Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antimicrobial activity of α/β hybrid peptides incorporating tBu3,3Ac6c against methicillin-resistant Staphylococcus aureus

Abstract

The incorporation of β-amino acids into peptides is a promising approach to develop proteolytically stable therapeutic agents. Short α/β hybrid peptides containing tBu3,3Ac6cː H2N-Lys-tBu3,3Ac6c-PEA, P1; H2N-Orn-tBu3,3Ac6c-PEA, P2; H2N-Arg-tBu3,3Ac6c-PEA, P3; LA-Lys-tBu3,3Ac6c-PEA, P4; LA-Orn-tBu3,3Ac6c-PEA, P5; LA-Arg-tBu3,3Ac6c-PEA, P6; LAu-Lys-tBu3,3Ac6c-PEA, P7; LAu-Orn-tBu3,3Ac6c-PEA, P8; and LAu-Arg-tBu3,3Ac6c-PEA, P9 were prepared. The antimicrobial efficacies of all the peptides were evaluated against ESKAPE pathogens, along with a small panel of multi-drug resistant (MDR) clinical isolates of S. aureus. Among all the peptides, P4, P6, and P7 showed significant efficacies against P. aeruginosa, S. aureus, and MRSA with an MIC value ranging from 6.25 to 12.5 μM. Further, in vitro, anti-staphylococcal assessment with their antimicrobial synergy of the peptides P4, P6, and P7 was carried out against MRSA, due to its better efficacy. The peptides P6 and P7 exhibited MRSA biofilm inhibition of 70% and 77%, respectively, at 4×MIC concentration. At its MIC concentration, about 19% hemolysis was observed for P4, P6, and P7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens: BioMed Research International, 2016;2475067.

  2. Aslam B, Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol. 2020;11:582779.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hicks RP, Bhonsle JB, Venugopal D, Koser BW, Magill AJ. De novo design of selective antibiotic peptides by incorporation of unnatural amino acids. J Med Chem. 2007;50:3026–36.

    Article  CAS  PubMed  Google Scholar 

  5. Gentilucci L, De Marco R, Cerisoli L. Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Des. 2010;16:3185–203.

    Article  CAS  PubMed  Google Scholar 

  6. Cabrele C, Martinek TA, Reiser O, Berlicki Ł. Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry. J Med Chem. 2014;57:9718–39.

    Article  CAS  PubMed  Google Scholar 

  7. Wani NA, Singh G, Shankar S, Sharma A, Katoch M, Rai R. Short hybrid peptides incorporating β-and γ-amino acids as antimicrobial agents. Peptides. 2017;97:46–53.

    Article  CAS  PubMed  Google Scholar 

  8. Shankar SS, Benke SN, Nagendra N, Srivastava PL, Thulasiram HV, Gopi HN. Self-assembly to function: design, synthesis, and broad spectrum antimicrobial properties of short hybrid E-vinylogous lipopeptides. J Med Chem. 2013;56:8468–74.

    Article  CAS  PubMed  Google Scholar 

  9. Benke SN, Thulasiram HV, Gopi HN. Potent antimicrobial activity of lipidated short α, γ‐hybrid peptides. ChemMedChem. 2017;12:1610–5.

    Article  CAS  PubMed  Google Scholar 

  10. Aguilar M-I, Purcell AW, Devi R, Lew R, Rossjohn J, Smith AI, Perlmutter P. β-Amino acid-containing hybrid peptides—new opportunities in peptidomimetics. Org Biomol Chem. 2007;5:2884–90.

    Article  CAS  PubMed  Google Scholar 

  11. Schmitt MA, Weisblum B, Gellman SH. Interplay among folding, sequence, and lipophilicity in the antibacterial and hemolytic activities of α/β-peptides. J Am Chem Soc. 2007;129:417–28.

    Article  CAS  PubMed  Google Scholar 

  12. Chowdhary R, Mubarak MM, Kantroo HA, ur Rahim J, Malik A, Sarkar AR, Bashir G, Ahmad Z, Rai R. Synthesis, characterization, and antimicrobial activity of ultra-short cationic β-peptides. ACS Infect Dis. 2023;9:1437–48.

    Article  CAS  PubMed  Google Scholar 

  13. Schmitt MA, Weisblum B, Gellman SH. Unexpected relationships between structure and function in α, β-peptides: antimicrobial foldamers with heterogeneous backbones. J Am Chem Soc. 2004;126:6848–9.

    Article  CAS  PubMed  Google Scholar 

  14. Vestergaard M, Skive B, Domraceva I, Ingmer H, Franzyk H. Peptide/β-peptoid hybrids with activity against vancomycin-resistant enterococci: influence of hydrophobicity and structural features on antibacterial and hemolytic properties. Int J Mol Sci. 2021;22:5617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ur Rahim J, Singh G, Shankar S, Katoch M, Rai R. Tetrahydropiperic acid (THPA) conjugated cationic hybrid dipeptides as antimicrobial agents. J Antibiot. 2021;74:480–3.

    Article  CAS  Google Scholar 

  16. Shankar S, Jyothi D, Rahim JU, Pal PC, Singh UP, Rai R. Conformation of achiral α/β hybrid peptides containing glycine and 1‐aminocyclohexaneacetic acid: ChemistrySelect. 2022;7:e202104453.

  17. Lehto T, Vasconcelos L, Margus H, Figueroa R, Pooga M, Hällbrink M, Langel U. Saturated fatty acid analogues of cell-penetrating peptide PepFect14: role of fatty acid modification in complexation and delivery of splice-correcting oligonucleotides. Bioconjugate Chem. 2017;28:782–92.

    Article  CAS  Google Scholar 

  18. Violette A, Fournel S, Lamour K, Chaloin O, Frisch B, Briand JP, Guichard G. Mimicking helical antibacterial peptides with nonpeptidic folding oligomers. Chem Biol. 2006;13:531–8.

    Article  CAS  PubMed  Google Scholar 

  19. Kavaliauskas P, Acevedo W, Garcia A, Naing E, Grybaite B, Sapijanskaite-Banevic B, Grigaleviciute R, Petraitiene R, Mickevicius V, Petraitis V. Exploring the potential of bis (thiazol-5-yl) phenylmethane derivatives as novel candidates against genetically defined multidrug-resistant Staphylococcus aureus. Plos one. 2024;19:e0300380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oliveira W, Silva PMS, Silva RCS, Silva GMM, Machado G, Coelho LCBB, Correia MTS. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hospital Infect. 2018;98:111–7.

    Article  CAS  Google Scholar 

  21. Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev Anti Infect Ther. 2015;13:1499–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lister JL, Horswill AR. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol. 2014;4:178.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, CSIR-IIIM, Jammu, for providing laboratory facilities to conduct this research. The work was supported by the internal institutional grant (MLP-110011) and (IIRP-0715/2023) from the Council of Scientific and Industrial Research (CSIR) and the Indian Council for Medical Research (ICMR) Government of India. ARS and RM thanks CSIR-IIIM for providing the project fellowship. JK and RC thank the Council of Scientific and Industrial Research (CSIR), India, for providing the fellowship. AR and SF thank the University Grant Commission (UGC), India, for providing the fellowship. The institutional publication number of the article is CSIR-IIIM/IPR/00727.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Avisek Mahapa or Rajkishor Rai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A.R., Kumari, J., Rathore, A. et al. Antimicrobial activity of α/β hybrid peptides incorporating tBu3,3Ac6c against methicillin-resistant Staphylococcus aureus. J Antibiot 77, 794–801 (2024). https://doi.org/10.1038/s41429-024-00773-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41429-024-00773-9

This article is cited by

Search

Quick links