  Google Scholar 

  51. Lahiri SD, Alm RA. Potential of Staphylococcus aureus isolates carrying different PBP2a alleles to develop resistance to ceftaroline. J Antimicrob Chemother. 2016;71:34–40. https://doi.org/10.1093/jac/dkv329.

    Article  CAS  PubMed  Google Scholar 

  52. Man NYT, Knight DR, Stewart SG, McKinley AJ, Riley TV, Hammer KA. Spectrum of antibacterial activity and mode of action of a novel tris-stilbene bacteriostatic compound. Sci Rep. 2018;8:6912 https://doi.org/10.1038/s41598-018-25080-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Soliman MK, Abozahra R, Gaafar AY, Younes AM, Affr NA. Determination of mecA expression and other resistance mechanisms in methicillin-resistant Staphylococcus aureus isolated from Oreochromis niloticus (Nile tilapia). Afr J Microbiol Res. 2016;10:481–5. https://doi.org/10.5897/AJMR2015.7859.

    Article  CAS  Google Scholar 

  54. Gillard K, Miller HB, Blackledge MS. Tricyclic amine antidepressants suppress β-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) by repressing mRNA levels of key resistance genes. Chem Biol Drug Des. 2018;92:1822–9.

    Article  CAS  PubMed  Google Scholar 

  55. Liu X, Ma L, Chen F, Liu J, Yang H, Lu Z. Synergistic antibacterial mechanism of Bi2Te3 nanoparticles combined with the ineffective β-lactam antibiotic cefotaxime against methicillin-resistant Staphylococcus aureus. J Inorg Biochem. 2019;196:110687 https://doi.org/10.1016/j.jinorgbio.2019.04.001.

    Article  CAS  PubMed  Google Scholar 

  56. Barreto EF, Webb AJ, Pais GM, Rule AD, Jannetto PJ, Scheetz MH. Setting the beta-lactam therapeutic range for critically ill patients: is there a floor or even a ceiling? Crit Care Explorations. 2021;3:e0446–e. https://doi.org/10.1097/CCE.0000000000000446.

    Article  Google Scholar 

  57. Desai NC, Vaghani HV, Patel BY, Karkar TJ. Synthesis and antimicrobial activity of fluorine containing pyrazole-clubbed dihydropyrimidinones. Indian J Pharm Sci. 2018;80:242–52.

    Article  CAS  Google Scholar 

  58. Özgeriş FB, Özgeriş B. Synthesis, characterization, and biological evaluations of substituted phenethylamine-based urea as anticancer and antioxidant agents. Monatsh Chem. 2021;152:1241–50. https://doi.org/10.1007/s00706-021-02830-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Erzurum Technical University (Master’s Thesis Project, 2021/004) and is based on the MSc thesis of Merve Yıldırım. We would like to thank Erzurum Technical University and YUTAM (High Technology and Research Center) for their financial support and research conditions.

Author information

Authors and Affiliations

Authors

Contributions

MY performed the analyses and wrote the first draft of the manuscript. AG and BO supervised the study and interpreted the results. All authors contributed to the revision of the manuscript and have read and approved the submitted version.

Corresponding author

Correspondence to Arzu Gormez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim, M., Ozgeris, B. & Gormez, A. The effect of novel β-lactam derivatives synthesized from substituted phenethylamines on resistance genes of MRSA isolates. J Antibiot 77, 802–811 (2024). https://doi.org/10.1038/s41429-024-00769-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41429-024-00769-5

This article is cited by

Search

Quick links