Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Investigating the validity of mCIM and sCIM phenotypic methods in screening Pseudomonas aeruginosa isolates producing IMP, VIM, and NDM metallo-beta-lactamases isolated from burn wounds

Abstract

Metallo-beta-lactamase-producing Pseudomonas aeruginosa (P. aeruginosa) is a major pathogen in burn wounds, often exhibiting high levels of antibiotic resistance, which complicates treatment strategies. This study deals with the validity of the modified Carbapenem Inactivation Method (mCIM) and the simplified Carbapenem Inactivation Method (sCIM) phenotypic tests for screening metallo-beta-lactamase (MBL) production by P. aeruginosa isolates from a referral burn center in Iran. Forty isolates were obtained between January and June 2021 and identified using conventional biochemical methods. Antimicrobial susceptibility testing was conducted following Clinical and Laboratory Standards Institute (CLSI) 2021 guidelines. mCIM based on CLSI 2023 guidelines was used to detect carbapenemase production. sCIM was also used based on previously developed protocols. PCR was performed to detect blaIMP, blaVIM, and blaNDM genes. The results were analyzed using SPSS and MedCalc. We observed a 90% resistance rate to imipenem and high resistance to other antibiotics, with multidrug-resistant (MDR) strains constituting 95% of the isolates. The mCIM test demonstrated high sensitivity (87.50%) and high negative predictive value (89.47%) and moderate specificity (70.83%) and moderate positive predictive value (66.67%) for detecting MBLs. In contrast, the sCIM test was unreliable, indicating a need for more standardized testing protocols. This study underscores the importance of accurate and timely detection of carbapenemase production to guide effective treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Purdy-Gibson ME, France M, Hundley TC, Eid N, Remold SK. Pseudomonas aeruginosa in CF and non-CF homes is found predominantly in drains. J Cyst Fibros. 2015;14:341–6.

    Article  PubMed  CAS  Google Scholar 

  2. WHO Regional Office for Europe/European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2022–2020 data: Copenhagen: WHO Regional Office for Europe; 2022.

  3. Tadjrobehkar O, Kamali A. Evaluation of Antibiotic Resistance Pattern and Extended Spectrum Beta-lactamases in Pseudomonas aeruginosaIsolates Obtained from Clinical Samples by Phenotypic and Genotypic Methods in Zabol, Iran. J Kerman Univ Med Sci. 2022;29:529–35.

    Google Scholar 

  4. Reig S, Le Gouellec A, Bleves S. What is new in the anti-Pseudomonas aeruginosa clinical development pipeline since the 2017 WHO alert? Front Cell Infect Microbiol. 2022;12:909731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Tenover FC, Nicolau DP, Gill CM. Carbapenemase-producing Pseudomonas aeruginosa–an emerging challenge. Emerg Microbes Infect. 2022;11:811–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Yoon EJ, Jeong SH. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front Microbiol. 2021;12:614058.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32:https://doi.org/10.1128/cmr.00031-19.

  8. Hackel MA, Tsuji M, Yamano Y, Echols R, Karlowsky JA, Sahm DF. In vitro activity of the siderophore cephalosporin, cefiderocol, against carbapenem-nonsusceptible and multidrug-resistant isolates of gram-negative bacilli collected worldwide in 2014 to 2016. Antimicrob Agents Chemother. 2018;62:e01968–17.

  9. Vasoo S, Cunningham SA, Cole NC, Kohner PC, Menon SR, Krause KM, et al. In vitro activities of ceftazidime-avibactam, aztreonam-avibactam, and a panel of older and contemporary antimicrobial agents against carbapenemase-producing Gram-negative bacilli. Antimicrob Agents Chemother. 2015;59:7842–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Brown AC, Malik S, Huang J, Bhatnagar A, Balbuena R, Reese N, et al. 484. Metallo-β-Lactamase-Positive carbapenem-resistant enterobacteriaceae and pseudomonas aeruginosa in the antibiotic resistance laboratory network, 2017–2018. Open Forum Infect Dis. 2019;6:S237–S.

