Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of nanaomycin A and its analogs by a newly established screening method for functional inhibitors of the type IX secretion system in Porphyromonas gingivalis

Abstract

Porphyromonas gingivalis, a Gram-negative anaerobic bacterium, is a key pathogen in chronic periodontitis. P. gingivalis has a type IX secretion system (T9SS) that secretes highly hydrolytic proteinases called gingipains for obtaining peptides as an energy source. Although most T9SS-related proteins have been identified, no specific inhibitor of T9SS has been reported. To screen T9SS inhibitors, we focused on and characterized a minimal liquid medium called mC medium that contains milk casein as the sole protein source. We found that P. gingivalis wild-type strain ATCC 33277 caused cloudiness of mC medium without growth. In mC medium, an alkylating agent, iodoacetamide (IAM) that is an inhibitor of gingipains, and a protonophore, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) that dissipates the proton motive force required for T9SS-mediated secretion, clearly inhibited the increase in turbidity. Moreover, neither the gingipain-null mutant nor the T9SS-deficient mutant caused mC medium cloudiness, suggesting that mC medium cloudiness is dependent on gingipain activity and T9SS. These results indicated that mC medium can be used to assess P. gingivalis gingipain activity and its functional T9SS. Using an assay system with mC medium, we discovered that OM-173αA and OM-173βA in the Ōmura Natural Compound Library and nanaomycin A were probable T9SS inhibitors. The compounds need to be further investigated as tools for analyzing T9SS and as potential therapeutic agents for periodontal disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Supplementary information is available at Journal of Antibiotics website.

References

  1. How KY, Song KP, Chan KG. Porphyromonas gingivalis: an overview of periodontopathic pathogen below the gum line. Front Microbiol. 2016;7:53.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goulas T, Mizgalska D, Garcia-Ferrer I, Kantyka T, Guevara T, Szmigielski B, et al. Structure and mechanism of a bacterial host-protein citrullinating virulence factor, Porphyromonas gingivalis peptidylarginine deiminase. Sci Rep. 2015;5:11969.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jia S, Li X, Du Q. Host insulin resistance caused by Porphyromonas gingivalis-review of recent progresses. Front Cell Infect Microbiol. 2023;13:1209381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Y, Guo R, Oduro PK, Sun T, Chen H, Yi Y, et al. The relationship between Porphyromonas gingivalis and rheumatoid arthritis: a meta-analysis. Front Cell Infect Microbiol. 2022;12:956417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu Y, Wu Z, Nakanishi Y, Ni J, Hayashi Y, Takayama F, et al. Infection of microglia with Porphyromonas gingivalis promotes cell migration and an inflammatory response through the gingipain-mediated activation of protease-activated receptor-2 in mice. Sci Rep. 2017;7:11759.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Miyauchi M, Ao M, Furusho H, Chea C, Nagasaki A, Sakamoto S, et al. Galectin-3 plays an important role in preterm birth caused by dental infection of Porphyromonas gingivalis. Sci Rep. 2018;8:2867.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ryder MI. Porphyromonas gingivalis and Alzheimer disease: recent findings and potential therapies. J Periodontol. 2020;91:S45–S49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Potempa J, Travis J. Porphyromonas gingivalis proteinases in periodontitis, a review. Acta Biochim Pol. 1996;43:455–65.

    Article  CAS  PubMed  Google Scholar 

  9. Sato K, Sakai E, Veith PD, Shoji M, Kikuchi Y, Yukitake H, et al. Identification of a new membrane-associated protein that influences transport/maturation of gingipains and adhesins of Porphyromonas gingivalis. J Biol Chem. 2005;280:8668–77.

    Article  CAS  PubMed  Google Scholar 

  10. Sato K, Naito M, Yukitake H, Hirakawa H, Shoji M, McBride MJ, et al. A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci USA. 2010;107:276–81.

    Article  CAS  PubMed  Google Scholar 

  11. Seers CA, Slakeski N, Veith PD, Nikolof T, Chen YY, Dashper SG, et al. The RgpB C-terminal domain has a role in attachment of RgpB to the outer membrane and belongs to a novel C-terminal-domain family found in Porphyromonas gingivalis. J Bacteriol. 2006;188:6376–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Veith PD, Glew MD, Gorasia DG, Cascales E, Reynolds EC. The type IX secretion system and its role in bacterial function and pathogenesis. J Dent Res. 2022;101:374–83.

    Article  CAS  PubMed  Google Scholar 

  13. Hennell James R, Deme JC, Hunter A, Berks BC, Lea SM. Structures of the Type IX Secretion/Gliding Motility Motor from across the Phylum Bacteroidetes. mBio. 2022;13:e0026722.

    Article  PubMed  Google Scholar 

  14. Kita D, Shibata S, Kikuchi Y, Kokubu E, Nakayama K, Saito A, et al. Involvement of the type IX secretion system in Capnocytophaga ochracea gliding motility and biofilm formation. Appl Environ Microbiol. 2016;82:1756–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kondo Y, Sato K, Nagano K, Nishiguchi M, Hoshino T, Fujiwara T, et al. Involvement of PorK, a component of the type IX secretion system, in Prevotella melaninogenica pathogenicity. Microbiol Immunol. 2018;62:554–66.

