Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A new cannabigerolic acid derivative and its unprenylated precursor produced through the reconstitution of cannabinoid biosynthesis in Streptomyces

Abstract

A new derivative of cannabigerolic acid, designated as iso-cannabigerolic acid (iso-CBGA), a member of the cannabinoid family, and its precursor iso-olivetolic acid (iso-OA) were discovered from the culture of the engineered Streptomyces avermitilis heterologously expressing the genes responsible for cannabigerolic acid biosynthesis. Structural determination revealed an iso-pentyl moiety, which may arise from the biosynthetic precursor pool present in S. avermitilis. We describe herein the culture, isolation, structure determination and antibacterial activities of iso-CBGA and iso-OA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

References

  1. Shah SA, Gupta AS, Kumar P. Emerging role of cannabinoids and synthetic cannabinoid receptor 1/cannabinoid receptor 2 receptor agonists in cancer treatment and chemotherapy-associated cancer management. J Cancer Res Ther. 2021;17:1–9.

    Article  CAS  PubMed  Google Scholar 

  2. Pacher P, Batkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharm Rev. 2006;58:389–462.

    Article  CAS  PubMed  Google Scholar 

  3. Bonini SA, Premoli M, Tambaro S, Kumar A, Maccarinelli G, Memo M, et al. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J Ethnopharmacol. 2018;227:300–15.

    Article  CAS  PubMed  Google Scholar 

  4. Dos Santos RG, Hallak JEC, Crippa JAS. Neuropharmacological Effects of the Main Phytocannabinoids: A Narrative Review. Adv Exp Med Biol. 2021;1264:29–45.

    Article  PubMed  Google Scholar 

  5. Cao D, Lin Y, Lin C, Xu M, Wang J, Zeng Z, et al. Cannabidiol Inhibits Epithelial Ovarian Cancer: Role of Gut Microbiome. J Nat Prod. 2024;87:1501–12.

    Article  CAS  PubMed  Google Scholar 

  6. Tan Z, Clomburg JM, Gonzalez R. Synthetic Pathway for the Production of Olivetolic Acid in Escherichia coli. ACS Synth Biol. 2018;7:1886–96.

    Article  CAS  PubMed  Google Scholar 

  7. Luo X, Reiter MA, d’Espaux L, Wong J, Denby CM, Lechner A, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature. 2019;567:123.

    Article  CAS  PubMed  Google Scholar 

  8. Okorafor IC, Chen M, Tang Y. High-Titer Production of Olivetolic Acid and Analogs in Engineered Fungal Host Using a Nonplant Biosynthetic Pathway. ACS Synth Biol. 2021;10:2159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Valliere MA, Korman TP, Woodall NB, Khitrov GA, Taylor RE, Baker D, et al. A cell-free platform for the prenylation of natural products and application to cannabinoid production. Nat Commun. 2019;10:565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, et al. Antibacterial cannabinoids from Cannabis sativa: a structure-activity study. J Nat Prod. 2008;71:1427–30.

    Article  CAS  PubMed  Google Scholar 

  11. Lee YE, Kodama T, Morita H. Novel insights into the antibacterial activities of cannabinoid biosynthetic intermediate, olivetolic acid, and its alkyl-chain derivatives. J Nat Med. 2023;77:298–305.

    Article  CAS  PubMed  Google Scholar 

  12. Koshino H, Takahashi H, Osada H, Isono K. Reveromycins, new inhibitors of eukaryotic cell growth. III. Structures of reveromycins A, B, C and D. J Antibiot. 1992;45:1420–7.

    Article  CAS  Google Scholar 

  13. Laureti L, Song L, Huang S, Corre C, Leblond P, Challis GL, et al. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci USA. 2011;108:6258–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu Z, Schenk A, Hertweck C. Molecular analysis of the benastatin biosynthetic pathway and genetic engineering of altered fatty acid-polyketide hybrids. J Am Chem Soc. 2007;129:6022–30.

    Article  CAS  PubMed  Google Scholar 

  15. Xu Z, Ding L, Hertweck C. A branched extender unit shared between two orthogonal polyketide pathways in an endophyte. Angew Chem Int Ed Engl. 2011;50:4667–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 23H05474 to KS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Shin-ya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudo, K., Nishimura, T., Miyako, K. et al. A new cannabigerolic acid derivative and its unprenylated precursor produced through the reconstitution of cannabinoid biosynthesis in Streptomyces. J Antibiot 78, 126–130 (2025). https://doi.org/10.1038/s41429-024-00793-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41429-024-00793-5

Search

Quick links