    Article  PubMed Central  Google Scholar 

  11. Simner PJ, Opene BNA, Chambers KK, Naumann ME, Carroll KC, Tamma PD. Carbapenemase detection among carbapenem-resistant glucose-nonfermenting Gram-negative bacilli. J Clin Microbiol. 2017;55:2858–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Shahin M, Ahmadi A. Molecular characterization of NDM-1-producing Pseudomonas aeruginosa isolates from hospitalized patients in Iran. Ann Clin Microbiol Antimicrobials. 2021;20:76.

    Article  CAS  Google Scholar 

  13. Rahimi E, Asgari A, Azimi T, Soleiman-Meigooni S. Molecular detection of carbapenemases and extended-spectrum β-lactamases-encoding genes in clinical isolates of Pseudomonas aeruginosa in Iran. Jundishapur J Microbiol. 2021;14:e115977.

    Article  CAS  Google Scholar 

  14. Gill CM, Asempa TE, Nicolau DP. Development and application of a pragmatic algorithm to guide definitive carbapenemase testing to identify carbapenemase-producing Pseudomonas aeruginosa. Antibiotics. 2020;9:738.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. CLSI. Performance standards for antimicrobial susceptibility testing. 33rd ed. CLSI supplement M100. United States: Clinical and Laboratory Standards Institute; 2023.

  16. Lasko MJ, Gill CM, Asempa TE, Nicolau DP. EDTA-modified carbapenem inactivation method (eCIM) for detecting IMP Metallo-β-lactamase–producing Pseudomonas aeruginosa: an assessment of increasing EDTA concentrations. BMC Microbiol. 2020;20:220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Jing X, Zhou H, Min X, Zhang X, Yang Q, Du S, et al. The simplified carbapenem inactivation method (sCIM) for simple and accurate detection of carbapenemase-producing Gram-negative bacilli. Front Microbiol. 2018;9:2391.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.

    Article  PubMed  CAS  Google Scholar 

  19. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70:119–23.

    Article  PubMed  CAS  Google Scholar 

  20. Khosravi AD, Mihani F. Detection of metallo-beta-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients in Ahwaz, Iran. Diagn Microbiol Infect Dis. 2008;60:125–8.

    Article  PubMed  CAS  Google Scholar 

  21. Simner PJ, Johnson JK, Brasso WB, Anderson K, Lonsway DR, Pierce VM, et al. Multicenter evaluation of the modified carbapenem inactivation method and the carba np for detection of carbapenemase-producing Pseudomonas aeruginosa and Acinetobacter baumannii. J Clin Microbiol. 2018;56:e01369–17.

  22. Zhang S, Mi P, Wang J, Li P, Luo K, Liu S, et al. The optimized carbapenem inactivation method for objective and accurate detection of carbapenemase-producing Acinetobacter baumannii. Front Microbiol. 2023;14:1185450.

  23. Khuntayaporn P, Thirapanmethee K, Kanathum P, Chitsombat K, Chomnawang MT. Comparative study of phenotypic-based detection assays for carbapenemase-producing Acinetobacter baumannii with a proposed algorithm in resource-limited settings. PLoS ONE. 2021;16:e0259686.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ahmad FS, Mojtaba S, Leili S, Fahimeh G, Hamid S, Fereshteh S. Emerge of NDM-1-producing multidrug-resistant Pseudomonas aeruginosa and co-harboring of Carbapenemase genes in South of Iran. Iran J Public Health. 2020;49:959.

  25. Seyedi M, Yousefi F, Naeimi B, Tajbakhsh S. Phenotypic and genotypic investigation of metallo-β-lactamases in Pseudomonas aeruginosa clinical isolates in Bushehr, Iran. Iran J Basic Med Sci. 2022;25:1196–200.