    Article  CAS  PubMed  Google Scholar 

  16. Naito M, Shoji M, Sato K, Nakayama K. Insertional inactivation and gene complementation of Prevotella intermedia type IX secretion system reveals its indispensable roles in black pigmentation, hemagglutination, protease activity of interpain A, and biofilm formation. J Bacteriol. 2022;204:e0020322.

    Article  PubMed  Google Scholar 

  17. Narita Y, Sato K, Yukitake H, Shoji M, Nakane D, Nagano K, et al. Lack of a surface layer in Tannerella forsythia mutants deficient in the type IX secretion system. Microbiology. 2014;160:2295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Y, Watanabe E, Kawashima Y, Plichta DR, Wang Z, Ujike M, et al. Identification of trypsin-degrading commensals in the large intestine. Nature. 2022;609:582–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barbier P, Rochat T, Mohammed HH, Wiens GD, Bernardet JF, Halpern D, et al. The type IX secretion system is required for virulence of the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol. 2020;86:e00799–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McBride MJ, Nakane D. Flavobacterium gliding motility and the type IX secretion system. Curr Opin Microbiol. 2015;28:72–7.

    Article  CAS  PubMed  Google Scholar 

  21. Hennell James R, Deme JC, Kjӕr A, Alcock F, Silale A, Lauber F, et al. Structure and mechanism of the proton-driven motor that powers type 9 secretion and gliding motility. Nat Microbiol. 2021;6:221–33.

    Article  CAS  PubMed  Google Scholar 

  22. Nakane D, Sato K, Wada H, McBride MJ, Nakayama K. Helical flow of surface protein required for bacterial gliding motility. Proc Natl Acad Sci USA. 2013;110:11145–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vincent MS, Comas Hervada C, Sebban-Kreuzer C, Le Guenno H, Chabalier M, Kosta A, et al. Dynamic proton-dependent motors power type IX secretion and gliding motility in Flavobacterium. PLoS Biol. 2022;20:e3001443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sasaki Y, Shoji M, Sueyoshi T, Shibata S, Matsuo T, Yukitake H, et al. A conditional gene expression system in Porphyromonas gingivalis for study of the secretion mechanisms of lipoproteins and T9SS cargo proteins. Mol Oral Microbiol. 2023;38:321–33.

    Article  CAS  PubMed  Google Scholar 

  25. Shoji M, Sato K, Yukitake H, Kondo Y, Narita Y, Kadowaki T, et al. Por secretion system-dependent secretion and glycosylation of Porphyromonas gingivalis hemin-binding protein 35. PLoS ONE. 2011;6:e21372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saiki K, Urano-Tashiro Y, Takahashi Y. Reassessment of minimal media reveals differences in growth among Porphyromonas gingivalis standard strains. J Oral Biosci. 2020;62:315–21.

    Article  PubMed  Google Scholar 

  27. Omura S, Tanaka H, Koyama Y, Oiwa R, Katagiri M, Awaya J, et al. Nanaomycins A and B*, new antibiotics produced by a strain of Streptomyces. J Antibiot. 1974;27:363–5.

    Article  CAS  Google Scholar 

  28. Shoji M, Shibata S, Naito M, Nakayama K. Transport and Polymerization of Porphyromonas gingivalis Type V Pili. Methods Mol Biol. 2021;2210:61–73.

    Article  CAS  PubMed  Google Scholar 

  29. Yukitake H, Shoji M, Sato K, Handa Y, Naito M, Imada K, et al. PorA, a conserved C-terminal domain-containing protein, impacts the PorXY-SigP signaling of the type IX secretion system. Sci Rep. 2020;10:21109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Coultate T. Food: The chemistry of its components. 7th ed. London: Royal Society of Chemistry; 2023.

    Book  Google Scholar 

  31. Abe N, Kadowaki T, Okamoto K, Nakayama K, Ohishi M, Yamamoto K. Biochemical and functional properties of lysine-specific cysteine proteinase (Lys-gingipain) as a virulence factor of Porphyromonas gingivalis in periodontal disease. J Biochem. 1998;123:305–12.

    Article  CAS  PubMed  Google Scholar 

  32. Song L, Perpich JD, Wu C, Doan T, Nowakowska Z, Potempa J, et al. A unique bacterial secretion machinery with multiple secretion centers. Proc Natl Acad Sci USA. 2022;119:e2119907119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ōmura S. Microbial metabolites: 45 years of wandering, wondering and discovering. Tetrahedron. 2011;67:6420–59.

    Article  Google Scholar 

  34. Ōmura S, Iwai Y, Hinotozawa K, Takahashi Y, Kato J, Nakagawa A, et al. Cervinomycin A1 and A2, new antibiotics active against anaerobes, produced by Streptomyces cervinus sp. nov. J Antibiot. 1982;35:645–52.

