Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Epiconone, one novel cyclohexenone from endophytic fungi Epicoccum sp. 1-042

Abstract

Targeting drug-resistant Acinetobacter baumannii, two fungal strains, Epicoccum sp. 1-042 and Penicillium sp. 19-115, were identified from 35 fungi isolated from Tibet. Bioassay-guided isolation from Epicoccum sp. 1-042 yielded a novel cyclohexenone, epiconone (1), and parasitenone (2), while patulin (3) was isolated from Penicillium sp. 19-115. Structural elucidation was accomplished through comprehensive spectroscopic analysis and quantum chemistry calculations. The biosynthetic pathways of compounds 1 and 2 were proposed based on bioinformatics analysis. Compounds 1 − 3 exhibited antibacterial activity against carbapenem-resistant Acinetobacter baumannii (CRAB) with MIC values ranging from 4 to 128 μg mL-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.

    CAS  Google Scholar 

  2. World Health Organization (WHO). Antimicrobial resistance; WHO: Geneva, Switzerland, 2024; https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.

  3. Castaneda-Barba S, Top EM, Stalder T. Plasmids, a molecular cornerstone of antimicrobial resistance in the one health era. Nat Rev Microbiol. 2024;22:18–32.

    CAS  PubMed  Google Scholar 

  4. World Health Organization (WHO). WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance, 2024; WHO: Geneva, Switzerland, 2024; https://www.who.int/publications/i/item/9789240093461.

  5. Serapide F, Guastalegname M, Gulli SP, Lionello R, Bruni A, Garofalo E, et al. Antibiotic treatment of carbapenem-resistant Acinetobacter baumannii infections in view of the newly developed beta-lactams: a narrative review of the existing evidence. Antibiotics. 2024;13:506.

  6. Liu GY, Yu D, Fan MM, Zhang X, Jin ZY, Tang C, et al. Antimicrobial resistance crisis: could artificial intelligence be the solution. Mil Med Res. 2024;11:7.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nutman A, Temkin E, Lellouche J, Rakovitsky N, Hameir A, Daikos G, et al. In vivo fitness of carbapenem-resistant Acinetobacter baumannii strains in murine infection is associated with treatment failure in human infections. Clin Microbiol Infect. 2022;28:73–78.

    CAS  PubMed  Google Scholar 

  8. Chang S, Li Y, Huang X, He N, Wang M, Wang J, et al. Bioactivity-based molecular networking-guided isolation of epicolidines A–C from the endophytic fungus Epicoccum sp. 1-042. J Nat Prod. 2024;87:1582–90.

    CAS  PubMed  Google Scholar 

  9. Luo M, Chang S, Li Y, Xi X, Chen M, He N, et al. Molecular networking-based screening led to the discovery of a cyclic heptadepsipeptide from an endolichenic Xylaria sp. J Nat Prod. 2022;85:972–9.

    CAS  PubMed  Google Scholar 

  10. Chang S, Cai M, Xiao T, Chen Y, Zhao W, Yu L, et al. Prenylemestrins A and B: two unexpected epipolythiodioxopiperazines with a thioethanothio bridge from Emericella sp. isolated by genomic analysis. Org Lett. 2022;24:5941–5.

    CAS  PubMed  Google Scholar 

  11. Sritharan T, Salim AA, Capon RJ. Miniaturized cultivation profiling returns indolo-sesquiterpene michael adducts from the Australian soil-derived Aspergillus terreus CMB-SWF012. J Nat Prod. 2023;86:2703–9.

    CAS  PubMed  Google Scholar 

  12. Khalil ZG, Salim AA, Capon RJ. Microbioreactor techniques for the production and spectroscopic characterization of microbial peptides. Methods Mol Biol. 2020;2103:303–22.

    CAS  PubMed  Google Scholar 

  13. Dewa AA, Khalil ZG, Hussein WM, Jin S, Wang Y, Cruz-Morales P, et al. Pullenvalenes A–D: nitric oxide-mediated transcriptional activation (NOMETA) enables discovery of triterpene aminoglycosides from Australian termite nest-derived fungi. J Nat Prod. 2024;87:935–47.