    PubMed  PubMed Central  Google Scholar 

  26. Mokhtari M, Mojtahedi A, Mahdieh N, Jafari A, Atrkar Roushan Z, Arya MJ. Evaluation of the Relative frequency of carbapenemase genes by phenotypic and genotypic methods in Pseudomonas aeruginosa isolates from patients with open heart surgery in Iran. Infect Epidemiol Microbiol. 2023;9:55–62.

    Article  CAS  Google Scholar 

  27. Vural E, Delialioğlu N, Tezcan Ulger S, Emekdas G, Serin MS. Phenotypic and molecular detection of the metallo-beta-lactamases in carbapenem-resistant pseudomonas aeruginosa isolates from clinical samples. Jundishapur J Microbiol. 2020;13:e90034.

    Article  CAS  Google Scholar 

  28. Edward EA, El Shehawy MR, Abouelfetouh A, Aboulmagd E. Phenotypic and molecular characterization of extended spectrum- and metallo- beta lactamase producing Pseudomonas aeruginosa clinical isolates from Egypt. Infection. 2024;52:2399–2414.

  29. Wang W, Wang X. Prevalence of metallo-β-lactamase genes among Pseudomonas aeruginosa isolated from various clinical samples in China. J Lab Med. 2020;44:197–203.

    Article  CAS  Google Scholar 

  30. Ghasemian S, Karami-Zarandi M, Heidari H, Khoshnood S, Kouhsari E, Ghafourian S, et al. Molecular characterizations of antibiotic resistance, biofilm formation, and virulence determinants of Pseudomonas aeruginosa isolated from burn wound infection. J Clin Lab Anal. 2023;37:e24850.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mirzaei B, Bazgir ZN, Goli HR, Iranpour F, Mohammadi F, Babaei R. Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran. BMC Res Notes. 2020;13:380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tenover FC, Dela Cruz CM, Dewell S, Le VM, Tickler IA. Does the presence of multiple β-lactamases in Gram-negative bacilli impact the results of antimicrobial susceptibility tests and extended-spectrum β-lactamase and carbapenemase confirmation methods? J Glob Antimicrob Resist. 2020;23:87–93.

    Article  PubMed  Google Scholar 

  33. Kumudunie WGM, Wijesooriya LI, Wijayasinghe YS. Comparison of four low-cost carbapenemase detection tests and a proposal of an algorithm for early detection of carbapenemase-producing Enterobacteriaceae in resource-limited settings. PLoS One. 2021;16:e0245290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Gajdács M, Kárpáti K, Stájer A, Zanetti S, Donadu MG. Insights on carbapenem-resistant Pseudomonas aeruginosa: phenotypic characterization of relevant isolates. Acta Biol Szeged. 2021;65:105–12.

    Article  Google Scholar 

  35. Ferjani S, Maamar E, Ferjani A, Kanzari L, Boubaker IBB. Evaluation of three carbapenemase-phenotypic detection methods and emergence of diverse VIM and GES variants among Pseudomonas aeruginosa isolates in Tunisia. Antibiotics. 2022;11:858.

  36. Gill CM, Aktaþ E, Alfouzan W, Bourassa L, Brink A, Burnham CD, et al. Multicenter, prospective validation of a phenotypic algorithm to guide carbapenemase testing in carbapenem-resistant Pseudomonas aeruginosa using the ERACE-PA global surveillance program. Open Forum Infect Dis. 2022;9:ofab617.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojdeh Hakemi-Vala.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatami, H., Motamedi, S., Talebi, G. et al. Investigating the validity of mCIM and sCIM phenotypic methods in screening Pseudomonas aeruginosa isolates producing IMP, VIM, and NDM metallo-beta-lactamases isolated from burn wounds. J Antibiot 78, 256–264 (2025). https://doi.org/10.1038/s41429-025-00806-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41429-025-00806-x

Search

Quick links