    Article  Google Scholar 

  35. Iwai Y, Kimura K, Takahashi Y, Hinotozawa K, Shimizu H, Tanaka H, et al. OM-173, new nanaomycin-type antibiotics produced by a strain of Streptomyces. Taxonomy, production, isolation and biological properties. J Antibiot. 1983;36:1268–74.

    Article  CAS  Google Scholar 

  36. Hayashi M, Unemoto T, Minami-Kakinuma S, Tanaka H, Ōmura S. The mode of action of nanaomycins D and A on a gram-negative marine bacterium Vibrio alginolyticus. J Antibiot. 1982;35:1078–85.

    Article  CAS  Google Scholar 

  37. Marumo H, Kitaura K, Morimoto M, Tanaka H, Ōmura S. The mode of action of nanaomycin A in Gram-positive bacteria. J Antibiot. 1980;33:885–90.

    Article  CAS  Google Scholar 

  38. Kuck D, Caulfield T, Lyko F, Medina-Franco JL. Nanaomycin A selectively inhibits DNMT3B and reactivates silenced tumor suppressor genes in human cancer cells. Mol Cancer Ther. 2010;9:3015–23.

    Article  CAS  PubMed  Google Scholar 

  39. Milner P, Batten JE, Curtis MA. Development of a simple chemically defined medium for Porphyromonas gingivalis: requirement for alpha-ketoglutarate. FEMS Microbiol Lett. 1996;140:125–30.

    CAS  PubMed  Google Scholar 

  40. Oda H, Saiki K, Numabe Y, Konishi K. Effect of gamma-immunoglobulin on the asaccharolytic growth of Porphyromonas gingivalis. J Periodontal Res. 2007;42:438–42.

    Article  CAS  PubMed  Google Scholar 

  41. Saiki K, Urano-Tashiro Y, Konishi K, Takahashi Y. A screening system using minimal media identifies a flavin-competing inhibitor of Porphyromonas gingivalis growth. FEMS Microbiol Lett. 2019;366:fnz204.

    Article  CAS  PubMed  Google Scholar 

  42. Saiki K, Urano-Tashiro Y, Yamanaka Y, Takahashi Y. Calcium ions and vitamin B12 are growth factors for Porphyromonas gingivalis. J Oral Biosci. 2022;64:445–51.

    Article  CAS  PubMed  Google Scholar 

  43. Nicosia FD, Puglisi I, Pino A, Caggia C, Randazzo CL. Plant milk-clotting enzymes for cheesemaking. Foods. 2022;11:871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang X, Zhao Q, He L, Shi Y, Fan J, Chen Y, et al. Milk-clotting properties on bovine caseins of a novel cysteine peptidase from germinated Moringa oleifera seeds. J Dairy Sci. 2022;105:3770–81.

    Article  CAS  PubMed  Google Scholar 

  45. Karlsson A, Arvidson S. Variation in extracellular protease production among clinical isolates of Staphylococcus aureus due to different levels of expression of the protease repressor sarA. Infect Immun. 2002;70:4239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ikeda T, Yoshimura F. A resistance-nodulation-cell division family xenobiotic efflux pump in an obligate anaerobe, Porphyromonas gingivalis. Antimicrob Agents Chemother. 2002;46:3257–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Olczak T, Simpson W, Liu X, Genco CA. Iron and heme utilization in Porphyromonas gingivalis. FEMS Microbiol Rev. 2005;29:119–44.

    Article  CAS  PubMed  Google Scholar 

  48. Meuric V, Rouillon A, Chandad F, Bonnaure-Mallet M. Putative Respiratory Chain of Porphyromonas gingivalis. Future Microbiol. 2010;5:717–34.

    Article  CAS  PubMed  Google Scholar 

  49. Wen A, Chen Y, Yuan S, Yu H, Guo Y, Cheng Y, et al. Elucidation of the binding behavior between tetracycline and bovine casein by multi-spectroscopic and molecular simulation methods. J Lumin. 2023;260:199879.

    Article  Google Scholar 

Download references

Acknowledgements

The enormous contribution of MS to this research, including the planning, execution, and paper preparation of this study, should be deeply emphasized. He had a great passion for science throughout his life. The authors thank H. Yukitake for discussions and continuous advice on experimental techniques and K. Nakayama for his support in preparing the revised manuscript. This work was supported by grants from Nagasaki University WISE Program Application Guidance for the Grant for Global Health Research Collaboration to MN, and the Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from the Japan Agency for Medical Research & Development (AMED) under Grant Numbers JP19am0101096 (Phase I) to MI. We would like to thank Editage (http://www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariko Naito.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, Y., Matsuo, T., Watanabe, Y. et al. Identification of nanaomycin A and its analogs by a newly established screening method for functional inhibitors of the type IX secretion system in Porphyromonas gingivalis. J Antibiot 78, 90–105 (2025). https://doi.org/10.1038/s41429-024-00790-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41429-024-00790-8

Search

Quick links