    CAS  PubMed  Google Scholar 

  14. Kankanamge S, Bernhardt PV, Khalil ZG, Capon RJ. Miniaturized cultivation profiling (MATRIX)-facilitated discovery of noonazines A-C and noonaphilone A from an Australian marine-derived fungus, Aspergillus noonimiae CMB-M0339. Mar Drugs. 2024;22:243.

  15. Bode HB, Bethe B, Höfs R, Zeeck A. Big effects from small changes: Possible ways to explore nature’s chemical diversity. ChemBioChem. 2002;3:619–27.

    CAS  PubMed  Google Scholar 

  16. Son BW, Choi JS, Kim JC, Nam KW, Kim DS, Chung HY, Kang JS, Choi HD. Parasitenone, a new epoxycyclohexenone related to gabosine from the marine-derived fungus Aspergillus parasiticus. J Nat Prod. 2002;65:794–5.

    CAS  PubMed  Google Scholar 

  17. Woodward RB, Singh G. The structure of patulin. J Am Chem Soc. 1949;71:758.

    CAS  PubMed  Google Scholar 

  18. Grimblat N, Zanardi MM, Sarotti AM. Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J Org Chem. 2015;80:12526–34.

    CAS  PubMed  Google Scholar 

  19. Chang S, Luo Y, He N, Huang X, Chen M, Yuan L, et al. Nocaviogua A and B: two lipolanthines from root-nodule-associated Nocardia sp. Front Chem. 2023;11:1233938.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tjallinks G, Boverio A, Maric I, Rozeboom H, Arentshorst M, Visser J, et al. Structure elucidation and characterization of patulin synthase, insights into the formation of a fungal mycotoxin. FEBS J. 2023;290:5114–26.

    CAS  PubMed  Google Scholar 

  21. Li B, Chen Y, Zong Y, Shang Y, Zhang Z, Xu X, et al. Dissection of patulin biosynthesis, spatial control and regulation mechanism in Penicillium expansum. Environ Microbiol. 2019;21:1124–39.

    CAS  PubMed  Google Scholar 

  22. Puel O, Galtier P, Oswald IP. Biosynthesis and toxicological effects of patulin. Toxins. 2010;2:613–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. F Lynen MT. Die biochemischen Grundlagen der, Polyacetat-Regel’’. Angew Chem. 1961;73:513–9.

    Google Scholar 

  24. Cockerill F, Wikler M, Alder J, Dudley M, Eliopoulos G, Ferraro M, et al. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard−ninth edition; Clinical and Laboratory Standards Institute: Wayne, PA, 2012.

  25. Kong C, Huang H, Xue Y, Liu Y, Peng Q, Liu Q, et al. Heterologous pathway assembly reveals molecular steps of fungal terreic acid biosynthesis. Sci Rep. 2018;8:2116.

    PubMed  PubMed Central  Google Scholar 

  26. Yang YL, Zhou M, Yang L, Gressler M, Rassbach J, Wurlitzer JM, et al. A mushroom P450-monooxygenase enables regio- and stereoselective biocatalytic synthesis of epoxycyclohexenones. Angew Chem Int Ed Engl. 2023;62:e202313817.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was co-funded by The National Natural Science Foundation of China (82104047) and CAMS Innovation Fund for Medical Sciences (CIFMS, 2021-I2M-1-028).

Author information

Authors and Affiliations

Contributions

These authors contributed equally: Shanshan Chang and Xinyue Huang

Corresponding authors

Correspondence to Xichi Hu or Yunying Xie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, S., Huang, X., Liu, M. et al. Epiconone, one novel cyclohexenone from endophytic fungi Epicoccum sp. 1-042. J Antibiot 78, 330–335 (2025). https://doi.org/10.1038/s41429-025-00813-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41429-025-00813-y

Search

Quick links